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Abstract

We propose an algorithm for computing a 3D model from
several satellite images of the same site. The method works
even if the images were taken at different dates with impor-
tant lighting and vegetation differences. We show that with
a large number of input images the resulting 3D models can
be as accurate as those obtained from a single same-date
stereo pair. To deal with seasonal vegetation changes, we
propose a strategy that accounts for the multi-modal na-
ture of 3D models computed from multi-date images. Our
method uses a local affine camera approximation and thus
focuses on the 3D reconstruction of small areas. This is
a common setup in urgent cartography for emergency man-
agement, for which abundant multi-date imagery can be im-
mediately available to build a reference 3D model. A pre-
liminary implementation of this method was used to win the
IARPA Multi-View Stereo 3D Mapping Challenge 2016.
Experiments on the challenge dataset are used to substanti-
ate our claims.

1. Introduction

The number of optical Earth observation satellites has
increased drastically over the past decade', driven by the
need to monitor changes on the surface of the Earth. As a
result, the amount of acquired images has grown to the point
that nowadays many sites (usually urban areas) are captured
several times per year. However, most of these images are
taken at different dates and thus are not intended for com-
putation of 3D models. But monitoring the Earth’s surface
is a three-dimensional problem and 3D models have a vari-
ety of applications such as ortho-rectification of images or
support cartography for emergency management. The goal
of this paper is to present an algorithm to exploit such large
archives of single-date images to compute the best possible
3D model with reasonable computational cost.

IFor example, Pléiades, Landsat 8, Worldview 3, Sentinel-2, and many
more launched by private companies such as Planet, AstroDigital, Urthe-
cast, BlackSky, Hera Systems, and Satellogic.
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Figure 1. Footprints and dates of the 47 images of the JARPA
challenge dataset [2]. The images cover the North part of Buenos
Aires and were acquired over a period of 14 months. Only four
groups of images were taken during the same orbit: two pairs, one
triplet, one hextuple.

Approaches for 3D reconstruction from multiple views
can be grouped in two classes. On the one hand, true mul-
tiview methods tackle the multiview triangulation problem
for all images simultaneously [26, 12, 24]. On the other
hand, multiview stereo methods use binocular stereo to pro-
cess several image pairs independently and then fuse the
resulting 3D models [19, 21]. It was already observed [23]
that this second strategy may give better results than sophis-
ticated true multiview methods [26]. To correct inaccuracies
in the camera models, all of these methods rely on bundle
adjustment [27, 30, 13] which in turn relies on detecting a
sufficient quantity of accurate inter-image tie-points. This
can be an issue with multi-date images, especially when re-
stricted to small regions of interest.

In this paper, we argue in favor of multiview stereo with-
out bundle adjustment: we compute independent 3D mod-
els from pairs of images with binocular stereo, without any
prior bundle adjustment. It is then easy to align and fuse
the multiple 3D models. This is possible thanks to a local
affine camera approximation [ 1, 13, 22, 8, 28] implying
that on small image regions, the 3D models differ by a 3D
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Figure 2. 3D models obtainéd from 47 Worldview-3 images by fusion of 50 well-chosen stereo pairs.

translation only.

We show that a 3D model computed from multi-date im-
ages by pairwise fusion can be as accurate as a 3D model
computed from a same-date stereo pair, and study the best
way to select image pairs and fuse the resulting models.

We highlight the importance of vegetation by showing
how seasonal changes among the images affect the qual-
ity of the final reconstruction, and propose a fusion strategy
that accounts for the multi-modal nature of 3D models com-
puted from images taken at different dates.

1.1.TARPA MYVS Challenge Dataset and Evaluation

This work was motivated by the release of a public
benchmark dataset for multiple view stereo mapping us-
ing multi-date satellite images [2]. This dataset, which
supported the JARPA Multi-View Stereo 3D Mapping Chal-
lenge, includes 47 DigitalGlobe WorldView-3 panchro-
matic images of a 100 square kilometer area near San
Fernando, Argentina (see Figure 1). The images have a
30 cm nadir resolution and were acquired over a period of
14 months. Most of the images were taken at different dates.
Nearly all the images are clear sky. However, the quality is
not consistent: the winter images are considerably noisier,
and the images with large incidence angles suffer from a
loss of resolution in the range direction.

The dataset also includes 20 cm resolution airborne lidar
ground truth for a 20 square kilometer subset of the cov-
ered area. It comes with a program for computing the com-
pleteness and accuracy of any 3D model, by comparing it
to the lidar ground truth. Completeness is defined as the
percentage of lidar points wose error is less than 1 meter,
and accuracy is the root mean square error of all the com-
puted points. Since completeness implies a certain accuracy
(below 1 meter) for a set of pixels, it comes to no surprise
that both metrics exhibit a strong (negative) correlation (see
Section 2.1). For this reason, this paper uses completeness
as the main quality measure. Figure 2 shows some results of
the method proposed in this paper over the IARPA dataset.
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1.2. RPC Camera Model and Pointing Error

Each satellite image is provided with a Rational Polyno-
mial Coefficients (RPC) camera model [9], and other meta-
data such as the exact acquisition date or the direction of
the sun. The RPC model combines the intrinsic and extrin-
sic parameters of the pushbroom system in a pair of rational
polynomial functions that approximate the mapping from
3D space points given as (latitude, longitude, height) to 2D
image pixels: P, : R® — R? (named projection), and its
inverse: L,, : R?> x R — R3 (localization). Both rational
functions have degree 3 (for a total of 160 coefficients per
image). The RPC model approximation has sub-millimetric
accuracy for scenes of size up to 20 km x 20 km [9].

The RPC functions allow to triangulate the position of
a 3D point that has been identified on two images. If the
point (¢, 7) of image n corresponds to the point (i, j') of
image n/, then for some height i we have L, (i, j', h)
L, (i, j, h), or equivalently

(i',5") = Pu (Ln(i, j, h)). e))

By solving equation (1) for A we find the height of the 3D
point, and hence its 3D position.

Although the RPC are accurate, the model they encode
is subject to measurement errors (mainly for the satellite
attitude angles), which translate into geopositioning errors
of the triangulated points. These pointing errors can be of
the order of tens of pixels in the image domain. In [13]
it was shown that since the satellite camera is far from the
scene (typically 700 km), the rays for individual pixels are
almost parallel. Thus geopositioning errors can be corrected
by applying a bias correction offset (i.e. a translation) for
scenes of size up to 50 km x 50 km.

1.3. Related Work

Fusing DSMs (Digital Surface Models) computed inde-
pendently from pairs of multi-date images was considered
in [23] and was compared to a true multiview volumetric
method [26]. The conclusion was that fusion generates bet-
ter quality DSMs, i.e. with more pixels within 1 meter of the
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Figure 3. Flow diagram of the multi-date DEM generation
pipeline used in this paper. Rational Polynomial Coefficients
(RPC) camera models are used to determine the pairs to be pro-
cessed. For each pair a point cloud is computed. These are then
aligned and fused (see Section 2.3).

ground truth. The method proposed in [23] starts by correct-
ing the camera models [13] of the entire image collection.
This process relies on bundle adjustment and thus in de-
tecting a sufficient quantity of inter-image tie-points, which
may be hard to achieve in a multi-date setting. The method
proposed in the present paper does not use bundle adjust-
ment. Instead, it relies on a binocular stereo pipeline [6]
that internally corrects the effects of relative pointing error
for each pair (using pairwise image tie-points), thus produc-
ing biased DSMs. These biases are later corrected by our
DSM registration step, without relying on image tie-points.
Moreover, in this paper we highlight the impact of select-
ing and fusing few good pairs rather than computing the
median of all the possible pairs as [23] does. Our method
is based on a principled pair selection criterion and a fu-
sion strategy that accounts for the multi-valued nature of a
multi-date DSM.

A multiview stereo approach is used in [4, 19, 14] to re-
construct (and compare [14]) large scale models from sets
of same-date pairs. The methods rely on bundle adjustment
to align the DSMs. The fusion of the DSMs is performed by
median filtering. In [28] an additional 3D model registration
is applied before fusion, in order to improve the accuracy of
the initial bundle adjustment. This paper also remarks that a
simple 3D translation is almost always sufficient to correct
WorldView-1 or WorldView-2 DSM products.

In the context of planetary science, the work of [1] gives
recommendations for identifying suitable stereo pairs from
a heterogeneous collection of images. Our method uses
similar selection rules for the case of Earth observation
satellites.

2. Proposed Multiview Reconstruction Method

Our method works by aggregating point clouds com-
puted independently from well-chosen image pairs. A sim-
ilar strategy, aggregating the DSMs obtained from all possi-
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Figure 4. DSMs obtained from a same-date pair with large inci-
dence, and from a multi-date pair with small incidence.

ble image pairs, was proposed in [23]. Here, we propose a
new incremental method that selects and aggregates only a
small fraction of all the pairs. Our method consists of three
stages (Figure 3):

1. Pair selection. We propose a heuristic for sorting all
the possible image pairs so that the first pairs of the list
yield results with higher completeness measure.

2. Stereo matching. For each selected image pair a 3D
point cloud is computed by stereo matching and tri-
angulation. Note that each point cloud is computed
independently with no need for bundle adjustment.

3. Alignment and fusion. The triangulated point cloud
computed from each selected image pair is projected
into a geographic grid and registered with the oth-
ers. The small size of the reconstructed region al-
lows to correct the geolocation errors with a simple 3D
translation [13, 23, 28]. The aligned DSMs are then
merged. Since the DSMs may correspond to different
dates, we must assume that they are multimodal (see
Section 2.3). The proposed fusion strategy accounts
for this by favoring the elevation modes closer to the
ground.

2.1. Selection of Image Pairs

The quality of 3D models obtained from different pairs
of multi-date images varies widely. For example, Figure 4
compares the DSM from a multi-date near-nadir pair, with
the DSM obtained from a same-date slanted pair. The sec-
ond DSM is notably worse. Factors such as the geometric
configuration of the satellites (i.e. baseline and incidence),
image noise, seasonal changes, illumination, and shadows
can affect the quality of the output for a given image pair.
So, given a set of multi-date images, we want a criterion for
sorting all the pairs according to their quality (defined by the
completeness measure), and process only the first elements
of this list.



To learn which factors are the most relevant for this task
we computed the DSMs of the training site for all the pos-
sible image pairs (Section 2.2), and evaluated them using
the ground truth data by computing completeness and accu-
racy. Figure 5 illustrates these quantities as cells in a matrix
where rows and columns correspond to image indexes in
chronological order. Note how pairs of images that are tem-
porally close (close to the diagonal) lead to better results.
Since accuracy and completeness are closely related we fo-
cus on the latter only for our evaluation.

In order to identify descriptors that can predict the com-
pleteness, we built a correlation matrix (Figure 6) between
the measures and some descritptors computed from the RPC
models of the images. The three most relevant are: angle
between the views, maximum incidence angle, and time
difference between the two images. To understand how
these variables affect the completeness we partitioned this
3-parameter space and computed the average completeness
for each cell as shown in Figure 7. We observed that:

1. Temporal proximity. Images acquired at nearby dates
are more likely to yield good results. To our surprise,
we also observed that images from the same season of
different years also yield good results (see Figure 5).

2. Maximum incidence angle. When one of the two im-
ages has an incidence angle larger than 40 degrees its
lower resolution degrades the result.

3. Angle between the views. The best results are ob-
tained with pairs forming an angle of about 20 degrees.
Angles below 5 degrees and above 45 tend to be less
useful.

Based on these observations we propose a simple heuris-
tic for sorting the image pairs. We prioritize the pairs form-
ing angles from 5 to 45 degrees, with maximum incidence
angle below 40 degrees. Within this set we sort all the pairs
by increasing acquisition date difference. The remaining
pairs are also sorted by increasing time difference and ap-
pended to the list.

2.2. Stereo From an Image Pair

The stereo matching was performed with an open source
pipeline called S2P (Satellite Stereo Pipeline) [6]. This
pipeline computes 3D point clouds from pairs of satellite
images. Similarly to other open source stereo pipelines such
as ASP [21] and MicMac [25], and to other works [31, 4, 5,

], S2P is fully automatic.

But unlike most of these pipelines S2P is script-based
and modular. This makes it easy to recover intermediate re-
sults and change parts. The stereo matching algorithm can
for example be replaced by any other method, while S2P
provides the end-to-end plumbing for tile-wise processing,
camera modeling, and raster DSM synthesis. The program
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Figure 5. Completeness (percentage of pixels with error below 1
m) and accuracy (RMSE in m) of the training site reconstructions
from all the possible image pairs (47 x 46) in the IARPA chal-
lenge dataset [2]. Rows and columns correspond to image indexes
sorted by acquisition date. Note that both measures are strongly
correlated (negatively).
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Figure 6. Pearson’s correlation matrix from 2162 results on the
training site. The angle between the views, maximum incidence
angle, and time difference between the acquisitions are strongly
correlated with the completeness.
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Figure 7. Average completeness (represented by color and size
of the blobs) of an image pair as function of: the angle between
the views, the maximum incidence of the two images, and the time
difference. The averages are computed using all the possible im-
age pairs.

works by cutting the input images into small tiles, where the
camera can be assumed to be affine. Then, each pair of tiles
is stereo-rectified [18] and fed to the stereo matching algo-
rithm. Finally, the point cloud is obtained by triangulation
of the stereo correspondences using the provided RPCs.



projection (x) closing (D) interpolation (Ep)
Figure 8. Detail from a multi-date pair, taken from a similar view-
point but in different seasons. Notice the changes in the trees and
shadows. In the second row: DSM processing before fusion (steps
2-4 of Algorithm 1) for the above pair.

Stereo from multi-date pairs must deal with strong ap-
pearance changes. Although S2P is designed for same-date
pairs the results on multi-date pairs can have comparable
quality, provided the pair is well-chosen (see Figure 8).
It has been observed [3] that the census transform [32]
is robust to lighting changes and even to small rectifica-
tion errors [17]. The matching algorithm [10] (a variant
of SGM [16]) included in S2P uses a census-based method.
Sub-pixel accuracy is achieved by sampling the disparity
space with 0.5 pixel steps, and further refined by V-fit in-
terpolation [15] of the costs around the minimum. Only
consistent disparities passing the left-right check are kept.

In order to deal with the increased number of mismatches
in the multi-date stereo setting we added a filtering step that
removes connected disparity components smaller than 5 x 5
pixels. We observed that this eliminates most of the mis-
match artifacts introduced by the matching algorithm [10].

2.3. Alignment and Fusion

The 3D point clouds, independently computed in the pre-
vious step, are projected, aligned, and fused in this step.
The process is scalable as new pairs can be incorporated,
only requiring to refresh the fusion.

Projection of point clouds into a geographic grid. We
project the 3D point clouds on a geographic grid with a res-
olution similar to the satellite nadir GSD (ground sampling
distance), which is 30 cm for the WordView 3 images pro-
vided by [2]. The algorithm computes the position of the

Algorithm 1: Alignment and fusion algorithm

Input : point clouds {C,},=1..p
Input : reference cloud index: ref
Input : geographic Region Of Interest: ROI
Output: Fused DSM
// Generate dense DSMs
forpe {1,...,P}do
X = PROJECTPOINTCLOUD(C,,, ROI)
D, + IMCLOSE(x, 3)
E, < INTERP5PC(D,)
// Align with Diyey
orpe{l,...,P}do
dz,dy < argmaxg, gy FNCC(E,, E, s, dz, dy)
D,, + TRANSLATE3D(D,, dz, dy, 0)
dz < ALIGNMEANS(D,, D,.f)
D,, + TRANSLATE3D(D,, 0,0, dz)
// Fusion

10 return K-MEDIANSFUSION({D,},=1..p)
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3D points on the geographic grid by nearest-neighbor inter-
polation, and stores the maximum altitude in each cell.

The projected DSM may have small holes due to the
sampling and larger ones due to stereo mismatches. Two
DSMs are produced from this projection (shown in Fig-
ure 8). In the first one the small holes are interpolated by
closure with a 3x3 structuring element, while larger ones
are left as no-data. This DSM will be the input of the fusion
step. A second DSM is generated from the previous one,
filling-in the larger holes by using the minimum value (ac-
tually the 5% percentile) on the boundary of each hole. This
interpolation amounts to assume that occluded parts are at
ground level. This map is used for the planar alignment
step.

Correlation based point cloud alignment. Because of
the pointing errors in the RPC models, 3D point clouds ob-
tained from different image pairs are usually not aligned.
Bundle adjustment methods [29] simultaneously adjust the
parameters of all the cameras by using image correspon-
dences (e.g. SIFT matches [20]).

In [13] it is shown that for satellite images many of the
model parameters have redundant effects, and that the affine
camera model is a good approximation of the camera. This
implies that displacements in the image plane are sufficient
to correct the bias error using a bundle block adjustment
algorithm, given enough tie-points. Still, bundle block ad-
justment relies on keypoint matching, which is sensitive to
noise and radiometric changes, such as the ones observed
in multi-date datasets, so in general large areas need to be
processed in order to find enough tie-points.

In this paper we adopt a simple but effective alignment



strategy that is derived from the affine camera model and is
well adapted to the case of DSMs [23]. Instead of relying
on image-to-image matches it consists in matching the point
clouds. This is motivated by two observations:

e Matching surface models is more stable over time than
using tie-points across multi-date images (as long as
the 3D geometry does not change too much);

e The error induced on the 3D point clouds by the satel-
lite pointing error is mainly a translation [13, 23, 28].

Since the pointing error induces a 3D translation of the
triangulated point clouds (see Section 2.4), we propose to
align the projected DSMs by maximizing the Normalized
Cross Correlation (NCC) between them, which is invariant
to affine contrast changes. We define the NCC as

(3~ 1 @) (@)
ou() 0y ()

NCC(u,v) := Ifll > , ()

| teh

where () := Q. Ny is the intersection of the sets of known
pixels in both DSMs, which allows to deal with incomplete
DSMs. The sample mean and standard deviation of u on (2
are denoted respectively p,, (£2) and 0, (Q).

The optimal translation aligning two DSMs u and v is
determined by the maximum of the correlation

FNCC(u, v, dz, dy) := NCC(u, shift(v, (dz,dy))), (3)

which is maximized with a coarse-to-fine strategy.

When not aligned, no-data regions in u and v reduce
the domain 2 where the NCC is defined. This can bias
the NCC-based alignment as entire features can fall out-
side €2. To avoid this behavior the planar translation is
computed using interpolated DSMs where the ground ele-
vation is prolonged from the boundaries of missing regions
(E, in Algorithm 1). The altitude translation is then com-

~ ~

puted by matching the means 1, (2) and pi (€2) of the non-
interpolated maps.

DSM Fusion. A popular strategy for fusing registered
DSMs is the pointwise median [23]. However, the me-
dian assumes a single mode, which in a multi-date setting
can yield an incoherent result due to changes in vegetation
(multi-modal elevations are shown in Figure 9). To account
for this multi-modality of heights we propose a method
that selects the mode corresponding to the ground altitude,
which is the lowest one.

We estimate the height modes at each point by applying
the k-medians clustering with increasing number of clusters
(1 to 8) until the clusters have a span inferior to a predefined
precision. If one or two clusters are detected the lowest one
is kept, otherwise the point is marked as no-data. Figure 10
compares the results obtained by the median and the pro-
posed clustering-based strategy (denoted as k-medians).
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Figure 9. Taking the median for fusing multi-date DSMs is not
consistent with the differences due to seasonal vegetation changes,
which can be seen as bimodal.

0

median of 700 pairs ~ median of 50 pairs k-medians of 50 pairs
Figure 10. Median aggregation of the 700 and 50 best pairs, ac-
cording to the heuristic order (left, center), and k-medians with
50 pairs (right). The second row shows the absolute difference
with the ground truth. Note that the k-medians result has less fore-

ground fattening and that many trees have disappeared.

2.4. Consequences of the Affine Camera Model

The affine camera model is a very good approximation
of the pushbroom instrument [ 1, 13, 5, 8, 23, 28] when
working on small regions of interest (e.g. about 2km X
2 km). This approximation allows to model the pointing
error by translations in the image domain [13, 7]. In this
paper we take the affine camera hypothesis to another level;
this implies that the triangulation function

coloc3D : R? x R? — R3 4)

is linear. Thus a translation error in the image domain in-
duces a translation in 3D. This means that we can compute
the triangulation without any bundle adjustment, since any
correction will result in a global 3D translation that can be
easily estimated afterwards (by correlating the DSMs).

Let us formalize these observations. For an affine cam-
era, the projection and localization functions P and L are
affine maps represented as 2 x 3 matrices.



Definition 1 (Affine colocalization). Given a match (p,p’)
between two cameras defined by L = (A|b) and L' =
(A’|Y), the solution of the linear system Ap+ bh = A'p’ +
b'h for h is h = coloc(p, p'), where

(b= V) - (A — Ap)
IEVIE

coloc(p,p’) = 5)
and the triangulation gives the 3D point coloc3D(p,p’) =
L(p, coloc(p, p')).

Note that the affine colocalization algorithm can be ap-
plied even if the point p’ does not fall on the epipolar line
of p. Also note that coloc3D is a linear map (4). Now, we
assume [ 13] that the pointing error corresponds to a transla-
tion on each image.

Lemma 2 (The bad stereo lemma). If we apply the affine
colocalization algorithm to a set of matches (p,p’) where
each image domain has suffered unknown translations, we
obtain a set of 3D points that differs from the correct one by
a global 3D translation.

Proof. Let us suppose that the pointing error corresponds
to translations ¢ and ¢’ on each image. Since the func-
tion coloc3D is linear, we have

coloc3D(p +t,p' + ') = coloc3D(p,p’) + au s (6)

where a; ¢ € R? is a translation. O

3. Results and Discussion

We first analyze the proposed method on the training site
provided with the IARPA challenge dataset [2]. Then, we
validate it on three evaluation sites from the same dataset
(shown in Figure 14 and rendered in Figure 2).

Training Site. Figure 11 shows the completeness and ac-
curacy of the fused DSM as a function of the number of
pairs. We compared the median [23] with the proposed k-
medians fusion (Section 2.3), and evaluated three pair or-
dering criteria: the heuristic proposed in Section 2.1, a ran-
dom order, and the oracle order obtained by sorting the
pairs by decreasing completeness (used as reference).

The plots confirm that the proposed pair selection heuris-
tic reaches a performance similar to the oracle, way beyond
the random order. This is confirmed on the validation sites
(Table 1). However, the completeness drops slightly when
fusing more than 100 pairs. This motivates our choice of
fusing only the first 50 pairs, instead of fusing them all
(2162 in this case) as in [23]. Automatic determination of
the optimal number of pairs to fuse is left for future work.

We note that the accuracy degrades with the number of
fused pairs. This is justified since the pairs are ordered by
decreasing completeness, so merging more pairs reduces
the overall accuracy.
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Figure 11. Completeness and accuracy (RMSE) as a function of
the number of fused DSMs, where all the 47 images are used to
form the pairs. Plots show the results obtained with the median
and k-medians fusion for three pair ordering criteria: the proposed
heuristic, a random order, and the oracle order.
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Figure 12. Completeness (training site) as a function of the num-
ber of fused DSMs, using k-medians fusion. Oracle and heuristic
refer to the pair ordering criteria. The blue curve is obtained by
fusing only pairs from the hextuple. The others use only pairs
formed with the 38 diachronic images.

We observe that, in terms of completeness, for up until
20 pairs the k-medians fusion is similar to median [23], and
only for large numbers of pairs k-medians improves over
median. However, the error maps in Figure 10 show that
k-medians has less foreground fattening errors, and more
errors due to changes in vegetation, which degrade the ac-
curacy. The effect of seasonal vegetation changes is the sub-
ject of future works. See more results at the project page.

We now turn to one of the main questions addressed in
this paper: is it possible to obtain a quality DSM from a di-
achronic image set containing no same-date pairs? Could
the result be comparable to one obtained from a same-date
pair? To check this hypothesis on a meaningful example, we
considered the best same-date image set, namely the hextu-
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same-date hextuple (15 pairs) 38 multi-date images (50 pairs)
Figure 13. Reconstruction using only the hextuple of same-date
images (left), and 38 diachronic images (right). The first one is
obtained by fusing 15 pairs, the second is a fusion of 50 pairs
selected with the heuristic criterion. Note the differences in the
trees (dark red).

Figure 14. Results on three evaluation sites, fusing with k-medians
the 50 best pairs selected by the heuristic criterion. High resolution
results and difference maps with ground truth are available at the
project webpage.

ple provided in the IARPA dataset. We fused its pairs using
the oracle order. This represents one of the best results ob-
tainable with a rich same-date image set, here composed
of six images. Then, we formed pairs using only the 38 di-
achronic images, and fused them according to the oracle and
heuristic order. The curves in Figure 12 show that, using
only diachronic images, it is possible to attain the quality
of a same-date set. We note that the completeness obtained
with the diachronic set rapidly surpasses a single same-date
pair, and that the difference is about 1% when compared to
the full hextuple. Figure 13 shows both resulting DSMs;
note that some trees have disappeared in the diachronic re-
sult due to the k-medians fusion.

Evaluation Sites. We applied the proposed method on the
three evaluation sites provided with the IARPA dataset [2].
The sites, shown in Figure 14, have different characteris-
tics: low and medium-rise buildings with few trees in sites
1 and 2, and high-rise buildings with many trees in site 3.
In addition, sites 2 and 3 are not seen in 7 of the 47 images,
including the same-date hextuple. Thus the method has to

‘ ‘ heuristic order ‘ ‘ oracle order

site med k-med med k-med
training || 79.0/2.67 | 80.1/2.89 || 79.3/2.69 | 80.2/2.89
site 1|| 73.6/1.80 | 74.0/1.88 || 74.4/1.79 | 74.7/1.88
site2|| 71.8/3.97 | 73.1/3.87 || 71.6/3.85 | 73.1/3.79
site 3 || 57.2/6.73 | 58.6/7.52 || 57.9/6.36 | 59.6/6.98

Table 1. Completeness (%) / Accuracy (m) of fused DSMs using
50 pairs. We compare the heuristic and oracle (from training) pair
selection, and the median (med) and k-medians (k-med) fusion.

cope with fewer images. Each site depicts an area of about
400 x 400 meters at 30 cm.

The results of fusing 50 pairs with the median and k-
medians strategies are presented in Table 1, while Figure 14
illustrates the k-medians result computed using the heuristic
pair selection. The completeness drop of site 3 is due to a
higher vegetation density on this site. As for the training
site, the k-medians shows a small improvement compared to
the median. But the results have less foreground fattening.

Last, since the proposed method only computes a frac-
tion of all the image pairs, its computational cost is one
order of magnitude lower than [23], which matches all the
pairs. Each site is computed in less than 1 hour on a 16-core
computer.

4. Conclusion

We propose an algorithm to compute a 3D reconstruc-
tion from a collection of satellite images of the same site.
The method is able to add information from new images
incrementally and it does not rely on a global bundle ad-
justment. It relies instead on the local affine camera ap-
proximation [13], which allows to compute 3D models in-
dependently from the original pairs of images, then aligns
the models by 3D translations. Experiments show that a 3D
model computed by our algorithm from a multi-date col-
lection can be as accurate as a 3D model computed from
a pair of same-date images. We propose a heuristic to se-
lect the best image pairs from a large collection, and we
observe that the optimal result is obtained by keeping only
few well-chosen pairs from the large set of all possible pairs.
Finally, since DSMs often exhibit a yearly oscillation (due
to deciduous trees), we propose a fusion criterion that gives
a “winter” version of the DSM. Our experiments rely on
the recently published IARPA dataset [2], which proved an
invaluable tool to assess the validity of the proposed tech-
niques. Future work will focus on the evaluation on more
datasets and the comparison between classic bundle adjust-
ment and the proposed DSM fusion strategies.
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