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ABSTRACT
New micro-satellite constellations enable unprecedented sys-
tematic monitoring applications thanks to their wide coverage
and short revisit capabilities. However, the large volumes of
images that they produce have uneven qualities, creating the
need for automatic quality assessment methods. In this work,
we quantify the sharpness of images from the PlanetScope
constellation by estimating the blur kernel from each image.
Once the kernel has been estimated, it is possible to compute
an absolute measure of sharpness which allows to discard low
quality images and deconvolve blurry images before any fur-
ther processing. The method is fully blind and automatic, and
since it does not require the knowledge of any satellite speci-
fications it can be ported to other constellations.

1. INTRODUCTION

The usability of satellite images for interpretation, or object
detection and reconstruction purposes highly depends on the
image quality, which can be characterized by a large number
of measures, e.g. contrast, brightness, noise variance, radio-
metric resolution, sharpness, etc. Among those measures, im-
age sharpness is one of the most important for characterizing
images as it evaluates image blur, which limits the visibility
of details. Image blur is introduced by both the optical system
and potential motion during the acquisition time [1].

Assuming a stationary blur kernel k (or Point Spread Func-
tion (PSF)) that combines the optical and motion blur we can
formulate the image formation model as

v = u ∗ k + n, (1)

where v is the blurry image, u is the latent sharp image, and
n is acquisition noise. Then, sharpness can be objectively
measured by estimating the point spread function k or its am-
plitude spectrum, the Modulation Transfer Function (MTF).

In remote sensing, most sharpness studies [2, 3] focus on
the in-flight characterization of the camera system. These ap-
proaches usually rely on the presence of on-ground targets
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such as edges, lines, or point reflectors. Some methods esti-
mate the blur kernel assuming a parametric model, for exam-
ple Gaussian, and try to fit its parameters [4]. Another group
of methods estimate cross sections of the MTF, usually by
applying some variant of the slanted edge method over cali-
bration sites [2]. These methods allow to periodically assess
the sharpness of the system, however they cannot account for
motion blur of a particular acquisition, an artifact that has be-
come more common within modern fleets of micro-satellites.

Other methods [5, 6, 7] seek to estimate the MTF by re-
lying on the detection of straight edges naturally present in
the scene. This allows to estimate sharpness (mostly on urban
scenes) without the need of a calibration target. Note however
that the MTF is only useful for characterizing the sharpness
and, while it allows a simple frequency enhancement, it can-
not be used to restore the image as the phase of the kernel is
not estimated.

Estimating the blur kernel from a single image is an active
field of research, especially for natural images since it is a
necessary step of most blind deblurring methods [8, 9, 10].
These methods rely only on the presence of contrasted edges
(not necessarily straight lines), which allows to apply them to
virtually any scene. In addition to estimating the kernel for
quality assessment, one may want to restore the sharp image
u. Indeed, if two images have different blur kernels, it might
be difficult to compare and analyze, both visually and auto-
matically by advanced image processing techniques.

We focus our experiments on PlanetScope [11] images.
The PlanetScope constellation is made of approximately 130
small satellites (form factor of 10 × 10 × 30 cm) imaging
the entire Earth’s landmass every day. The satellites carry
3-band or 4-band frame cameras and fly at 475 km on sun-
synchronous orbits whose constant local solar time is between
9:30 and 11:30 am. The Ground Sample Distance (GSD) at
nadir is between 3.5 m and 4 m. The images are available
as either individual basic scenes, ortho scenes, or ortho tiles.
We focus here on the basic and ortho scenes, respectively for
non-orthorectified and orthorectified images. Exploiting both
products allows us to infer the influence of the orthorectifica-
tion on the image sharpness.

Contributions. We propose a criteria to assess the sharp-



ness of satellite images through the estimation of their blur
kernels. This criteria allows to sort images by quality, thus
giving an absolute threshold to discard low quality images
and allowing to increase the quality of blurry images using a
deblurring step. Our method is fully blind and is designed for
consumers of PlanetScope images. Indeed it does not require
the precise specifications of the satellites and could also be
used for images from other sources. We validate our method-
ology through a study of the PlanetScope constellation. In
particular we show the effect of the orthorectification on the
sharpness and we study the per-satellite sharpness.

2. SHARPNESS ASSESSMENT AND DEBLURRING

In this section we detail our methodology by first explaining
how to blindly estimate the blur kernel and compute a sharp-
ness score from it, then describe the deblurring step.

2.1. Blur kernel estimation

In this work, we use the kernel estimation method of Pan
et al. [10] originally developed to deblur text images. This
method is based on the `0 gradient prior which restores the
main structures of the image, including dominant edges. Once
the edges are restored, the blur kernel can be estimated. The
method iterates between the estimation of the sharp image us-
ing the previous kernel and the re-estimation of the blur kernel

u(t+1) = argmin
u

‖u ∗ k(t) − v‖22 + λ‖∇u‖0 (2)

k(t+1) = argmin
k

‖∇u(t+1) ∗ k −∇v‖22 + γ‖k‖22. (3)

We use the efficient implementation of Anger et al. [12].
Even if the `0 gradient prior kernel estimation method was

designed for text and natural images, we argue that it is appli-
cable to satellite images without any adaptation. Indeed, the
assumption behind this prior is that non-blurry images contain
contrasted edges, which is valid for satellite images. Further-
more, satellite image are more likely to respect the stationary
convolution model than natural images since the scene is far
away from the camera, which results in less parallax, a mostly
translational motion and low optical distortion.

2.2. Measure of sharpness

Existing quality assessment metrics for satellite images in-
clude measures on the PSF or on the MTF, please refer to
Blanc et al. [2] for a comprehensive study. We design our
sharpness score so that the maximal score of 1 is achieved
for a perfectly sharp image (delta kernel) and it decreases for
blurrier images (spread out kernels). Let us note that the ker-
nel is assumed to be normalized so that ‖k‖1 = 1. The sim-
plest measure satisfying these criteria is the `2 norm

S = ‖k‖2 =
√∑

x|k(x)|2. (4)

(a) 0.019 (b) 0.022 (c) 0.026 (d) 0.032 (e) 0.033

Fig. 1: Samples of estimated blur kernels. The top rows
shows crops of orthorectified images with their associated
sharpness score on the bottom row. Clouds mislead the es-
timation towards a low sharpness score

Fig. 2: Deblurring of an orthorectified image of Tokyo. The
input image (left, S = 0.023) contains motion blur that is
removed after deconvolution (right, S = 0.035).

An advantage of using the blur kernel to assess sharpness
is that it is independent of the image content, which is not
the case for measures estimated based on properties of the
image itself. Thus the resulting S score is absolute and can be
compared across scenes and/or satellites. While very simple,
this measure is sufficient to characterize the quality of satellite
images for many applications.

Figure 1 shows five crops of PlanetScope orthorectified im-
ages and their associated kernel and S score. We observe
that ordering the images by their estimated sharpness indeed
correlates well with our perception of the blur introduced by
the respective kernel. Furthermore, we observe that when
the scene contains a majority of clouds, the kernel estima-
tion tends to give a very spread out kernel. This phenomenon
occurs because clouds do not have sparse gradients and thus
hinder the estimation. Fortunately, most of the time the pre-
dicted sharpness of cloudy scenes is very low, allowing to sort
such images as low quality and discard them.

2.3. Satellite image deblurring

Having estimated a blur kernel, it is possible to inverse the
problem (1) using non-blind deconvolution methods [13, 14].
Since satellite images usually contain low noise in nominal
conditions, a simple prior is enough to recover a high quality
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Fig. 3: Histogram of sharpness for the dataset of 14390 im-
ages. The hatched region represents low quality images or
very cloudy scenes.

image. In this work, we use the total variation prior (TV) [13]
already well studied for satellite image deblurring [15], lead-
ing to the following optimization problem

argmin
u

‖u ∗ k − v‖22 + α‖∇u‖1. (5)

We solve problem (5) using the fast method from Krishnan
et al. [14]. Figure 2 shows a deconvolution result on an or-
thorectified image. Notice that the input image contains an
anisotropic blur, successfully removed by deblurring.

3. STUDY OF THE PLANETSCOPE
CONSTELLATION

In this section we apply our sharpness measure on Plan-
etScope images to show that it captures the variability present
in the images from this constellation. As dataset, we collected
7600 basic and 6790 ortho PlanetScopes images at 29 differ-
ent locations for a total of 14390 images.

Sharpness distribution. Figure 3 shows two histograms rep-
resenting the distribution of sharpness for basic and ortho im-
ages. We note that the sharpness of ortho images is on average
lower and less variable than the one of basic images. Indeed,
the sharpness after orthorectification decreases significantly,
with an average of S = 0.0251 versus S = 0.0309 for basic
images. This indicates that the orthorectified images are in-
deed less sharp and our measure does quantify the amount of
sharpness lost due to the resampling.

We also observe that both distributions have a second mode
near S = 0.01. This mode correspond to invalid kernels
which can occur on very cloudy scenes for example (as shown
on Figure 1a), or when the signal to noise ratio (SNR) is low
due to poor atmospheric conditions.

Quality thresholds. From these histograms and our obser-
vations of the data, we found that for orthorectified images,
the threshold S > 0.030 indicates high sharpness images
whereas S < 0.023 corresponds to highly blurred images

Fig. 4: Example of significant blur difference from two con-
secutive basic (non-orthorectified) images from two different
satellites. Sharpness scores are 0.036 and 0.026. The vertical
blur is likely due to an hazardous stabilization of the satellite
during the acquisition.

leaving little hope for a high quality restoration (in red on Fig-
ure 3). Otherwise, the image can be sharpened using the pre-
viously described deblurring algorithm in order to increase its
quality before visualization or processing. For basic images,
S < 0.028 provides a similar threshold while accounting for
the increase of sharpness compared to ortho images.

Presence of motion blur. Sharpness metrics using MTF is
usually calibrated using on-ground targets [2]. While this
allows for very precise estimations, it cannot consider all
sources of blur. In particular, our methodology takes into ac-
count resampling as well as blur due to motion during the
integration time. Figure 4 shows two non-orthorectified im-
ages taken on two consecutive days from different satellites.
The right image shows an example of motion blur. The sharp-
ness score allows to automatically filter out such poor quality
images using a simple threshold.

Per-satellite sharpness. As previously explained, the Plan-
etScope constellation is composed of a hundred satellites.
Here, we study the correlation between the sharpness of the
images and the satellite that acquired them. Our dataset of
14390 images represent 153 distinct satellites. In order to
have large enough sample sizes, we kept only the satellites
for which there are at least 50 images. Then, we computed
the S score of each image and removed from the dataset all
invalid images, that is having a sharpness score below 0.028
and 0.023 respectively for basic and ortho images. Sharp-
ness averages and standard deviations for each satellite are
reported in Figure 5. We first notice that the average sharp-
ness is not uniform across the constellation, which would in-
dicate that each satellite produces images with slightly differ-
ent blur than others. Indeed, an analysis of variance (one-way
ANOVA test) rejects the hypothesis of equal averages and in-
dicates a statistically significant difference in the per-satellite
sharpness averages. Moreover, the clear correlation between
the sharpness of basic and ortho images per satellite confirms
that our measure is reliable. Finally, it is important to note



0 5 10 15 20 25 30 35
Satellite

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

Sh
ar

pn
es

s
Sharpness per satellite

basic
ortho

Fig. 5: Sharpness mean and variance across the constella-
tion. Satellite ids (in abscissa) were sorted by mean sharp-
ness. Dash-lines indicates the standard deviation for each
satellite. The two series correspond to basic and ortho im-
ages.

that the standard deviation is large and thus the satellite is not
the only factor responsible for the variation of sharpness, and
other factors such as motion during acquisition also introduce
variance to the effective sharpness of the images.

4. CONCLUSION

In this study, we quantified the variability of blur from
PlanetScope images using an efficient blur kernel estimation
method and automatically assigning a measure of sharpness
to each blur kernel. The method is blind and does not require
the specifications of the optical system. We also demonstrated
that it is possible to apply blind deblurring methods to satel-
lite images in order to equalize quality across time or improve
visualization.

Our study of the constellation indicated variation across the
images. We observed that the images can contain significant
motion blur. Furthermore, we showed that the orthorectifica-
tion provided by Planet does decrease the average sharpness
of the images. We also showed correlation between a given
satellite and its average sharpness. Finally, we proposed sim-
ple thresholds that allow to discard unsatisfactory images.

However, our method has a few limitations we would like
to overcome in future works. First, as explained in Sec-
tion 2.2, the method is affected by clouds. One way to solve
this issue would be to apply a cloud detector on the images
and mask out detected regions during the kernel estimation.
The second limitation is noise which can be present in some
images due to atmospheric conditions and degrades the per-
formance of both kernel estimation and non-blind deconvolu-
tion. We would also like to tackle this problem and provide an
additional measure to indicate the noise level and the amount
of details we can expect from the restoration. Finally, satu-
rated region in the image tends to mislead the kernel estima-
tion towards a delta, and further work is required to handle
this degradation.
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