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Linear Multiscale Analysis of Similarities between Images on Riemannian
Manifolds: Practical Formula and Affine Covariant Metrics∗
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Abstract. In this paper we study the problem of comparing two patches of images defined on Riemannian
manifolds which in turn can be defined by each image domain with a suitable metric depending on
the image. For that we single out one particular instance of a set of models defining image similarities
that was earlier studied in [C. Ballester et al., Multiscale Model. Simul., 12 (2014), pp. 616–649],
using an axiomatic approach that extended the classical Álvarez–Guichard–Lions–Morel work to the
nonlocal case. Namely, we study a linear model to compare patches defined on two images in R

N

endowed with some metric. Besides its genericity, this linear model is selected by its computational
feasibility since it can be approximated leading to an algorithm that has the complexity of the
usual patch comparison using a weighted Euclidean distance. Moreover, we propose and study some
intrinsic metrics which we define in terms of affine covariant structure tensors and we discuss their
properties. These tensors are defined for any point in the image and are intrinsically endowed with
affine covariant neighborhoods. We also discuss the effect of discretization over the affine covariance
properties of the tensors. We illustrate our theoretical results with numerical experiments.
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invariance
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1. Introduction. Image comparison is a topic that has received a lot of attention in the
image processing and computer vision communities since it is a main ingredient in many
applications, such as object recognition, stereo vision, image interpolation, image denoising,
and exemplar-based image inpainting, among others. A common way to define a nonlocal
similarity measure between two images is to compare the patches (local neighborhoods) around
each pair of points formed by taking one point from each image. We consider a general setting
in which images are defined on Riemannian manifolds. Such manifolds arise, for instance, for
images defined on R

N , endowed with a suitable metric depending on the image.

In [3] it was shown that multiscale analyses of similarities between images on Riemannian
manifolds, satisfying a certain set of axioms, are (viscosity) solutions of a family of degenerate
PDEs. Our goal in this paper is to study one particular instance of the set of models derived
in [3], namely a linear model to compare patches defined on two images in R

N endowed

∗Received by the editors December 12, 2014; accepted for publication (in revised form) July 23, 2015; published
electronically September 22, 2015.

http://www.siam.org/journals/siims/8-3/100000.html
†Departament de Tecnologia, Universitat Pompeu Fabra, 08018 Barcelona, Spain (vadim.fedorov@upf.edu, pablo.

arias@upf.edu, rida.sadek@upf.edu, coloma.ballester@upf.edu). The research of these authors was partially supported
by MICINN project MTM2012-30772, by the ERC Advanced Grant INPAINTING (grant agreement 319899), and
by GRC reference 2014 SGR 1301, Generalitat de Catalunya.

‡CMLA, ENS Cachan, 94230 Cachan, France (facciolo@cmla.ens-cachan.fr).

2021

D
ow

nl
oa

de
d 

10
/2

6/
15

 to
 1

38
.2

31
.8

0.
92

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siims/8-3/100000.html
mailto:vadim.fedorov@upf.edu
mailto:pablo.arias@upf.edu
mailto:pablo.arias@upf.edu
mailto:rida.sadek@upf.edu
mailto:coloma.ballester@upf.edu
mailto:facciolo@cmla.ens-cachan.fr


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2022 FEDOROV, ARIAS, SADEK, FACCIOLO, AND BALLESTER

with some metric. Besides its genericity, this linear model is selected by its computational
feasibility since the solution of the PDE can be approximated via the convolution with a
short-time space-varying kernel, leading to an algorithm that has the complexity of the usual
Euclidean patch comparison.

Let us review the fundamentals of the approach in [3]. Given two images u, v defined in
their respective image domains (assume R

2 for simplicity), we want to compare their neigh-
borhoods at the points x, y ∈ R

2, respectively. The simplest way to compare them would be
to compare the two neighborhoods of x, y using the Euclidean distance. That is, let us define

(1.1) D(t, x, y) =

∫
R2

gt(h)(u(x + h)− v(y + h))2 dh,

where gt is a given windowing function that we assume to be Gaussian of variance t. This
formula gives an explicit comparison and assumes that the image domain is the Euclidean
plane. It generalizes approaches to patch comparison applied, for example, in [8, 20, 29, 13].

The purpose in [3] was to define such measures of similarity in the case of images defined
on Riemannian manifolds (e.g., the image plane endowed with an anisotropic metric, like the
structure tensor). An explicit formula like (1.1) was not possible. As proved in [3] the measure
is given by the solution of a degenerate parabolic PDE in the variables (x, y). Let us mention
at this point that (1.1) is not an exception; it solves the equation

(1.2)
∂D
∂t

= ΔxD + 2Tr(D2
xyD) + ΔyD,

which is possibly the simplest case of a linear PDE expressing the multiscale comparison of
two image patches. Note that the scale t in (1.1) reflects the size of the patch used for the
comparison. In the case of comparing image patches defined on Riemannian manifolds, a large
family of possibilities will appear, derived from the axiomatic approach. As in [2, 10] the set
of axioms will include architectural axioms and the comparison principle that permit one to
define multiscale analyses as solutions of a degenerate parabolic PDE. Further specification
can be attained by including linear or morphological assumptions.

In practice in the framework of [3], to fully specify the multiscale analysis of similarities,
one needs to provide the manifolds Mi, the corresponding metrics Gi, and an a priori connec-
tion between both manifolds. The latter is a field of linear maps which for each pair of points
(x, y) ∈ M1×M2 maps isometrically the tangent space at x with the tangent space at y. This
is a key concept that allows one to actually compare patches in both manifolds. Given two
Riemannian manifolds and their respective metrics, there are infinite a priori connections, and
the appropriate ones might depend on the application. Think, for instance, about the simple
case in which we are comparing two images defined in R

2, one of them being a rotated copy
of the other one. In this case, before comparing patches, one might be interested in rotating
them. In the present formalism, this rotation is provided by an a priori connection.

In this paper we concentrate on the case in which (Mi, Gi) = (RN , Gi), i = 1, 2, and
on some of the linear models developed in [3], attending to its representative character and
computational feasibility, as will be shown. In this setting, the multiscale similarity measure
is given by the solution of the following PDE:

(1.3)
∂D
∂t

= Tr(G1(x)
−1D2

xD) + 2Tr(G1(x)
−1/2G2(y)

−1/2D2
xyD) + Tr(G2(y)

−1D2
yD).
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The computational complexity of solving this equation is determined by the product manifold
M1 × M2, and thus is of order S4, if each image is determined on a grid of size S2. For
that reason, using a WKB approximation, we develop a practical formula to approximate
the solutions of (1.3), making it numerically tractable. WKB theory, named after Wentzel,
Kramers, and Brillouin, is well known in quantum mechanics and is used to find approximate
solutions to linear partial differential equations with spatially varying coefficients.

We also focus on the problem of defining the metrics Gi such that the resulting multiscale
similarity measure is affine invariant. By affine invariance in this setting we mean that the
similarity values are invariant to affine warpings of any of the images. For this aim, we
propose affine covariant structure tensors as the image metrics. The a priori connection is
then determined up to a rotation (for each pair (x, y)), which we determine based on the
image contents in each patch.

Additionally, we discuss the effects of camera blur and discretization over the affine in-
variance properties of the tensors. We illustrate the behavior, results, and properties with
numerical experiments in several scenarios.

In summary, the main contributions of this paper are the practical formula for the multi-
scale similarity measure, the study of the proposed affine covariant structure tensors used to
define the image metrics, and the corresponding numerical experiments.

Let us finally say that from the mathematical point of view the basic ingredients of the
axiomatic approach in [3] are the papers [2, 12, 11, 10], and the results in [3] are an extension
of them. They can be considered as a nonlocal extension (comparing two points) of the
multiscale analyses defined using the axiomatic approach in [2].

The similarity measure proposed in this paper operates on intensities within elliptic
patches whose size and shape are not fixed a priori. There exist other methods using shape
adaptive patches [15, 17]. Some methods for patch or region comparison do not directly
consider squared difference of color or intensity values. For example, the normalized cross-
correlation between patches can be used [1, 7, 32]. In the object recognition context, it is
common to build the scale-space of each image by low-pass filtering and then search through
this scale-space to detect scale invariant feature keypoints. Some kind of feature descriptor is
calculated at each keypoint, and its own characteristics scale. Finally, these descriptors are
used to compare two keypoints. There exist many approaches to keypoint detection [35]. As
for description, SIFT descriptors [22] are probably the most widely known among the others.
In the object classification context the probabilistic matching using the so-called constellation
model [9, 16] is used to find the probability that any two given patches belong to the same
class.

Let us summarize the plan of the paper. In section 2.1 we collect some basic notation and
definitions about Riemannian manifolds. Section 2.2 is devoted to recalling from [3] the notion
of an a priori connection. In section 3 we define the basic set of axioms satisfied by multiscale
analyses for image similarity measures defined on Riemannian manifolds, and we express them
in terms of solutions of an (eventually degenerate) parabolic equation. In section 4 we consider
the case of linear multiscale analyses, naturally obtaining that they are expressed as solutions
of a linear equation generalizing the case of (1.2). We study the case of RN and develop a WKB
approximation formula of the solutions of (1.3) that leads to a feasible algorithm. We study
multiscale properties of the proposed similarity measure with some experiments. In section 5D
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we address the construction of affine covariant tensors and affine covariant neighborhoods
associated with them and study their properties both theoretically and experimentally. Then
in section 6 we demonstrate more experiments with the proposed similarity measure. Finally,
in section 7 we present our conclusions.

2. Preliminaries. We collect in this section some basic notation and definitions about
Riemannian manifolds and also recall from [3] the notion of an a priori connection.

2.1. Notation. Let (N , h) be a smooth Riemannian manifold in R
N+1. As a particular

case we can consider N = R
N (or a domain in R

N ) endowed with a general metric h. As
usual, given a point η ∈ N , we denote by TηN the tangent space to N at the point η. By
T ∗
ηN we denote its dual space.

Let η be a point on N , let U ⊆ R
N be an open set containing 0, and let ψ : U → N be any

coordinate system such that ψ(0) = η. Let hij(η) and ΓN ,k
ij (η) (indices i, j, k run from 1 to

N) denote, respectively, the coefficients of the first fundamental form of N and the Christoffel
symbols computed in the coordinate system ψ around η. For simplicity we shall denote by
H(η) the (symmetric) matrix (hij(η)) and by ΓN ,k(η) the matrix formed by the coefficients

(ΓN ,k
ij (η)), i, j = 1, . . . , N , for each k = 1, . . . , N .
The scalar product of two vectors v,w ∈ TηN will be denoted by 〈v,w〉η , and the action of

a covector p∗ ∈ T ∗
ηN , on a vector v ∈ TηN , will be denoted by (p∗, v). If v,w ∈ TηN , we have

〈v,w〉η = hij(η)v
iwj , where vi, wi are the coordinates of v,w in the basis ∂

∂xi
|η of TηN . Let

us note that we shall use Einstein’s convention that repeated indices are summed. Using this
basis for TηN and the dual basis on T ∗

ηN , if p∗ ∈ T ∗
ηN , and v ∈ TηN , we have (p∗, v) = piv

i.
Notice that we may write (p∗, v) = hij(η)p

jvi, where pi are the coordinates of the vector p
associated with the covector p∗. The relation between both coordinates is given by

(2.1) pi = hij(η)p
j or pi = hij(η)pj ,

where hij(η) denotes the coefficients of the inverse matrix of hij(η). By a slight abuse of
notation, we shall write (2.1) as

p∗ = Hp or p = H−1p∗.

In this way H : TηN → T ∗
ηN . In the case that ψ is a geodesic coordinate system, the matrix

H is the identity matrix I = (δij), and I maps vectors to covectors, i.e., I : TηN → T ∗
ηN (with

the same coordinates in the dual basis). We shall denote by I−1 the inverse of I, mapping
covectors to vectors.

Maps. Symmetric maps. Quadratic forms. We shall also use this coordinate system to
express a bilinear map Â : TηN × TηN → R. Indeed, if (Aij) is the matrix of Â in this basis,
and v,w ∈ TηN , we may write Â(v,w) = Aijv

jwi. If Aij = hik(η)Akj , then Aij determines

a map, called A : TηN → TηN , such that Â(v,w) = 〈Av,w〉 = (HAv,w). Observe that
H(η)A : TηN → T ∗

ηN . Observe also that our notation Aij already indicates that A = (Aij)
maps vectors to vectors. In our notation, we shall not distinguish between matrices and maps.

As usual, we say that a linear map L : TηN → T ∗
ηN is symmetric if (Lv,w) = (Lw, v) for

any v ∈ TηN , w ∈ TηN . From now on, we shall use the notation

SMη(N ) := {A : TηN → T ∗
ηN , A is symmetric}.D
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We shall also write

Sη(N ) := {A : TηN → TηN , H(η)A ∈ SMη(N )}.

Notice that if A : TηN → TηN , we define At : T ∗
ηN → T ∗

ηN by

(Atp, v) = (p,Av) ∀v ∈ TηN , p ∈ T ∗
ηN .

We define At,h : TηN → TηN by

〈At,hv,w〉 = 〈v,Aw〉 ∀v,w ∈ TηN .

From now on, when the point η ∈ N is understood we write H instead of H(η). Notice that
HAt,h = AtH.

If A ∈ Sη(N ), then HA ∈ SMη(N ) and (HAv,w) = (v,HAw), that is, 〈Av,w〉 = 〈v,Aw〉.
That is, At,h = A.

Rotations in the tangent space. Let us define a rotation R : TηN → TηN as a linear map
that satisfies

〈Rv,Rw〉 = 〈v,w〉 ∀v,w ∈ TηN .

Notice that rotations satisfy

RtHR = H.

Note also that isometries (rotations) satisfy Rt,h = R−1.

Let B : TηN → TηN be a matrix such that BI−1Bt = H−1. Thus BtHB = I and B is
mapping an orthonormal basis of (TηN , I) to an orthonormal basis of (TηN ,H(η)).

If R : TηN → TηN is a rotation, then

(B−1RB)tI(B−1RB) = I.

That is, B−1RB is a classical rotation.

Gradient and Hessian. Given a function u on N , let us denote by DNu and D2
Nu the

gradient and Hessian of u, respectively. In a coordinate system, DNu is the covector ∂u
∂xi

, and

D2
Nu is the matrix ∂2u

∂xi∂xj
− ΓN ,k

ij
∂u
∂xk

which acts on tangent vectors. Thus, with this notation

D2
Nu(η) : TηN×TηN → R is a bilinear map, η ∈ N , and is a symmetric matrix in coordinates.

Let us write ∇Nu as the vector of coordinates hij ∂u
∂xj

. Then |∇Nu(η)|2η = 〈∇Nu(η),∇Nu(η)〉η .
To simplify our notation we shall write Du and ∇u instead of DNu and ∇Nu. The vector
field ∇u satisfies 〈∇u, v〉η = du(v), v ∈ TηN , du being the differential of u.

The manifold N = M1×M2. Let (Mi, gi) be a smooth Riemannian manifold with metric
gi, i = 1, 2. Let Γ(i) be the connection on Mi. We shall work here with a manifold N =
M1×M2 with the metric h = g1×g2 so that TξN = Tξ1M1×Tξ2M2, ξ = (ξ1, ξ2) ∈ M1×M2.
If (vi, wi) ∈ Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈ M1 ×M2, then we consider the metric

〈(v1, w1), (v2, w2)〉ξ = 〈v1, v2〉ξ1 + 〈w1, w2〉ξ2 = (G1(ξ1)v1, v2) + (G2(ξ2)w1, w2).

With a slight abuse of notation, let us write G(ξ) = diag(G1(ξ1), G
2(ξ2)) instead of H(ξ).D
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Let ξ = (ξ1, ξ2) ∈ M1 × M2. Let us consider a coordinate system of the form ψ =
(ψ1, ψ2) : U1 × U2 → M1 ×M2 with ψi(0) = ξi, Ui being a neighborhood of 0 in R

N . Write
x ∈ U1, y ∈ U2. Let us denote the connection on M1 ×M2 as Γ := Γ(1) ⊗ Γ(2) with indices
i, j, k ∈ {1, . . . , 2N} with ξi = ξ1i, i ∈ {1, . . . , N}, and ξi = ξ2(i−N), i ∈ {N + 1, . . . , N}.
Note the coordinates as zi, i ∈ {1, . . . , 2N}, with zi = xi, i ∈ {1, . . . , N}, and zi = yi−N ,
i ∈ {N + 1, . . . , N}. Using the formula

(Γ(1) ⊗ Γ(2))kij =
1

2
hkl
(
∂hjl
∂zi

+
∂hil
∂zj

− ∂hij
∂zl

)
,

we obtain

(Γ(1) ⊗ Γ(2))k(x, y) =

(
Γ(1)k(x) 0

0 Γ(2)k(y)

)
.

We denote by SMξ(N ) the set of symmetric matrices of size 2N × 2N in N = M1 ×M2.

2.2. A priori connections on N = M1 × M2. This is an important concept in this
paper, and we need to clarify it. Suppose that both manifolds M1 and M2 coincide with R

N

endowed with the Euclidean metric. Let u, v be two given images in R
N . Then it would be

standard to use the L2 distance to compare the patches centered at x and y,

(2.2) D(t, x, y) =

∫
RN

gt(h)(u(x + h)− v(y + h))2 dh,

where gt is a given window that we assume to be Gaussian of variance t. But if the image v
is rotated, we could also use the L2 distance between u and a rotated version of v (around y),
namely

(2.3) D(t, x, y) =

∫
RN

gt(h)(u(x + h)− v(y +Rh))2 dh.

We admit that this decision is taken a priori and is done thanks to an operator that connects
the tangent plane at both points.

Let ξ = (ξ1, ξ2) ∈ N = M1 × M2. Let us consider a coordinate system of the form
ψ = (ψ1, ψ2) : U1 × U2 → M1 ×M2 with ψi(0) = ξi, Ui being a neighborhood of 0 in R

N .

Definition 2.1. We say that P (ξ), ξ = (ξ1, ξ2) ∈ N , is an a priori connection map in N if
P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)) is an isometry, i.e.,

〈P (ξ)v, P (ξ)w〉G2(ξ2) = 〈v,w〉G1(ξ1) ∀v,w ∈ Tξ1M,

and we assume also that the map is differentiable in ξ.

Given an a priori connection P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)), we can also
define its inverse P (ξ)−1 : (Tξ2M2, G2(ξ2)) → (Tξ1M1, G1(ξ1)). For simplicity, and because
the arguments in P clearly specify whether we go from M1 to M2 or inversely, we denote
P (ξ2, ξ1) = P (ξ1, ξ2)

−1 so that we have

(2.4) P (ξ2, ξ1)P (ξ1, ξ2) = I.D
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Let us note that if the (orientable) manifold M1 = M2 = M admits an a priori connection
(into itself), then there is a section of the frame bundle (bundle of orthonormal frames). This
is equivalent to saying that there is a section of the bundle of reference systems. This is
the notion of parallelizable manifolds. The manifolds (RN , g(x)) are parallelizable. If M has
dimension 2, then M is parallelizable if and only if its Euler–Poincaré characteristic is 0 [33].
Any orientable manifold of dimension 3 is parallelizable [31].

Remark 1. Note that if we have a complete manifold with empty cut locus, we can define
the a priori connection in it by parallel transport without ambiguities.

Remark 2. Note that if P (ξ) is an a priori connection and we give two maps R : M1 →
Isom(TM1), R̄ : M2 → Isom(TM2) (where Isom(TMi) denotes the set of isometry maps in
the tangent bundle TMi), then R̄(ξ2)P (ξ)R(ξ1) is also an a priori connection.

In coordinates, P (ξ) expresses the a priori connection in the coordinate system ψ1 → ψ2.
The isometry property can be written as

(P (ξ)tG2(ξ2)P (ξ)v,w) = (G1(ξ1)v,w),

where P (ξ) is expressed in the basis of Tξ1M1 associated with the metric G1(ξ1) and the basis
of Tξ2M2 associated with the metric G2(ξ2). Then

(2.5) P (ξ)tG2(ξ2)P (ξ) = G1(ξ1).

Let us recall from [3] how to compute the a priori connection in another coordinate system.

Let ψ = (ψ1, ψ2) be another coordinate system around ξ. Let Gi(ξi), G
i
(ξi), i = 1, 2, be the

metric matrices represented in the coordinate systems ψi, ψi, respectively. Let B
Gi,G

i(ξi) =

D(ψ−1
i ◦ ψi)(0), i = 1, 2, and BG,G(ξ) = (B

G1,G
1(ξ1), BG2,G

2(ξ2)). Note that B
Gi,G

i(ξi) :

(TξiMi, G
i
(ξi)) → (TξiMi, Gi(ξi)) is such that B

Gi,G
i(ξi)

tGi(ξi)BGi,G
i(ξi) = G

i
(ξi). Note also

that all matrices here are uniquely defined. Using the last equality, (2.5) can be expressed as

P t(ξ)B
G2,G

2(ξ2)
−tG2

(ξ2)BG2,G
2(ξ2)

−1P (ξ) = B
G1,G

1(ξ1)
−tG1

(ξ1)BG1,G
1(ξ1)

−1. If we define

(2.6) P (ξ) := B
G2,G

2(ξ2)
−1P (ξ)B

G1,G
1(ξ1),

then P (ξ) is an a priori connection in the coordinate system ψ1 → ψ2, P (ξ) : (Tξ1M1, G
1
(ξ1))

→ (Tξ2M2, G
2
(ξ2)) (see [3]). Then, (2.6) can be rewritten as

(2.7) B
G2,G

2(ξ2)P (ξ) = P (ξ)B
G1,G

1(ξ1),

and we see that both maps B
G1,G

1(ξ1) and BG2,G
2(ξ2) reflect the same rotation when expressed

in the corresponding a priori connections P (ξ) and P (ξ), respectively.
Definition 2.2. We say that the coordinate systems ψ,ψ are P (ξ)-related if P (ξ) is defined

by (2.6). We will also say that they are R-related.

Let us consider the case where M1 = M2 = M and P (ξ) is an internal a priori connection
given from parallel transport between ξ1 and ξ2, which is an isometry. Then one can define
P (ξ) by parallel transport expressed in the coordinate systems ψ1, ψ2.D
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Generation of a priori connections. Fix a geodesic coordinate system around each point of
Mi; Ii(ξi) is referred to this system for each ξi ∈ Mi. For each ξ ∈ N , let us consider an
isometry map (assuming that it exists)

Q(ξ) : (Tξ1M1, I1(ξ1)) → (Tξ2M2, I2(ξ2)).

Call Isom((TM1, I1), (TM2, I2)) this set of maps. Let us note that this is nothing more than
an a priori connection. We just have one concept, and we express it in different coordinate
systems. Thus what we are going to do is to give the a priori connection Q in a geodesic
coordinate field GS and derive its expression in another coordinate system field.

Let Bi(ξi) : (TξiMi, Ii(ξi)) → (TξiMi, Gi(ξi)) be the corresponding canonical maps con-
necting a geodesic coordinate system GS around ξi to (TξiMi, Gi(ξi)). Thus

Bi(ξi)
tGi(ξi)B

i(ξi) = Ii(ξi).

The map Bi(ξi) is uniquely defined by the coordinate systems. Changing the geodesic coor-
dinate system we get a different matrix.

Let Q(ξ) ∈ Isom((TM1, I1), (TM2, I2)), where each I is referred to GS , and let us define

P (ξ) := B2(ξ2)Q(ξ)B1(ξ1)
−1.

Then P (ξ) is an a priori connection map.

Related rotations. Let us consider a coordinate system field and an a priori connection
P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)) in that system field. Let us consider a second

coordinate system field with metric G
i
(ξi) = Gi(ξi), i = 1, 2, for each ξi ∈ Mi so that

B
Gi,G

i(ξi) is an isometry field. Let Ri(ξi) := B
Gi,G

i(ξi). Let P (ξ) be the derived connection.

Then (2.7) can be written as

(2.8) R2(ξ2) = P (ξ)R1(ξ1)P (ξ)−1.

We say that (R1(ξ1), R
2(ξ2)) are P -related or R-related, and we call R = (R1(ξ1), R

2(ξ2)) a
diagonally related rotation (or just a diagonal rotation if no confusion arises).

Related germs of functions on N = M1 × M2. Let Cb(N ) denote the space of bounded
continuous functions in N with the maximum norm. We think of Cb(N ) as the space of simi-
larity functions on N = M1×M2. We denote by C∞

b (N ) the space of infinitely differentiable
functions on N .

Let C ∈ Cb(N ). Let us denote

(C,ψ)(x, y) = C(ψ1(x), ψ2(y)) ∀(x, y) ∈ U1 × U2.

Thus, we can say that ψ = (ψ1, ψ2) and ψ = (ψ1, ψ2) are R-related if (2.8) holds. If ψ is R-
related to ψ, we write (C,ψ) as R(C,ψ). Note that R(C,ψ) is a linear map for the restriction
of functions in Cb(N ) to a neighborhood of (0, 0).D
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Gradient and Hessian. We denote by SMξ(N ) the set of symmetric matrices of size 2N×2N
in N = M1 ×M2. In coordinates, we denote DNC = (DxC,DyC),

D2
NC =

(
DN ,xxC DN ,xyC
DN ,xyC DN ,yyC

)
.

In coordinates, with i, j, k ∈ {1, . . . , N},

D2
NC =

(
∂2C
∂xi∂xj

∂2C
∂xi∂yj

∂2C
∂yj∂xi

∂2C
∂yi∂yj

)
−
(

Γ(1)k(x) ∂C
∂xk

0

0 Γ(2)k(y) ∂C
∂yk

)
.

3. Multiscale analysis of image similarity measures. For simplicity, we shall write N =
M1 × M2. The metric will be denoted by g = g1 × g2, and G(ξ), G1(ξ1), G

2(ξ2) will be
the corresponding matrices, ξ = (ξ1, ξ2) ∈ N . Let (κ) := κn be an increasing sequence of
nonnegative constants. We define the following set of functions:

Q((κ)) := {C ∈ C∞
b (N ) : ‖DαC‖∞ ≤ κn ∀n ≥ 0, ∀|α| ≤ n}.

As usual, O(f) (resp., o(f)) will denote any expression which is bounded by c|f | for some

constant c > 0 (resp., such that o(f)
|f | → 0 as f → 0). Assume that Tt : Cb(N ) → Cb(N ) is a

nonlinear operator for any t ≥ 0. We shall denote C(t, ξ1, ξ2) = TtC(ξ1, ξ2), C ∈ Cb(N ), ξ =
(ξ1, ξ2) ∈ N , t ≥ 0. By a slight abuse of notation, to highlight the implicit coordinate system
ψ : U1 × U2 → N , we will denote it as Tt(C,ψ), which can also be written as C(t, ψ(x, y)) =
Tt(C,ψ)(x, y), (x, y) ∈ U1 × U2. Assume that we are given an a priori connection P on N .

In the following we review the axioms for multiscale analyses of similarities.

Architectural axioms:

[Recursivity] T0(C) = C, Ts(TtC) = Ts+tC ∀s, t ≥ 0, ∀C ∈ Cb(N ).

[Infinitesimal generator] Th(C,ψ)−(C,ψ)
h → (A(C), ψ) as h → 0+ for any C ∈ C∞

b (N ) and any
coordinate system ψ = (ψ1, ψ2) around ξ ∈ N , where A is the so-called infinitesimal generator
for Tt [2]. We assume that

(3.1) Tt(R(C,ψ))(ψ
−1(ξ)) = R(Tt(C), ψ)(ψ−1(ξ)) + o(t) = Tt(C)(ξ) + o(t) as t → 0+

for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any R which are P -related
rotations. We have denoted by R(C,ψ) the function in the coordinate system ψ which is
P (ξ)-related (or R-related) to ψ.

Writing (3.1) in terms of the generator A we have

R(C,ψ)(0) + tA(R(C,ψ))(0) + o(t) = R((C,ψ) + tA(C,ψ))(0) + o(t)

= C(ξ) + tA(C,ψ)(0) + o(t).

Using the linearity of R(C,ψ), dividing by t, and letting t→ 0+ we obtain

(3.2) A(R(C,ψ))(0) = RA(C,ψ)(0) = A(C,ψ)(0)D
ow

nl
oa

de
d 

10
/2

6/
15

 to
 1

38
.2

31
.8

0.
92

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2030 FEDOROV, ARIAS, SADEK, FACCIOLO, AND BALLESTER

for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any R- or P -related rotations.

Remark 3. In Tt(R(C,ψ)) the a priori connection is expressed in the coordinate system
ψ = (ψ1, ψ2). In R(Tt(C), ψ) = Tt(C) the a priori connection is expressed in the coordinate
system ψ = (ψ1, ψ2). That is, the infinitesimal generator axiom says that both expressions
are the same (intrinsic character of Tt) when the coordinate systems are R-related.

Remark 4. The infinitesimal generator axiom contains the invariance with respect to diago-
nal rotations in the tangent plane ofM1×M2. When (Mi, Gi) = (RN , I), it amounts to invari-
ance with respect to Euclidean diagonal rotations in R

2N . That is, Tt(RC) = RTt(C) ∀t ≥ 0,
∀C ∈ C∞

b (RN ×R
N), ∀R ∈ O(N) (Euclidean rotations in R

N ) where RC(x, y) = C(Rx,Ry).

Remark 5. When both manifolds are M = R
N with the Euclidean metric, the axioms are

just the following:

[Infinitesimal generator] ThC−C
h → A(C) as h→ 0+. This holds for any C ∈ C∞

b (RN × R
N ).

In some sense the coordinate system around each point is always the same, the canonical
one; they are related by the identity.

[Regularity axiom] ‖Tt(C+hC̃)− (Tt(C)+hC̃)‖∞ ≤Mht ∀h, t ∈ [0, 1], ∀C, C̃ ∈ Q((κ)) where
the constant M depends on Q((κ)).

[Locality] Tt(C)(x)−Tt(C̃)(x) = o(t) as t→ 0+, x ∈ R
N , ∀C, C̃ ∈ Cb(N ) such that DαC(x) =

DαC̃(x) for all multi-indices α.

Comparison principle:

[Comparison principle] TtC ≤ TtC̃ ∀t ≥ 0 and all C, C̃ ∈ C∞
b (N ) such that C ≤ C̃.

Since we are not going to consider the morphological comparison of image patches, we
will not mention the morphological axiom and its consequences. We refer the reader to [3] for
details. We just mention the following:

[Gray level shift invariance] Tt(0) = 0, Tt(C + κ) = Tt(C) + κ ∀t ≥ 0, ∀C ∈ C∞
b (N ), ∀κ ∈ R.

Let us recall the following result from [3] (see also [2, 10]).

Theorem 3.1. Let Tt be a multiscale analysis satisfying all the architectural axioms and
the comparison principle. Then there exists a function F : SMξ(N ) × T ∗

ξN × R × N → R

increasing with respect to its first argument such that

Tt(C,ψ) − (C,ψ)

t
→ F (D2(C ◦ ψ)(0),D(C ◦ ψ)(0), C(ξ), ξ,G,Γk) in Cb(N ) as t→ 0+

∀C ∈ C∞
b (N ), ψ being a coordinate system around ξ ∈ N . The function F is continuous in

its first three arguments. If we assume that Tt is gray level shift invariant, then the function
F does not depend on C.

The function F is elliptic; i.e., if A1, A2 : TξN → T ∗
ξN are two matrices such that A1, A2

are symmetric and A1 ≤ A2, p ∈ T ∗
ξN , c ∈ R, then

F (A1, p, c, ξ,G,Γ
k) ≤ F (A2, p, c, ξ,G,Γ

k).
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Recall that we have denoted G = (G1, G2) and Γ = Γ(1) ⊗ Γ(2). Notice that we did not
denote explicitly the arguments for G,Γk. Notice that the first argument in F is a symmetric
map from TξN to T ∗

ξN .
Theorem 3.2. Let Tt be a multiscale analysis satisfying all the architectural axioms, the

comparison principle, and gray level shift invariance. If C(t, ξ) = TtC(ξ), then C is a viscosity
solution of

(3.3)
∂C

∂t
= F (D2

NC,DC, ξ,G,Γ
k),

with C(0, ξ) = C(ξ).
The proof that C(t, ξ) = TtC(ξ) is the viscosity solution of (3.3) follows as in [2, 19].

4. The linear case. Let us particularize the above result when the multiscale analysis on
similarity functions satisfies also the linearity axiom (that is, Tt(aC1+bC2) = aTt(C1)+bTt(C2)
∀a, b ∈ R, ∀C1, C2 ∈ Cb(N )).

Theorem 4.1. Let Tt be a multiscale analysis on similarity functions satisfying all the ar-
chitectural axioms, the comparison principle, and gray level shift invariance. Assume that Tt
is linear. Then

∂C

∂t
= F (D2

NC, ξ,G),

where

F (X, ξ,G) = c11(ξ)Tr((G
1)−1(ξ1)X11) + 2c12(ξ,G)Tr(D̄12I

1(ξ1)
−1X12)

+ c22(ξ)Tr((G
2)−1(ξ2)X22),

where D̄12 is an isometry from (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). The ellipticity of F
implies that c11, c22 ≥ 0.

The previous result was proved in [3], where, moreover, the authors add that

(4.1) 2c12(ξ,G)D̄12I
1(ξ1)

−1 = B2(ξ2)D
′B1(ξ1)

t,

and the dependence of c12(ξ,G)D̄12I
1(ξ1)

−1 on G is only in B2(ξ2) (isometry) and B1(ξ1)
t

(isometry). D′ is a matrix that depends only on ξ (see [3]). We could also write the second
term as 2c21(ξ,G)Tr(D̄21I

2(ξ2)
−1X21).

Note that if X = D2
NC, then Xii = D2

Mi
C and the operators cii(ξ)Tr((G

i)−1(ξi)Xii) are
multiples of the Laplace–Beltrami operator. Notice also that there are no first order terms
in these operators. They cannot couple with vectors so that we have the required invariance
induced by the rotations of tangent planes.

4.1. The case of (Mr, gr) = (RN , gr). To fix ideas we consider M1 = M2 = M =
R
N and grij(x) to be general metrics in R

N , r = 1, 2. We know that ei = Gr(x)−1/2fi is
an orthonormal basis of (TxMr, gr(x)) if fi is a Euclidean orthonormal basis. Let Ir(x) :
(RN , gr(x)) → (RN , (gr)−1(x)) be given by Ir(x)ei = e∗i . Then

Ir(x) = Gr(x).

If Br(x) satisfies Br(x)Ir(x)−1Br(x)t = Gr(x)−1, then we can take Br(x) = I.D
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We can define P (x, y)(v) = G2(y)−1/2G1(x)1/2v, v ∈ R
N , as the a priori connection of x

and y. Then |P (x, y)v|g2 = |v|g1 ∀(x, y) ∈ R
2N . Recall that D̄1,2 : (RN , g1(x)) → (RN , g2(y))

is an isometry; in this case it is given by D̄1,2 = G2(y)−1/2G1(x)1/2. Then (4.1) is

2c12(x, y)D̄1,2I
1(x)−1 = 2c12(x, y)G

2(y)−1/2G1(x)−1/2.

The PDE obtained is

(4.2)
∂C

∂t
= a(x, y)ΔMxC + 2c12(x, y)Tr(G

2(y)−1/2G1(x)−1/2DxyC) + c(x, y)ΔMyC,

where
ΔMxC = Tr(G1(x)−1(DxxC(x)− Γ(1)(DxC)(x))),

and a similar expression for the operator ΔMy holds.
Remark 6. Note that (first by transposition and then by reordering) we have

Tr(G2(y)−1/2G1(x)−1/2DxyC) = Tr(DyxCG
1(x)−1/2G2(y)−1/2)

= Tr(G1(x)−1/2G2(y)−1/2DyxC),

which is a symmetric expression in (x, y). If Tt is symmetric in (x, y), then c12 is also sym-
metric.

In the symmetric case, the matrix associated with the operator (4.2) is(
a(x, y)G1(x)−1 c12(x, y)G

2(y)−1/2G1(x)−1/2

c12(x, y)G
1(x)−1/2G2(y)−1/2 c(x, y)G2(y)−1

)
.

It is positive semidefinite if and only if a, c ≥ 0 and ac− c212 ≥ 0.
Remark 7. Let A,B be two N ×N matrices, let u, v be two given images, let C(0, x, y) =

(u(x)− v(y))2, and let C(t, x, y) =
∫
RN gt(h)C(0, x+Ah, y+Bh) dh, where gt is the Gaussian

of scale t. Then C(t, x, y) satisfies the equation

(4.3)
∂C

∂t
= Tr(AAtD2

xC) + 2Tr(ABtDxyC) + Tr(BBtD2
yC).

Note that this equation corresponds to the models described in Theorem 4.1 when the metrics
are constant in both images. This will be exploited as a numerical approximation later in this
paper, where the construction of the metrics, which is a relevant issue, will be also discussed
in detail.

Let us check that C(t, x, y) =
∫
RN gt(h)C(0, x +Ah, y +Bh) dh solves (4.3). Indeed,

∂C

∂t
=

∫
RN

(gt(h))tC(0, x+Ah, y +Bh) dh =

∫
RN

Δhgt(h)C(0, x +Ah, y +Bh) dh

=

∫
RN

gt(h)ΔhC(0, x+Ah, y +Bh) dh =

∫
RN

gt(h)Δh(u(x+Ah)− v(y +Bh))2 dh.

Note that

Δh(u(x+Ah)− v(y +Bh))2 = 2‖∇h(u(x+Ah)− v(y +Bh))‖2
+ 2(u(x +Ah)− v(y +Bh))Δh(u(x+Ah)− v(y +Bh)) =: I + II.D
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For notation simplicity, let us not denote the arguments of u and v. Then

II = 2(u− v)Δh(u− v) = 2(u− v)
(
Tr(AAtD2

xu)− Tr(BBtD2
yv)
)

= 2(u− v)
(
Tr(AAtD2

x(u− v)) + Tr(BBtD2
y(u− v))

)
= Tr(AAtD2

x(u− v)2)− 2Tr(AAt∇x(u− v)⊗∇x(u− v))

+ Tr(BBtD2
y(u− v)2)− 2Tr(BBt∇y(u− v)⊗∇y(u− v))

= Tr(AAtD2
x(u− v)2)− 2‖At∇xu‖2 +Tr(BBtD2

y(u− v)2)− 2‖Bt∇yv‖2

and

I = 2‖∇h(u− v)‖2 = 2‖At∇xu−Bt∇yv‖2
= 2‖At∇xu‖2 + 2‖Bt∇yv‖2 − 4〈At∇xu,B

t∇yv〉.
Then

I + II = Tr(AAtD2
x(u− v)2) + Tr(BBtD2

y(u− v)2)− 4〈At∇xu,B
t∇yv〉

= Tr(AAtD2
x(u− v)2) + Tr(BBtD2

y(u− v)2) + 2Tr(ABtDxy(u− v)2).

Thus
∂C

∂t
= Tr(AAtD2

xC) + Tr(BBtD2
yC) + 2Tr(ABtDxyC).

4.2. WKB approximations. Let us concentrate on the analysis of the example in Remark
7. We start by writing the operator in (4.3) as

∂C

∂t
= Tr(AAtD2

xC) + 2Tr(ABtDxyC) + Tr(BBtD2
yC)

= Tr

((
AAt ABt

BAt BBt

)(
DN ,xxC DN ,xyC
DN ,xyC DN ,yyC

))
.

Note that (
AAt ABt

BAt BBt

)
=

(
A 0
B 0

)(
At Bt

0 0

)
=: ΣΣt.

Note that neither Σ nor ΣΣt is an invertible operator and we would need to regularize them
(for instance by introducing a perturbation εI in the (2, 2) entry of Σ).

Remark 8. Note that the PDE above can be related to the following stochastic ODE:

(4.4)
dXt = AdWt,
dYt = BdWt,

where the Brownian motion dWt is common in both equations.
The more general linear case derived from (4.2) is

(4.5)
∂C

∂t
= ΔMxC + 2Tr(G2(y)−1/2G1(x)−1/2DxyC) + ΔMyC,

where
ΔMxC = Tr(G1(x)−1(DxxC − Γ(1)(DxC)(x, y))),D
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ΔMyC = Tr(G2(y)−1(DyyC − Γ(2)(DyC)(x, y)))

can be subsumed under the previous notation by taking

A = G1(x)−1/2, B = G2(x)−1/2.

In any case, for Σ to be invertible, let us write (4.3) as

(4.6)
∂C

∂t
= Tr(ΣΣtD2

NC) =: Tr(ΣΣt)−1(D2
NC),

where Tr(ΣΣt)−1(D2
NC) is a notation for the Laplace–Beltrami operator (eventually degen-

erated), i.e., the trace of the Hessian with respect to the (eventually degenerated) metric
g := (ΣΣt)−1. In this case, the result in [37] could give the approximate formula we are
looking for. However, we will use another approach.

We would like to obtain an approximation formula of the type

C(t+ ε, p) =

∫
K(ε, p, p′)C(t, p′)dp′,

where p = (x, y), p′ = (x′, y′).
We proceed using the so-called WKB approximation (from quantum mechanics) as in the

paper [30, section 3 and Appendix]. Following the WKB method, we assume the kernel K to
be of the form

K(t, p, p′) =
H(t, p, p′)√

t
e−Ψ(p,p′)/t.

We are interested in the behavior of the kernel for t small. Without loss of generality, we can
assume that H(t, p, p′) = H0, a constant. Indeed, as in [30, Appendix] one can check that for
t small the leading term corresponds to a constant H = H0. The function Ψ does not depend
on t and is positive. The validity of this approximation procedure can be found in [14], for
example.

To simplify the notation, let us forget the arguments of the above functions. Since the
equation is linear, we may assume that it is satisfied by the kernel K. Then, introducing K
into (4.6), some straightforward computations produce an equality with several terms. For
short times only the most singular part is dominant. Therefore, by considering the leading
terms of order 1

t5/2
on both sides of the equation, which are the most divergent ones as t→ 0+,

we have that the term on the left-hand side (obtained from ∂K
∂t ) is

H0√
t
e−Ψ/tΨ

t2

and the term obtained from the right-hand side is

H0√
t
e−Ψ/t 1

t2
〈ΣΣt∇pΨ,∇pΨ〉.

The equality of both terms gives the following PDE:

〈ΣΣt∇pΨ,∇pΨ〉 = Ψ,D
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i.e.,

(4.7) ‖Σt∇pΨ‖2 = Ψ.

If Φ = 2
√
Ψ, (4.7) becomes

(4.8) ‖Σt∇pΦ‖2 = 1.

From

Σt =

(
At Bt

0 0

)
,

we can write (4.8) as

(4.9) ‖AtDxΦ+BtDyΦ‖2 = 1.

Let us denote (P,Q) = (DxΦ,DyΦ), and let H(P,Q) = ‖AtP+BtQ‖2. Writing the Hamilton–
Jacobi equation (4.9) in terms of H, the solution of

H(P,Q) = 1

is given in terms of the Lagrangian

L(P̄ , Q̄) = sup
(P,Q)

{〈(P̄ , Q̄), (P,Q)〉 −H(P,Q)
}
.

Note that, with

R = AtP +BtQ, S = AtP −BtQ,

R̄ = A−1P̄ +B−1Q̄, S̄ = A−1P̄ −B−1Q̄,

we may write

L(P̄ , Q̄) = sup
(R,S)

{
1

2
〈(R̄, S̄), (R,S)〉 − ‖R‖2

}
.

Then,

if S̄ �= 0, then L(P̄ , Q̄) = +∞;

if S̄ = 0, then L(P̄ , Q̄) = 1
16‖R̄‖2 = 1

16‖A−1P̄ +B−1Q̄‖2.
Recall that the solution of the Hamilton–Jacobi equation (4.9) is given by

Φ(t, p, p′) =
1

16
inf
C

∫ p′

p
‖A−1γ̇(s) +B−1 ˙̃γ(s)‖2 ds,

where p = (x, y), p′ = (x′, y′), C is the set of curves (γ, γ̃) such that γ is a curve joining x to
x′ and γ̃ a curve joining y to y′, and

A−1γ̇(s) = B−1 ˙̃γ(s),D
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2036 FEDOROV, ARIAS, SADEK, FACCIOLO, AND BALLESTER

i.e.,

(4.10) γ̇(s) = AB−1 ˙̃γ(s).

Let us analyze this formula when A,B are constant matrices. Then, by integrating (4.10), we
get

x′ − x = AB−1(y′ − y),

i.e.,

B−1(y′ − y) = A−1(x′ − x) := h.

Thus, we may write

x′ − x = Ah, y′ − y = Bh.

Moreover,

(4.11) Φ(t, p, p′) =
1

4
inf
γ

∫ x′

x
‖A−1γ̇(s)‖2 ds

(
=

1

4
inf
γ

∫ y′

y
‖B−1 ˙̃γ(s)‖2 ds

)
.

Let us solve this equation explicitly in the case of constant matrices A,B. The solution is
given by γ being a straight line joining its two endpoints. Indeed, writing α(s) := A−1γ(s),
then

(4.12) Φ(t, p, p′) =
1

4
inf
α

∫ A−1x′

A−1x
‖α̇(s)‖2 ds.

The solution is given by

(4.13) Φ(t, p, p′) =
1

4
‖A−1x−A−1x′‖ =

1

4
‖h‖.

Recall that Φ = 2
√
Ψ. Then, for t > 0 small enough, we have the approximation

C(t, p) =
H0√
t

∫
e−Ψ(t,p,p′)/tC(0, x+Ah, y +Bh)dh

for some constant H0. Then, after adjusting constants,

C(t, p) =

∫
gt(h)C(0, x +Ah, y +Bh)dh,

where gt(h) denotes the Gaussian of variance t, and we recover the formula given in Remark
7.

In the general case, where A and B are not constant matrices but A(x) = G1(x)−1/2,
B(y) = G2(y)−1/2, we have

(4.14) Φ(t, p, p′) =
1

4
inf
γ

∫ x′

x
‖G1(γ(s))1/2γ̇(s)‖2 ds = 1

4
inf
γ̃

∫ y′

y
‖G2(γ̃(s))1/2 ˙̃γ(s)‖2 ds.
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By a drastic approximation, writing A = G1(x)−1/2, B = G2(y)−1/2, h = A−tx′ − A−tx, we
obtain the formula (coinciding with the previous one for constant A,B)

(4.15) C(t, p) =

∫
gt(h)C(0, x +G1(x)−1/2h, y +G2(y)−1/2h)dh.

We think of the following case:

C(0, x, y) = (u(x)− v(y))2.

Remark 9. If we interpret (4.14) intuitively as a geodesic distance d(x, x′) in the manifold
M1, and x

′ = x+A(x)h, then

(4.16) C(t, p) =
H0√
t

∫
e−d(x,x+A(x)h)

2/tC(0, x+A(x)h, y +B(y)h)dh.

On the other hand, d(x, x + A(x)h)2 could be approximated as in the bilateral filter [34] by
κspatial‖A(x)h‖2 + κcolor|u(x) − u(x + A(x)h)|2, κspatial, κcolor > 0, where u is the image on
M1.

Formulas (4.15) and (4.16) are both discussed and tested in subsection 4.3 and in section
6.

4.3. Experiments on the multiscale similarity measure. In this section we concentrate
on a study of multiscale properties of the proposed patch similarity measure. The following
experiments are aimed to demonstrate the behavior of the similarity measure at different
scales and motivate the necessity of multiple scales. For this reason, the case of disparity map
estimation was selected. Let us note that even though all the experiments in this section were
made in the context of disparity map estimation, the complete application of the proposed
similarity measure to the depth estimation from stereo images is out of the scope of the current
work. Let us assume for now that the computation of an a priori connection map (and hence
A(x) = G1(x)−1/2 and B(y) = G2(y)−1/2) for a pair of images is a “black box.” It will be
defined and studied in detail in section 5.

First experiment. In the first experiment we compute similarity values between a given
point on the left image and all the points on the right image of the stereo pair shown in
Figure 1. One point was selected in the interior of an object on the left image and another
point on a boundary of an object. Let us note that in the case of disparity map estimation
we restrict the search for the largest similarity value to the epipolar lines or, in our case, to
the corresponding scan lines, because the images are rectified.

Let us specify the values of parameters used in these experiments. For the first experiment,
the scale parameter was selected to be t ∈ {16.6, 25, 50, 150, 300, 15000}. A big value of t (e.g.,
t = 15000) corresponds to a coarse scale (large window), while a small value (e.g., t = 16.6)
corresponds to a fine scale (small window). The following section will clarify how the metrics
and the a priori connection maps are computed for these experiments. Let us just note for
now that there is a parameter related to the a priori connection computation, which we set
here to be r = 150 (see section 5 for details).

Formulas (4.15) and (4.16) allow us to calculate the patch distance C(t, x, y) between
two given points x and y. Given t > 0, for simplicity we denote it here as d(x, y). ForD
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Figure 1. Stereo pair used in the experiments. Two red crosses show the selected points of interest.

visualization purposes these distances were color-coded by c(x, y) = exp(− (d(x,y)−dmin)2

2σ2
) ,

where σ = dmax−dmin
γ , dmax and dmin are the maximum and minimum patch distances values,

respectively, and γ > 0 is a parameter. Now, the highest values of c(x, y) correspond to the
most similar patches. For all the experiments in this section, γ = 50, which stretches values
close to 1. Note that dmax and dmin were computed from the whole set of distances across all
the scales, which means that equal colors on two different similarity maps correspond to the
same similarity values.

Figures 2 and 3 show similarity maps computed using Gaussian weights (see (4.15)).
Figure 2 shows maps for a point selected in the interior of the object, while Figure 3 shows
maps for a point selected on the boundary. Similarly, Figures 4 and 5 show similarity maps
for the same setting but computed with approximated geodesic weights (see (4.16)) as in the
bilateral filter (with κspatial = 1.0 and κcolor = 3.0). The scan line in which we are interested
in the disparity estimation case is marked with small red strokes.

Discussion. The first point was selected inside an object on a region with a smooth texture,
far away from the boundary of that object. In this case, one would expect that the better
matching can be achieved with a larger window. It is confirmed by the experiments (Figures
2 and 4), showing that big values of t give more distinctive matching, whereas small values
(for example, t = 16.6) produce equally high similarity values for many adjacent points.

The point on a boundary of the object was selected in such a way that the background of
that object undergoes a severe change (Figures 3 and 5). This determines very low similarities
for big values of t when the influence of the background is high due to the large window. This
is especially noticeable with the geodesic weights which produce sharp edges in the similarity
maps.

The underlying premise of geodesic weights is that colors or intensities can be used to
distinguish between different objects. That is, the pixels in the neighborhood of x with
a color similar to u(x) have more influence on the similarity calculation than pixels with
different colors (which probably belong to another object).D

ow
nl

oa
de

d 
10

/2
6/

15
 to

 1
38

.2
31

.8
0.

92
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEAR MULTISCALE ANALYSIS OF SIMILARITIES 2039

Figure 2. Similarity maps for the point inside the object calculated using Gaussian weights (4.15). From
left to right and top to bottom: t = 16.6, t = 25, t = 50, t = 150, t = 300, and t = 15000.

Note that in the approximated geodesic distance (4.16) the influence of the image colors is
controlled by κcolor. The geodesic weights on a region with similar color are virtually identical
to the Gaussian weights. However, if the window contains two objects with different colors,
then (for a reasonable choice of κcolor) only the pixels with a color similar to the center of
the window have a significant contribution in the similarity calculation. Finally, by taking
a very large value for κcolor one would recover the Gaussian weights (4.15) regardless of the
image colors. The choice of κcolor is delicate, as it should be small to distinguish objects
by their intensity but large enough to capture the variations of intensity within an object.
In the context of a denoising application the value of this parameter is usually chosen to be
proportional to the noise present in the image [34].

In stereo vision the geodesic weights are particularly important because matching using
fixed weights produces the so-called foreground fattening effect. This phenomenon occurs
when a matching window contains parts of objects with different depths. In this setting
background pixels near an occluding edge may get the depth of the occluding edge (which is
in the foreground); hence in the estimated depth map the foreground object appears fattened.

The geodesic weights correspond to a well-established stereo-vision technique by Yoon and
Kweon [41] that allows one to estimate sharper depth maps near depth discontinuities using
weights similar to the bilateral filter [34].

It is worth mentioning that, for the big values of t, points close to the tip of the coneD
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Figure 3. Similarity maps for the point on the boundary calculated using Gaussian weights (4.15). From
left to right and top to bottom: t = 16.6, t = 25, t = 50, t = 150, t = 300, and t = 15000.

(Figures 3 and 5) have much higher similarity values than points on the scan line. This happens
because in these locations the background has a more similar appearance. In applications other
than stereo this might be a desirable best match.

Second experiment. In order to show the effect of changing t on the whole image, we
calculate disparity maps for the stereo pair shown in Figure 6. Disparities were obtained by
an exhaustive search for the best match in the range of possible offsets x ∈ [−55,−5]. For
the second experiment the scale parameter was selected to be t ∈ {16.6, 25, 50, 150, 15000}.
Parameter r is fixed as before: r = 150 (see section 5 for details). For approximated geodesic
weights (see (4.16)), the coefficients were set to be κspatial = 1.0 and κcolor = 3.0.

Figure 7 shows the ground truth disparity map and the disparity maps computed at
different scales using Gaussian weights (see (4.15)). Figure 8 shows the occlusion mask and
the errors with respect to the ground truth excluding the occlusion mask. Similarly, Figures
9 and 10 show disparity maps and errors computed using approximated geodesic weights (see
(4.16)).

Discussion. As can be seen, calculating similarity values on a coarse scale results in smooth
disparity maps which closely match the ground truth within the objects but are oversmoothed
at the boundaries. In contrast, fine scale similarities emphasize sharp boundaries of objects
but produce a lot of mismatches on flat regions.

Figure 11 shows the closed-up fragment of error maps for the limit cases (t = 15000 andD
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Figure 4. Similarity maps for the point inside the object calculated using geodesic weights (4.16). From
left to right and top to bottom: t = 16.6, t = 25, t = 50, t = 150, t = 300, and t = 15000.

t = 16.6). Some of the interesting regions are highlighted in red. This confirms that in
general, if a foreground object is moving over its background, the similarity measure performs
differently at different scales within the object and close to its boundary. The way of “merging”
similarity values from different scales in order to produce the best match may vary depending
on the application. This issue is out of the scope of the current work and should be studied
in detail in the future.

5. Affine covariant structure tensors as metrics on the image domain. In this section
we address the construction of affine covariant structure tensors and affine covariant neigh-
borhoods, and we discuss their properties. The affine structure tensor field will be used as an
anisotropic metric on the image domain and will allow us to build an a priori connection map
to properly compare two images.

As is well known, the structure tensor can be seen as a metric in the image plane [39, 40,
21, 6, 5, 28], and it has been used in image processing and computer vision in fields ranging
from nonlinear filtering to motion analysis.

The computation of affine covariant tensors is closely related with the problem of estimat-
ing affine covariant regions. The latter has been addressed in the object recognition literature.
In [25], the authors compute affine covariant regions on a set of points that are robust to scale
changes. Given two matching points, the affine transformation is then estimated up to a ro-D
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Figure 5. Similarity maps for the point on the boundary calculated using geodesic weights (4.16). From
left to right and top to bottom: t = 16.6, t = 25, t = 50, t = 150, t = 300, and t = 15000.

Figure 6. Stereo pair used for disparity map calculation.

tation. In [23], the authors build up affine covariant domains referred to as maximally stable
extremal regions (MSER). Mainly, MSER are defined as the most contrasted connected com-
ponents of upper and lower level sets of the image [23]. Though these approaches give very
good results in the object recognition context, they do not provide a dense set of regions withD
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Figure 7. Disparity maps calculated using Gaussian weights (4.15). Brighter colors correspond to bigger
offsets. From left to right and top to bottom: ground truth, disparity maps for t = 16.6, t = 25, t = 50, t = 150,
and t = 15000.
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Figure 8. Errors in disparities with respect to the ground truth excluding the occlusion mask. Disparities
were calculated using Gaussian weights (4.15). Darker colors correspond to bigger errors. From left to right
and top to bottom: occlusion mask, error maps for t = 16.6, t = 25, t = 50, t = 150, and t = 15000.
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Figure 9. Disparity maps calculated using geodesic weights (4.16). Brighter colors correspond to bigger
offsets. From left to right and top to bottom: ground truth, disparity maps for t = 16.6, t = 25, t = 50, t = 150,
and t = 15000.
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Figure 10. Errors in disparities with respect to the ground truth excluding the occlusion mask. Disparities
were calculated using geodesic weights (4.16). Darker colors correspond to bigger errors. From left to right and
top to bottom: occlusion mask, error maps for t = 16.6, t = 25, t = 50, t = 150, and t = 15000.
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Figure 11. Closed-up errors with respect to the ground truth excluding the occlusion mask. First row:
calculated using Gaussian weights (4.15) for t = 16.6, t = 15000. Second row: calculated using geodesic weights
(4.16) for t = 16.6, t = 15000.

a guarantee of their affine covariance.

5.1. Construction of affine covariant structure tensors and neighborhoods. Let us start
by describing the construction of structure tensors and their corresponding neighborhoods
which are affine covariant.

Let u be a given image, u : RN → R. Let GL(N) be the set of invertible matrices in R
N .

Let A ∈ GL(N). Let us denote uA(x) := u(Ax).

Let us start by some examples. Assume that we have a metric g on R
N . Let us remark

that the map A induces a metric gA in R
N such that GA(x) = AtG(Ax)A, where G(y) denotes

the symmetric matrix (gij(y)). This law of transformation holds also with the Hessian of an
image u and the Hessian of uA. Indeed, D

2uA(x) = AtD2u(Ax)A. Let us remark that it is also
the case when we consider the Hessian on u defined on the Riemannian manifold (M, g) =D
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(RN , g) and the Hessian of uA on (N , ḡ) = (RN , gA). Indeed, D2
NuA(x) = AtD2

Mu(Ax)A.
The following definition of affine covariant tensors associated with an image generalizes this
property for a (1, 1) tensor field computed from an image.

Definition 5.1. Let Hu be a (1, 1) tensor defined on R
N such that, for each x ∈ R

N , it is
represented by an N ×N matrix Hu(x) mapping a vector in R

N to another vector in R
N . We

say that Hu is an affine covariant tensor if it satisfies

(5.1) HuA(x) = AtHu(Ax)A,

where uA(x) := u(Ax) for A ∈ GL(N).
Let us remark that it includes a slight abuse of terminology, as the term affine covariant

tensor refers to our tensor computed from an image.
Another interesting example is the following. Let us consider F (u) = Du⊗Du, where ⊗

denotes the tensor product. Then,

F (uA)(x) = DuA(x)⊗DuA(x) = AtDu(Ax)⊗AtDu(Ax)(5.2)

= AtDu(Ax)⊗Du(Ax)A = AtF (u)(Ax)A.

Thus, F (u) is an affine covariant tensor.
This law of transformation is well adapted to define neighborhoods that transform well

with respect to affine transformations. This is the object of Lemma 5.2. In Lemma 5.3 we
will describe ways to generate affine covariant tensors based on an image by integrating in
those affine covariant neighborhoods.

Lemma 5.2. Let Hu be an affine covariant tensor. Let

(5.3) BHu(x, r) = {y : 〈Hu(x)(y − x), (y − x)〉 ≤ r2}, x ∈ R
N , r > 0.

Then, BHuA
(x, r) = A-1BHu(Ax, r).

We will say that BHuA
(x, r) is an affine covariant neighborhood.

Proof.
(5.4)
BHuA

(x, r) = {y : 〈HuA(x)(y − x), (y − x)〉 ≤ r2} = {y : 〈AtHu(Ax)A(y − x), (y − x)〉 ≤ r2}.

Let x̄ = Ax, ȳ = Ay. Then

(5.5) BHuA
(x, r) = {A-1ȳ : 〈Hu(x̄)(ȳ − x̄), (ȳ − x̄)〉 ≤ r2} = A-1BHu(Ax, r).

By Lemma 5.2, the set WFu(x, r) = {y : 〈Fu(x)(y − x), (y − x)〉 ≤ r2} also satisfies
WFuA

(x, r) = A−1WFu(Ax, r).
Let us remark that if we define

(5.6) Bu(x, r) = {y : |Du(x)(y − x)| ≤ r},

then

BuA(x, r) = {y : |DuA(x)(y − x)| ≤ r} = A−1{y : y ∈ Bu(Ax, r)} = A−1Bu(Ax, r);D
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i.e., BuA(x, r) is an affine covariant neighborhood as well.

At this point we have all the ingredients we need to describe the method of construction
of affine covariant structure tensors and affine covariant neighborhoods. Let

(5.7) T (u)(x) =

∫
Bu(x,r)

Du(y)⊗Du(y) dy.

Then

(5.8) T (uA)(x) =

∫
BuA

(x,r)
DuA(y)⊗DuA(y) dy =

∫
A−1Bu(Ax,r)

AtDu(Ay)⊗Du(Ay)Ady

and by writing ȳ = Ay, y ∈ A−1Bu(Ax, r), we get

(5.9) T (uA)(x) = At
∫
Bu(Ax,r)

Du(ȳ)⊗Du(ȳ)|detA|-1 dȳA.

That is, T (uA)(x) = |detA|−1AtT (u)(Ax)A.

Thus, T (uA) is an affine covariant tensor with a weight expressed by |detA|-1. We still
refer to it as an affine covariant tensor density of exponent −1. To cancel the factor |detA|−1,
we observe that Area(BuA(x, r)) = |detA|−1Area(Bu(Ax, r)). Therefore, if we define

(5.10) NT (u)(x) =

∫
Bu(x,r)

Du(y)⊗Du(y) dy

Area(Bu(x, r))
,

we have NT (uA)(x) = AtNT (u)(Ax)A. In other words, NT (u) is an affine covariant ten-
sor (or an affine covariant tensor density of exponent 0), computed on an affine covariant
neighborhood.

Lemma 5.3. Let H1 be an affine covariant tensor density of exponent k (k = 0,−1), and
let H2 be an affine covariant tensor. Let H i

A be the tensor after the affine transformation A.
Let

(5.11) T (H1,H2)(x) =

∫
BH1 (x,r)

H2(y) dy.

Then

(5.12) T (H1
A,H

2
A)(x) = |detA|kAtT (H1,H2)(Ax)A.

That is, T (H1,H2) is an affine covariant tensor density of exponent k.

We have taken k = 0,−1 because we wanted to cover our examples. Other exponents
could be taken as well.

Lemma 5.3 permits us to iterate the above construction (5.10) and redefine for k ≥ 2

(5.13) NT (k)(u)(x) =

∫
B

NT (k−1)(u)
(x,r)Du(y)⊗Du(y) dy

Area(BNT (k−1)(u)(x, r))
,

D
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where

(5.14) BNT (k−1)(u)(x, r) = {y : 〈NT (k−1)(u)(x)(y − x), (y − x)〉 ≤ r2}.

Recall that for the initial iteration, k = 0, the affine covariant neighborhood was given by

(5.15) BNT 0(u)(x, r) = Bu(x, r) = {y : |Du(x)(y − x)| ≤ r}.

Let us remark that, when we iterate, the affine covariant neighborhood associated withNT k(u)
does not depend as much as NT (u)(x) on the gradient at the pixel x. The next remark is
also motivated by this.

Remark 10. A variant of the above example is

(5.16) B̄u(x, r) = {y : |Du(y)(y − x)| ≤ r}.

Then B̄uA(x, r) = A−1B̄u(Ax, r). It can be used to define the (1, 1) affine tensor density of
exponent −1,

(5.17) T̄ (u)(x) =

∫
B̄u(x,r)

Du(y)⊗Du(y) dy,

or its normalized version as above that would be an (1, 1) affine covariant tensor.

Given an image u : R2 → R, consider the affine covariant tensors NT (k)(u)(x) and affine
covariant neighborhoods BNT (k)(u)(x, r) for x ∈ R

2, k ∈ N, r > 0. We have empirically
observed that after a few iterations this procedure cycles over a finite number of affine covariant
tensors (typically 1 to 3). In any case, for x in the image domain, any of these tensors is
guaranteed to be an affine covariant tensor. Therefore, the purpose of the iterative algorithm
is not to ensure affine covariance, but to diminish dependency on the very first iteration,
which depends solely on a single gradient and thus is very sensitive to noise. It can be
clarified as follows. Given an image u, we calculate the tensors at every point x with a
different number of iterations k. We then calculate the Frobenius norms of the differences∥∥N (k)

T (u)(x) −N
(k+1)
T (u)(x)

∥∥
F
for every two consecutive values of k. Finally, we average the

norms over all x. Figure 12 shows these average changes over k for three selected images.
The fact that the values go to some nonzero value is explained by the occasional alternation
between two affine covariant tensors. This behavior is typical for all tested images.

For the rest of the paper we will denote by Tu(x) the affine covariant structure tensor
NT (k)(u)(x) for a fixed value of k (in our experiments, we take k = 30) and a given value of r.
We will say that Tu is the affine covariant structure tensor field associated with u. Similarly
we use the notation BTu(x) to refer to the affine covariant neighborhood BNT (k)(u)(x, r). They
are ellipses in the case N = 2. In Figure 13 we show some of these neighborhoods.

Let us note that r is a free parameter. It controls the size of the affine covariant neigh-
borhood at a given point. On the other hand, the size of the neighborhood is also affected by
the texture in the vicinity of that point. In this work r was experimentally chosen for each
image and we observed that it may vary over a relatively wide range without any significant
impact on the final result.D
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Figure 12. Average change of tensors from one iteration to another, depending on the number of iterations.
Thumbnails of the corresponding images are shown on the right.

Recall that the initial iteration takes into account nonlocal information due to its infinite
band support. In section 5.4 we study the dependency of tensors on the initial iteration (5.15)
for different values of r. In section 6.1 we demonstrate a few similarity maps obtained for
different values of r. The analysis of the appropriate choice of r, with application to different
contexts, will be the object of future work.

Remark 11. Let us make an additional remark on the solutions of equations of the form
(4.6). Note that if A ∈ GL(N) and g is a metric on R

N defined as above by the structure tensor
associated with a given image, u : RN → R, then, as previously noticed, A : RN → (RN , g)
induces a metric gA in R

N such that GA(x) = AtG(Ax)A. If Γ̃ is the Levi-Civita connection
in the metric gA, then

Γ̃(Atp) = AtΓ(p)A.

Let (M, g) = (RN , g), (M̃, g) = (RN , gA). Therefore, the equation

ut = Traceg
(
D2

Mu
)
,

where Trg(A) = Tr(G−1A) = gijAij , is affine invariant. Indeed, since

TrgA

(
D2

˜MuA

)
= Tr

(
G−1
A D2

˜MuA

)
= Tr

(
A−1G−1A−tAtD2

MuA
)

= Tr
(
G−1D2

MuAA−1
)
= Tr

(
G−1D2

Mu
)
= Trg

(
D2

Mu
)
,

then
∂

∂t
uA(t, x) =

∂

∂t
u(t, Ax) = Trg

(
D2

Mu
)
(t, Ax) = TrgA

(
D2

˜MuA

)
(t, x).

That is, uA solves the same equation as u(t, x) with initial condition u(Ax). This gives an
example of a linear multiscale analysis that is affine invariant.

Notice that the metric depends on the initial condition. This may not be obvious from the
notation above, but the equation is applied to a given image, and the metric is constructed
from the initial condition. This guarantees that whenever for u(0, x) the metric is g, for
u(0, Ax) the metric is gA(x) = Atg(Ax)A. For instance, this is true for the structure tensors.D
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Figure 13. Images showing (superimposed) some affine neighborhoods. First row: neighborhoods are placed
every 25 pixels. Second row: neighborhoods are placed at the corresponding points.

5.2. A priori connection from tensors. Assume that we have two given images u = Iu :
Ωu → R, v = Iv : Ωv → R. For each x ∈ Ωu, let Tu(x) be the structure tensor of u at x. For
each y ∈ Ωv, let Tv(y) be the structure tensor of v at y.

We consider (with a previous extension of u and v to R
N first by an even extension and

then by periodicity) the two manifolds (RN , G1 = Tu(x)), (R
N , G2 = Tv(y)) and the PDE

(5.18)
∂C

∂t
= ΔMxC + 2Tr(G2(y)−1/2G1(x)−1/2DxyC) + ΔMyC.

Let us clarify for this case the construction of an a priori connection for the approximating
formulas (4.15) and (4.16).

For this, let us diagonalize the tensors matrices Tu(x) = Uu(x)Du(x)U
t
u(x) and Tv(y) =

Uv(y)Dv(y)U
t
v(y). Here

Du(x) = diag(λu,1(x), λu,2(x)), λu,1(x) ≥ λu,2(x),

Dv(y) = diag(λv,1(y), λv,2(y)), λv,1(y) ≥ λv,2(y).

The matrices Uu(x), Uv(y) are rotation matrices formed with the eigenvectors of Tu(x), Tv(y),
respectively. Let eu,i(x) be the eigenvector of Tu(x) associated with the eigenvalue λu,i(x),
i ∈ {1, 2}. Let ev,i(y) be the eigenvector of Tv(y) associated with the eigenvalue λv,i(y). That
is, eu,i(x) is the ith column of Uu(x) and ev,i(y) is the ith column of Uv(y).D
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Recall that each structure tensor can be described by its corresponding neighborhood,
which is an ellipse given by

BTu(x) = {x̄ : 〈Tu(x)(x̄− x), x̄− x〉 ≤ r2},
BTv (y) = {ȳ : 〈Tv(y)(ȳ − y), ȳ − y〉 ≤ r2}.

If we let A(x) := Du(x)
1/2Uu(x)

t, then by the change of variables X = A(x)x′ we have

A(x)
eu,i(x)√
λu,i(x)

= fi, where fi is a Euclidean orthonormal basis. This means that we are rotating

the ellipse, aligning the minor axis to f1 and the major to f2, and changing the length of both
axes. Similarly, for the ellipse associated with Tv(y) we let B(y) := Dv(y)

1/2Uv(y)
t, and by

the change of variables Y = B(y)y′ we have B(y)
ev,i(y)√
λv,i(y)

= fi. After these operations both

ellipses are transformed to a standard circle of radius r, and hence we can compare them.

Let us remark that

(5.19) P (x, y) = B(y)−1A(x) = Uv(y)Dv(y)
−1/2Du(x)

1/2Uu(x)
t

is an a priori connection.

Similarly to [18] it can be shown that formula (5.19) allows one to obtain exact affinity
from the affine covariant structure tensors with an additional constraint of prohibiting vertical
disparity as usual, for example, for the stereo case. In the general case, however, the affinity
is determined only up to an orthogonal transformation. This result is shown in Lemma 5.4.

We denote by R any orthogonal matrix in R
2 and denote PR(x, y) = Tv(y)

−1/2 R Tu(x)
1/2.

The following result holds.

Lemma 5.4. Let us assume u(z) = v(Az) ∀z ∈ R
N for some A ∈ GL(N). Then, PR(x, y) =

A for y = Ax and some orthogonal matrix R.

Proof. Consider y = Ax. Proving that A = PR(x, y) = Tv(y)
−1/2RTu(x)

1/2 is equivalent
to proving that Tv(y)

1/2ATu(x)
−1/2 is an orthogonal matrix.

But Tv is an affine covariant tensor. Therefore, Tu(x) = AtTv(y)A. This identity is

equivalent to I =
(
Tv(y)

1/2ATu(x)
−1/2

)t (
Tv(y)

1/2ATu(x)
−1/2

)
. That is, Tv(y)

1/2ATu(x)
−1/2

is an orthogonal matrix.

This means that a truly affine invariant a priori connection is defined as

(5.20) P (x, y) = B(y)−1R(x, y)A(x) = Uv(y)Dv(y)
−1/2R(x, y)Du(x)

1/2Uu(x)
t,

where R(x, y) is some additional orthogonal transformation. Due to the fact that Uu(x) and
Uv(y) are rotations and Du(x)

1/2, Dv(y)
1/2 are scalings, there is no reflection involved in these

transformation and, therefore, R(x, y) is a rotation. For formulas (4.15) and (4.16) we can
embed R(x, y) into A(x) or B(y). Let us note that in practical applications this additional
rotation R(x, y) can be determined, for example, by estimating dominant orientations within
the normalized circles.

5.3. Tensors on real images. Real images acquired with a digital camera are affected by
the optical blur (which we assume to be Gaussian) and the sampling. In this section we will
analyze to what extent the affine covariance properties of the tensors hold for real discreteD
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images. For simplicity, we consider planar images defined on R
2. Furthermore, as in [27], we

assume an affine camera model; i.e., we disregard perspective effects.
Let f : R2 → R be an infinite resolution image on a plane, seen from a frontal view. We

consider an image u : R2 → R, resulting from looking at f from a different viewpoint. Under
an affine camera, we can express u as follows:

u(x) = fA(x) = f(Ax),

where A ∈ GL(N) is an affinity matrix associated with the viewpoint (without loss of general-
ity, we omit the translation of the affinity). Throughout this section we will use the notation
fA = Af ; i.e., we use the same symbol for the affinity matrix A as for the operator that warps
an image in accordance with affinity A. Since the normalized structure tensor is a (1, 1) affine
tensor, tensors computed at corresponding locations on f and u should be related through
formula (5.1).

Both u, f are infinite resolution images, seen from two different viewpoints before ac-
quisition. When acquired by a finite resolution camera the image is modified by a filtering
operation GΣ1 and a sampling operator S1. We assume the GΣ1 to be a Gaussian kernel with
covariance matrix Σ1, such that its width is the smallest one that allows sampling without
aliasing, with a sampling step of 1. We assume that Σ1 = σ1I as defined in [27]. Thus, after
acquisition we have û1 = S1GΣ1 ∗ Af and f̂1 = S1GΣ1 ∗ f . Let us ignore for the moment the
effect of the sampling to focus on the blur. We denote by u1 = GΣ1 ∗ Af and f1 = GΣ1 ∗ f
the images before sampling.

In general the warping by A and the Gaussian filter will not commute; thus after acqui-
sition, u1 and f1 will no longer be related by an affinity. Indeed, if GΣ is a Gaussian kernel
with covariance matrix Σ and zero mean, then we have that

GΣ ∗ Af = AGAΣAT ∗ f,
a property which is sometimes referred to as weak commutativity [27].

Thus, in the affine camera model, a change of viewpoint associated with the affinity A
induces an anti-aliasing Gaussian filter GAΣ1AT . Tensors computed in u1 = AGAΣ1AT ∗f1 will
match tensors in GAΣ1AT ∗ f1, but they will differ from the tensors of GΣ1 ∗ f .

An exception is given by the case in which the Gaussian kernel is isotropic (as GΣ1) and
A = R is a rotation since in that case Rσ2IRT = σ2I. However, this is not true if the affinities
contain scalings and/or tilts. In the following, we describe an experiment to quantify the effect
of zooms on the tensors by comparing tensors computed on GAΣ1AT ∗f and GΣ1 ∗f for several
scalings.

For a zoom by a factor of s > 0, A = Hs = sI, we have that the induced Gaussian filtering
is HsΣ1H

T
s = s2Σ1 = (sσ1)

2I. To quantify the effect of zooms in the computation of the
tensors, we simulate acquisitions at several scales by creating a Gaussian scale-space Gs2Σ1

∗f
for the classical image baboon while varying s ∈ [1, 10] and computing tensors at each scale.
Since we do not have access to an infinite resolution image, we assume that f1 = S1G1 ∗ f is
well sampled and build the scale-space by filtering f1. This is an approximation to a Gaussian
filtering of the continuous f , especially for large kernel widths.

Tensors are computed for each image Gs2Σ1
∗ f for a fixed parameter r > 0. Let us

denote by Ts(x) the tensors computed at x from image Gs2Σ1
∗ f , and let us denote λs,2(x) itsD
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Figure 14. Median minimum eigenvalue ratio, between tensors computed at scale s and at scale s0, as a
function of s. Plots show the evolution of the median eigenvalue ratio with respect to the scale s for three values
of s0, namely s0 = 2, 3, and 4, indicated by the vertical dotted lines. The horizontal dotted lines show the range
1±0.2, corresponding to a variation of 20% of the median ratio at s0. The shaded areas show the region around
the median of three standard deviations.

smallest eigenvalue. Figure 14 plots the median in the image of the ratio between the smallest
eigenvalue of a tensor computed at scale s and the corresponding tensor at scale s0 (median
minimum eigenvalue ratio):

MMEVR(s, s0) = median

{√
λs,2(x)

λs0,2(x)
: x ∈ Ω

}
.

Three curves are shown, corresponding to s0 = 2, 3, and 4. Together with the median value,
we show the region around the median of three standard deviations (due to the presence of
outliers, the standard deviation is estimated as 1.4826MAD, the median absolute deviation).

Note that if we represent a tensor by the elliptical neighborhood 〈y, Ts(x)y〉 < 1, the
smallest eigenvalue is inversely proportional to the largest axis of the ellipse. The experiment
measures how fast tensors change with the Gaussian filtering associated with a scale change.

The curves decrease monotonically. The reason for this is that as we zoom out (increase
s) the image is filtered with a wider kernel, thus decreasing the high frequency content in the
image. The gradients will be smaller, and thus the smallest eigenvalue of the tensors will alsoD
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be smaller. We show in the figure the range corresponding to a 20% variation with respect
to 1, the value of the ratio in s0. We could consider that, on average, the elliptical regions
defined by the tensors change 20% in their size.

Note also that there is a considerable amount of dispersion around the median value.
Tensors at different pixels have different behavior with scale, depending on the image in the
neighborhood of the pixel.

5.4. Dependency on the initial iteration. The proposed construction method of the affine
covariant tensors is an iterative method which starts from some initial region (5.15). The
initial region is an infinite band whose orientation depends on the gradient at the central
point. Therefore, the resulting tensor depends somehow on all the pixels within the initial
band. In general this dependency tends to vanish with a sufficient number of iterations of the
proposed scheme. In this section we study how this behavior depends on the image content
and the value of r.

In order to study the dependency of the tensors on the initial region we select a highly
textured image and create a second image by replacing the peripheral part of the first image
with another content (Figure 15). Let Tu(x) and Tv(x) be tensors on the first and second
images, respectively. We then calculate the error between two corresponding tensors as e(x) =
‖Tu(x)−Tv(x)‖2F , where ‖ ·‖2F is the Frobenius norm. Figure 16 shows the errors, color-coded

by c(x) = exp(− e(x)2

2σ2
), where σ is in the order of 104.

For rather small values of r (50, 100, 150) many covariant neighborhoods (especially close
to strong edges) degenerate into a small set of pixels or even into one pixel (Figure 17). With
such small neighborhoods, the tensor estimation tends to converge to an incorrect solution.
Obviously, in this case tensors highly depend on the initial iteration, which explains a large
number of mismatches in the central part of the images for small r. Moreover, it explains
occasional low errors on the peripheral part of the images, where tensors close to strong edges
occasionally capture the same direction of these edges, but the corresponding neighborhoods
do not have enough information to distinguish between two different images.

With the value of r large enough, dependency of tensors on the initial iteration is negligible
in the whole central region. Let us note that tensors near the peripheral region are inevitably
influenced by this region in all the iterations and not only during the initial one. Therefore they
are irrelevant for this experiment. In section 6.2, we study the proposed similarity measure
on a boundary between two objects, undergoing different transformations.

5.5. Related approaches to affine neighborhoods. The proposed iterative method for the
computation of affine covariant structure tensors allows us to estimate the a priori connection
between two given points and thus a local affinity. Other methods, suitable for the local
affinity estimation, can be found in the literature. Our approach for the computation of affine
invariant tensors and neighborhoods has much in common with the iterative shape adaptation
algorithm of Mikolajczyk and Schmid [25] used in the Harris-Affine feature detector. In this
section we compare both approaches in their ability to estimate an affine transformation. We
use an implementation of the Harris-Affine feature detector of [38].

The method of [25] was originally proposed in the feature extraction context for object
recognition purposes. It starts by building a scale-space for a given image and detecting stable
keypoints together with their characteristic scales. Oriented elliptical neighborhoods are thenD
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Figure 15. Two images with identical central parts and different peripheral parts.

calculated at these keypoints using an iterative procedure. First, a so-called shape adaptation
matrix is estimated in the vicinity of a keypoint, and then the image is warped in accordance
with this matrix. The amount of information around a keypoint that is considered in the
calculation of the shape adaptation matrix is controlled by the integration scale σI . Both σI
and the position of the keypoint are updated in each iteration. The process is repeated until
a convergence criterion is met. In the feature detection context, the integration scale σI is
related to the characteristic scale of a keypoint.

Like the proposed affine covariant structure tensor, the shape adaptation matrix can be
used to estimate an affine transformation that aligns the vicinities of two given points. How-
ever, for arbitrary points that are not keypoints, one needs to provide σI as a free parameter.
In this case parameter σI can be seen as radius parameter r in our approach. Also, positions
of the points should be fixed. Let us note that the method described in [25] is initialized on
a circular window given by an isotropic Gaussian which is not affine covariant, whereas the
method this paper proposes starts from an affine covariant initial band and guarantees that
at any stage of the algorithm the computed tensor is affine covariant.

In order to compare both methods we use an image sequence well known in the feature
detection community, the graffiti sequence, taken from the test data in [24]. It contains six
images showing different views of the same scene. Five ground truth global transformations
from the first image to all the others are known. We uniformly sample 2745 points on the first
image and use the ground truth transformations to obtain the sets of corresponding points
for the other images. We then estimate local affinities for every pair of corresponding points
using both methods. Knowing the locations of the corresponding points, we obtain estimated
global transformations from local ones. We measure the estimation error by the Frobenius
norm of the difference between the estimated and the ground truth transformations. Let us
note once again that in both methods the sizes of neighborhoods are controlled by the free
parameters: r in our method and σI in the Harris-Affine one. However, the values of r and σID
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Figure 16. Errors between corresponding tensors for different values of r. Darker color means bigger error.
From left to right and top to bottom: r = 50, r = 100, r = 150, r = 200, r = 250, r = 300, r = 350, r = 400,
r = 450. r = 500, r = 550, and r = 600.D
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Figure 17. Histograms of the ellipse sizes for different values of r. Vertical axis is in logarithmic scale;
last bar accumulates all larger values. From left to right and top to bottom: r = 50, r = 100, r = 150, r = 200.

could not be easily related. Therefore, for each pair of images we test extensive ranges of r and
σI and select the ones giving the smallest median value of the error. With this experiment we
indirectly evaluate the degree of affine covariance of the proposed covariant structure tensors
and affine normalization proposed in [25]. Figure 18 shows statistics for both methods over
the five pairs of images. It can be seen that statistically our method performs slightly better.

Let us note that other approaches to affine neighborhoods exist; see, e.g., [4, 36, 23, 26].
However, when applying these methods it is impractical or even impossible to extract affine
invariant regions densely. In contrast, our approach by design is capable of producing a dense
field of affine invariant neighborhoods.

6. Experimental results. In section 4.3, the proposed affine invariant similarity measure
has been studied and experimentally analyzed without taking into account the computation
scheme for affine covariant tensors. In this section we consider the whole approach and demon-
strate a few more results on the similarity measure. For all the experiments in this section, to
compare two points x and y we first calculate the affine covariant tensors and neighborhoods
at these points using (5.13), (5.14), and (5.15). We transform the neighborhoods to normal-
ized circles and align these circles by exhaustively searching for a missing rotation. This gives
us the a priori connection (5.20) between x and y and allows us to apply the formula (4.15)D
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Figure 18. Boxplot showing statistics of homography estimation error for 2745 uniformly sampled points.
Homography is estimated for the first image and all the others (labeled as “1-to-2,” “1-to-3,” and so on).
Estimation using shape adaptation matrix of Harris-Affine feature detector (labeled as “HA”) is compared with
our approach using structure tensors (labeled as “our”). As usual, boxes represent the first, second, and third
quartiles, the length of the whiskers corresponds to 1.5 interquartile range (IQR), and red crosses are outliers.
Thumbnails of the images being used are shown on the right.

to calculate patch similarity (distance) value.

6.1. Similarity measure under different transformations. At first we study the proposed
similarity measure between pairs of images, which undergo different kinds of transformations.
For this purpose we calculate patch distance values d(x, y) between corresponding points
on two images. In each selected pair of images, differing by an affine or planar projective
transform, the ground truth correspondences are either given (Figure 19) or easy to estimate
(Figures 21 and 23). In the following experiments we demonstrate results for a rotation, an
affine transformation, and finally a perspective transformation. In each case we compare the
proposed similarity measure with the well-known Euclidean distance given by (1.1). Let us
remark that it can be seen as a particular case of (4.15), where Tu(x) = I and Tv(y) = I. This
similarity measure is modeled by a usual patch distance between square patches of a given
size.

In order to visualize similarity maps, we color-code patch distances d(x, y) by c(x, y) =

exp(− (d(x,y)−dmin)
2

2σ2
), where σ = dmax−dmin

γ , dmax, and dmin are the maximum and minimum
patch distance values, respectively, and γ > 0 is a parameter that controls stretching of values
close to 1. Brighter color means higher similarity value. Note that for each pair of images
distances were normalized all together using the same dmin and dmax, which means that equal
colors on two different similarity maps correspond to the same similarity values.

In the described setting there is only one object shown on a pair of images under differentD
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Figure 19. Original image and rotation of the original image by an angle of 37 degrees superimposed on
the original.

transformations; moreover, the ground truth correspondences are provided. Therefore, for the
following experiments we fix the scale parameter t = 150000 (which corresponds to almost
uniform weights within the covariant neighborhoods). We fix r = 150 as well.

First experiment. In the first experiment we study rotation on a pair of images shown in
the Figure 19. The left image is the original one, and the right image was rotated clock-
wise by an angle of 37 degrees. Figure 20 shows similarity values calculated from the given
correspondences. The distances were color-coded with σ = dmax−dmin

10 .

Second experiment. For the second experiment we use a pair of images (Figure 21) related
by an affine transform. The left image is the fronto-parallel view, and the right image is the
affinely rectified view of the same scene. Figure 22 shows similarity values calculated from
the given correspondences. The distances were color-coded with σ = dmax−dmin

20 .

Third experiment. The third pair of images (Figure 23) includes two different views of the
same packet of juice. We are interested in the front side of the packet, which is planar. Two
given views of that front side are related by perspective transform of a plane. Figure 24 shows
similarity values calculated from the given correspondences. The distances were color-coded
with σ = dmax−dmin

10 .

Varying r. Finally, let us present some similarity maps calculated for the same pairs of
images but this time varying the r parameter (Figures 25, 26, and 27). These results show
that r may vary in a relatively wide range without significant impact on the final result.

The actual choice of r should depend on the application, the sizes of the image features
to be captured, and the image noise and texture content themselves. As shown in section 5.4,
r should also be big enough to avoid degenerate neighborhoods (reduced to a few pixels).
However, together with the previous three experiments, the similarity maps on Figures 25,
26, and 27 verify that for the whole range of r being tested the proposed similarity measure
outperforms the usual Euclidean distance (1.1).D
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Figure 20. Similarity maps for given correspondences between the original and rotated images. First row,
left to right: similarities calculated using square patches of sizes 5, 7, 9, 11, 13. Second row, left to right:
similarities calculated using square patches of sizes 15, 17, 19, 21, 23. Third row: similarities calculated using
the proposed similarity measure.

Figure 21. Fronto-parallel and affinely rectified views of the same scene.

6.2. Local affinities and discussion on the selection of parameters. In this section we
study the behavior of the proposed similarity measure close to the boundary of two different
transformations. For doing this we created a pair of synthetic images, shown in Figure 28.
On these images two different views of the graffiti image are used as backgrounds and twoD
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Figure 22. Similarity maps for given correspondences between the images related by an affinity. First row,
left to right: similarities calculated using square patches of sizes 5, 7, 9, 11, 13. Second row, left to right:
similarities calculated using square patches of sizes 15, 17, 19, 21, 23. Third row: similarities calculated using
the proposed similarity measure.

Figure 23. Two views of the same packet of juice.

different views of another object are imposed as foreground objects. Backgrounds are related
by an affine transformation, and foreground objects are related by another affine transforma-
tion. The ground truth correspondences are calculated first for the background, then for the
foreground objects, and finally combined using a mask.

There are two main parameters in this work related to the amount of support we allow inD
ow

nl
oa

de
d 

10
/2

6/
15

 to
 1

38
.2

31
.8

0.
92

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2064 FEDOROV, ARIAS, SADEK, FACCIOLO, AND BALLESTER

Figure 24. Similarity maps for given correspondences between two views of the front side of the packet of
juice. First row, left to right: similarities calculated using square patches of sizes 5, 7, 9, 11, 13. Second row,
left to right: similarities calculated using square patches of sizes 15, 17, 19, 21, 23. Third row: similarities
calculated using the proposed similarity measure.

Figure 25. Similarity values for given correspondences calculated using the proposed similarity measure
with different values of r. First row, left to right: r = 50, r = 75, r = 100, r = 150, r = 175. Second row, left
to right: r = 200, r = 225, r = 250, r = 275, r = 300.

the comparison of two patches: t and r. In the following experiment both t and r are variable;
therefore it is useful to link them together. Let t = r/t̂. Small values of t̂ correspond to coarse
scales (larger window), while big values correspond to fine scales (smaller window). Recall
that in (4.15), gt is a given window that we assume to be Gaussian of variance t. Then t̂ can
be informally seen as the number of Gaussian sigmas that should fit into the patch, which in
our case has elliptical shape and can be normalized to a circle of radius r. By introducing t̂
we can specify one set of t̂ values for all values of r.D
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Figure 26. Similarity values for given correspondences calculated using the proposed similarity measure
with different values of r. First row, left to right: r = 50, r = 75, r = 100, r = 150, r = 175. Second row, left
to right: r = 200, r = 225, r = 250, r = 275, r = 300.

Figure 27. Similarity values for given correspondences calculated using the proposed similarity measure
with different values of r. First row, left to right: r = 50, r = 75, r = 100, r = 150, r = 175. Second row, left
to right: r = 200, r = 225, r = 250, r = 275, r = 300.

Figure 28. Pair of images used in the experiment on the boundary of two different affinities.

Figure 29 shows similarity maps calculated from the known correspondences for different
values of r and scale parameter t̂. The set of r values is r ∈ {100, 200, 300}, and the set of t̂D
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Figure 29. Similarity values for given correspondences, calculated for different values of t̂ and r. Columns:
from left to right r is equal to 50, 100, 150. Rows: from top to bottom t̂ is equal to 0.01, 0.5, 1, 3, 6, 9.

values is t̂ ∈ {0.01, 0.5, 1, 3, 6, 9}. Let us remark that the dark region in the right part of each
similarity map is irrelevant to the experiment because it is caused by an occlusion.

This experiment confirms that for all selected combinations of t̂ and r the matching is
correct far enough away from the boundary of different transformations. Moreover, the size
of the problematic region on the boundary may be controlled by adjusting both r and t̂
parameters. Keeping in mind that one would like to see r as a parameter that can be selectedD
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once for a concrete pair of images, or even estimated automatically, this emphasizes once again
the importance of multiscale similarity computation for the cases where two or more objects
undergoing different transformations may meet.

7. Conclusions. In this work we study in detail the linear model to compare patches of
images defined on Riemannian manifolds, described first in [3]. Using a WKB approximation
we develop two practical formulas (4.15), (4.16) to approximate the solution the corresponding
linear PDE (1.3). In order to be able to apply these formulas one needs to provide an a priori
connection between any pair of points to be compared. We propose intrinsic metrics allowing
us to consider images as Riemannian manifolds. These metrics are defined in terms of affine
covariant tensors and affine covariant neighborhoods associated with them. The tensors are
then used for obtaining the a priori connection. We accompany theoretical developments with
experiments. First we study properties of the proposed similarity measure, assuming that
the a priori connection is known. Then we move to the properties of the proposed affine
covariant structure tensors in isolation from the similarity measure and also discuss some
practical question related to the computation of the a priori connection. Finally, we take a
look at the proposed similarity measure as a whole. Many application-specific questions were
left aside in order to keep this work general and concise.
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