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Digital images are matrices of equally spaced pixels, each containing a photon
count. This photon count is a stochastic process due to the quantum nature
of light. It follows that all images are noisy. Ever since digital images have
existed, numerical methods have been proposed to improve the signal-to-noise
ratio. Such ‘denoising’ methods require a noise model and an image model. It
is relatively easy to obtain a noise model. As will be explained in the present
paper, it is even possible to estimate it from a single noisy image.

∗ Colour online for monochrome figures available at journals.cambridge.org/anu.
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Obtaining a convincing statistical image model is quite another story. Im-
ages reflect the world and are just as complex. Thus, any progress in image de-
noising implies progress in our understanding of image statistics. The present
paper contains an analysis of nine recent state-of-the-art methods. This anal-
ysis shows that we are probably close to understanding digital images at a
‘patch’ scale. Recent denoising methods use thorough non-parametric esti-
mation processes for 8 × 8 patches, and obtain surprisingly good denoising
results.
The mathematical and experimental evidence of two recent articles suggests

that we might even be close to optimal performance in image denoising. This
suspicion is supported by a remarkable convergence of all analysed methods.
They certainly converge in performance. We intend to demonstrate that,
under different formalisms, their methods are almost equivalent. Working in
the 64-dimensional ‘patch space’, all recent methods estimate local ‘sparse
models’ and restore a noisy patch by finding its likeliest interpretation, given
the noiseless patches.
The story will be told in an ordered fashion. Denoising methods are com-

plex and have several indispensable ingredients. Noise model and noise esti-
mation methods will be explained first. The four main image models used for
denoising are the Markovian–Bayesian paradigm, linear transform threshold-
ing, so-called image sparsity, and an image self-similarity hypothesis, which
will also be presented. The performance of all methods depends on three
generic tools: colour transform, aggregation, and an ‘oracle’ step. Their
recipes will also be given. These preparations will permit us to present, in
a unified terminology, the complete recipes of nine different state-of-the-art
patch-based denoising methods. Three quality assessment recipes for denois-
ing methods will also be proposed and applied to compare all methods. The
paper presents an ephemeral state of the art in a rapidly changing subject, but
many of the presented recipes will remain useful. Most denoising recipes can
be tested directly on any digital image in the web journal Image Processing
On Line.
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Notation

• i, j, r, s image pixels
• u(i) image value at i, written as U(i) when the image is handled as a vector
• ũ(i) noisy image value at i, or Ũ(i) when the image is handled as a vector
• û(i) restored image value, or Û(i) when the image is handled as a vector
• n(i) noise at i
• N patch of noise in vector form
• m number of pixels j involved in denoising a pixel i
• P reference patch; Q, a second patch compared to P
• P̃ , Q̃ noisy patches
• P̂ restored patch

• w(P̃ , Q̃) = e−
d2(P̃ ,Q̃)

Cσ2 the interaction weight between P and Q
• d(P̃ , Q̃) Euclidean distance between patches (considered as vectors of their

values)
• σ standard deviation of white noise at each pixel
• κ× κ dimension of patches
• λ× λ dimension of search zone for similar patches
• N (μ,C) vectorial Gaussian distribution with mean vector μ and covariance

matrix C
• P(G) probability of an event G (in the image and noise stochastic models)
• EQ expectation (of a random patch Q)
• P empirical expectation of the patches similar to P
• Δ image Laplace operator (sum of the second derivatives in two orthogonal

directions)
• DCT(n1, n2) 2D discrete cosine transform at frequencies n1, n2

• p percentile value of a histogram (between 0% and 100%)
• w × w block size for estimating the noise
• σ̂ estimated value of the noise
• b number of bins
• h result of a high-pass filter on ũ
• ∇ gradient (of an image)
• M total number of pixels or patches in the image; total number of patches in

the patch space
• CP covariance matrix (of patches similar to P or P̃ )
• P1 restored patch at the first application of a denoising algorithm
• P2 restored patch at the second application of a denoising algorithm
• B = {Gi}Mi=1 orthonormal basis of RM

• D diagonal linear operator; dictionary of patches considered as a matrix
• ndict size of the dictionary (number of patches in it)
• A linear operator, applied to the image u encoded as a vector U
• p(P ) density function of patches
• K number of patch clusters; number of wavelet coefficients
• k index in K
• Ωk patch cluster
• i index of patch Pi (in a patch cluster, in the image)
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1. Introduction

Most digital images and movies are currently obtained by a CCD1 device.
The value ũ(i) observed by a sensor at each pixel i is a Poisson random
variable whose mean u(i) would be the ideal image. The difference between
the observed image and the ideal image, ũ(i) − u(i) = n(i), is called ‘shot
noise’. The standard deviation of the Poisson variable ũ(i) is equal to the
square root of the number of incoming photons ũ(i) in the pixel captor i
during the exposure time. The Poisson noise n is the sum of thermal noise
and electronic noise, which are approximately additive and white. For a
motionless scene with constant lighting, u(i) can be approached by simply
accumulating photons for a long exposure time, and by taking the temporal
average of this photon count, as illustrated in Figure 1.1.
Accumulating photon impacts on a surface is therefore the essence of

photography. The first photograph, by Nicéphore Niépce (Chevalier, Ro-
man and Niépce 1854), was obtained from an eight-hour exposure. The
problem of long exposure is the variation of the scene due to changes in
light, camera motion, and incidental motion of parts of the scene. The
more these variations can be compensated for, the longer the exposure can
be, and the more the noise can be reduced. If a camera is set to a long
exposure time, the photograph risks motion blur. If it is taken with a short
exposure, the image is dark, and enhancing it will reveal noise.
A recently available solution is to take a burst of images, each with a

short exposure time, and to average them. This technique, illustrated in
Figure 1.1, was evaluated recently in a paper that proposes fusing bursts of
images taken by cameras (Buades, Lou, Morel and Tang 2009b). This paper
shows that the noise reduction by this method is almost perfect: fusing m
images reduces the noise by a factor of

√
m.

It is not always possible to accumulate photons. There are obstacles to
this accumulation in astronomy, biological imaging and medical imaging. In
everyday images the scene moves, and this limits the exposure time. The
main limitations to any imaging system are therefore noise and blur. In this
review, experiments will be conducted on photographs of scenes taken by
normal cameras. Nevertheless, the image denoising problem is a common
denominator of all imaging systems.
A naive view of the denoising problem would be: How do we estimate

the ideal image, namely the mean u(i), given only one sample ũ(i) of the
Poisson variable? The best estimate of this mean is of course this unique
sample ũ(i). Getting back a better estimate of u(i) by observing only ũ(i) is
impossible. Getting a better estimate by also using the rest of the image is
obviously an ill-posed problem. Indeed, each pixel receives photons coming
from different sources.

1 Charge coupled device, i.e., the ‘digital film’ at the heart of a digital camera.
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(a) (b) (c)

Figure 1.1. (a) One long-exposure image (time=0.4 s, ISO=100), one of 16
short-exposure images (time=1/40 s, ISO=1600) and their average after
registration. The long-exposure image is blurry due to camera motion. (b)
The middle short-exposure image is noisy. (c) The third image is about four
times less noisy, being the result of averaging 16 short-exposure images.
From Buades et al. (2009b).

Nevertheless, one hint for the solution comes from image formation theory.
A well-sampled image u is band-limited (Shannon 2001). Thus, it seems
possible to restore the band-limited image u from its degraded samples ũ,
as proposed by Harris (1966). This classic Wiener–Fourier method consists
in multiplying the Fourier transform by optimal coefficients to attenuate
the noise. It results in a convolution of the image with a low-pass kernel.
From a stochastic viewpoint, the band-limitedness of u also implies that

values ũ(j) at neighbouring pixels j of a pixel i are positively correlated with
ũ(i). Thus, these values can be taken into account to obtain a better esti-
mate of u(i). Since these values are non-deterministic, Bayesian approaches
are relevant and were proposed as early as Richardson (1972).
In short, there are two complementary early approaches to denoising: the

Fourier method and Bayesian estimation.
The Fourier method has been extended in the past 30 years to other linear

space-frequency transforms, such as the windowed discrete cosine transform
(Yaroslavsky and Eden 2003) or the many wavelet transforms (Meyer 1993).
Bayesian methods were initially parametric and limited to rather restric-

tive Markov random field models (Geman and Geman 1984), but are now be-
coming non-parametric. The idea behind the recent non-parametric Marko-
vian estimation methods is a now famous algorithm to synthesize textures
from examples (Efros and Leung 1999). The underlying Markovian assump-
tion is that, in a textured image, the stochastic model for a given pixel i
can be predicted from a local image neighbourhood P of i, which we shall
call a ‘patch’.
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Algorithm 1 Non-local means (NL-means) algorithm

Input. Noisy image ũ, noise standard deviation σ.
Output. Denoised image û.
Set parameter κ× κ: dimension of patches.
Set parameter λ× λ: dimension of search zone for similar patches.
Set parameter C.
for each pixel i do

Select a square reference sub-image (or ‘patch’) P̃ around i, of size
κ× κ.
Call P̂ the denoised version of P̃ obtained as a weighted average of the
patches Q̃ in a square neighbourhood of i of size λ× λ. The weights in
the average are proportional to

w(P̃ , Q̃) = e−
d2(P̃ ,Q̃)

Cσ2 ,

where d(P̃ , Q̃) is the Euclidean distance between patches P̃ and Q̃.
end for
Aggregation. Recover a final denoised value û(i) at each pixel i by

averaging all values at i of all denoised patches Q̂ containing i.

The assumption when recreating new textures from samples is that there
are enough pixels j similar to i in a texture image ũ to recreate a new
but similar texture u. The construction of u is done by non-parametric
sampling, amounting to an iterative copy–paste process. Let us assume
that we already know the values of u on a patch P partially surrounding
an unknown pixel i. The algorithm of Efros and Leung (1999) looks for the
patches P̃ in ũ with the same shape as P and resembling P . Then a value
u(i) is sorted among the values predicted by ũ at the pixels resembling j.
Indeed, these values form a histogram approximating the law of u(i). This
algorithm goes back to Shannon’s theory of communication (Shannon 2001),
in which it was used for the first time to synthesize a probabilistically correct
text from a sample.
As proposed by Buades, Coll and Morel (2005b), an adaptation of the

above synthesis principle yields an image denoising algorithm. The observed
image is the noisy image ũ. The reconstructed image is the denoised image
û. The patch is a square centred at i, and the sorting yielding u(i) is
replaced by a weighted average of values at all pixels ũ(j) similar to i. This
simple change leads to the ‘non-local means’ (NL-means) algorithm, which
can therefore be sketched in a few lines: see Algorithm 1.
Buades et al. (2005b) also proved that the algorithm gave the best possi-

ble mean square estimate if the image was modelled as an infinite stationary
ergodic spatial process (see Section 5.1 for an exact statement). The algo-
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rithm was called ‘non-local’ because it used patches Q̃ that are far away
from P̃ , and even patches taken from other images. NL-means was not the
state-of-the-art denoising method when it was proposed. As we shall see
in Section 6, the algorithm of Portilla, Strela, Wainwright and Simoncelli
(2003), described in Section 5.6, has better PSNR (peak signal-to-noise ra-
tio) performance. But quality criteria show that NL-means creates fewer
artifacts than wavelet-based methods. This may explain why patch-based
denoising methods have flourished ever since. To date, 1500 papers have
been published on non-local image processing. Patch-based methods seem
to achieve the best results in denoising. Furthermore, the quality of de-
noised images has become excellent for moderate noise levels. Patch-based
image restoration methods are used in many commercial software packages.
An exciting recent paper in this exploration of non-local methods raises

the following claim (Levin and Nadler 2011): For natural images, the recent
patch-based denoising methods might well be close to optimality. Levin and
Nadler (2011) use a set of 20 000 images containing about 1010 patches. This
paper provides a second answer to the question of absolute limits raised by
Chatterjee and Milanfar (2010): ‘Is denoising dead?’ The Cramer–Rao-
type lower bounds on the attainable RMSE (root mean square estimate)
performance given by Chatterjee and Milanfar (2010) are actually more
optimistic: they allow for the possibility of a significant increase in denoising
performance. The two types of performance bounds considered by Levin
and Nadler (2011) and Chatterjee and Milanfar (2010) address roughly the
same class of patch-based algorithms. It is interesting to see that these same
authors propose denoising methods that actually approach these bounds, as
we shall see in Section 5.
The denoising method proposed by Levin and Nadler (2011) is in fact

based on NL-means (Algorithm 1), with the adequate parameter C to ac-
count for a Bayesian linear minimum mean square estimation (LMMSE)
of the noisy patch given a database of known patches. The only impor-
tant difference is that the similar patches Q are chosen from a database of
1010 patches, instead of from the image itself. Furthermore, by a simple
mathematical argument and intensive simulations on patch space, Levin
and Nadler are able to approach the best average estimation error that can
ever be attained by any patch-based denoising algorithm (see Section 5.4).
These optimal bounds are nonetheless obtained on a somewhat restric-

tive definition of patch-based methods. A patch-based algorithm is under-
stood to be an algorithm that denoises each pixel by using knowledge of
(a) the patch surrounding it, and (b) the probability density of all existing
patches. It turns out that state-of-the-art patch-based denoising algorithms
use more information taken in the image than just the patch. For example,
most algorithms use the obvious but powerful trick of denoising all patches
and then aggregating the estimate of all patches containing a given pixel
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to denoise it better. Conversely, these algorithms generally use much less
information than a universal empirical law for patches. Nevertheless, the
observation that at least one algorithm, BM3D (Dabov, Foi, Katkovnik and
Egiazarian 2007), might arguably be very close to the best predicted esti-
mation error is enlightening. Furthermore, doubling the size of the patch
used in the paper by Levin and Nadler (2011) would be enough to cover
the aggregation step. The difficulty is getting a faithful empirical law for
16× 16 patches.
The ‘convergence’ of all algorithms to optimality will be corroborated

here by the thorough comparison of nine recent algorithms (Section 6).
These state-of-the-art algorithms seem to attain very similar qualitative and
quantitative performance. Although they initially seem to rely on different
principles, our final discussion will argue that these methods are equivalent.
Image restoration theory cannot be reduced to an axiomatic system, as

the statistics of images are still largely unexplored territory. Therefore
a complete theory or a single definitive algorithm are not possible. The
problem is not fully formalized because there is no rigorous image model.
Notwithstanding this limitation, rational recipes shared by all methods can
be given, and the methods can be shown to rely on very few principles.
More precisely, this paper will present the following recipes, and compare
them whenever possible.

• Several families of noise estimation techniques (Section 2).

• The four denoising principles in competition (Section 3).

• Three techniques that improve every denoising method (Section 4).

• Nine complete and recent denoising algorithms. For these algorithms
complete recipes will be given (Section 5).

• Three complementary and simple recipes to evaluate and compare de-
noising algorithms (Section 6).

Using the three comparison recipes, six emblematic or state-of-the-art al-
gorithms, based on reliable and public implementations, will be compared
in Section 6. This comparison is followed by a synthesis (Section 7), hope-
fully demonstrating that, under very different names, the state-of-the-art
algorithms share the same principles.
Nevertheless, this convergence of results and techniques leaves several

crucial issues unsolved. (This is fortunate, since no researcher likes finished
problems.) With one exception (the BLS-GSM algorithm, Section 5.6),
state-of-the-art denoising algorithms are not multiscale. High noise and low
noise also remain unexplored.
In a broader perspective, the success of image denoising marks the discov-

ery and exploration of one of the first ever densely sampled high-dimensional
probability laws (numerically) accessible to mankind: the ‘patch space’. For
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8 × 8 patches, by applying a local principal component analysis (PCA) to
the patches surrounding a given patch, one can deduce that this space has
a dozen significant dimensions (other dimensions corresponding to small
eigenvalues). Exploring its structure, as was initiated in Lee, Pedersen and
Mumford (2003), seems to be the first step towards the statistical explo-
ration of images. But, as we shall see, this local analysis of the patch space
already enables state-of-the-art image denoising.
Most denoising and noise estimation algorithms discussed here will be

available in the journal Image Processing On Line, http://www.ipol.im/. In
this web journal, each algorithm is given a complete description along with
the corresponding source code, and can be run online on arbitrary images.
By the time this paper is published, most results and techniques presented
here will be effortlessly verifiable and reproducible online.
This Introduction ends with a quick review of many recent contributions

of interest on patch-based methods, which nevertheless fall beyond our lim-
ited scope.

1.1. Miscellaneous ‘patch-based’ considerations and applications

Statistical validity

This paper will compare patch-based algorithms according to their struc-
ture and their practical performance, which is acceptable in the absence of a
satisfactory mathematical or statistical model for digital images. Nonethe-
less, statistical arguments have also been developed to explore the validity
of denoising algorithms. The statistical validity of NL-means is discussed
by Thacker, Manjon and Bromiley (2008), Kervrann, Boulanger and Coupé
(2007) and Ebrahimi and Vrscay (2007), who propose a Bayesian interpre-
tation, and by Xu, Xu and Wu (2008), who correct the bias of NL-means.
Singer, Shkolnisky and Nadler (2009) give a ‘probabilistic interpretation and
analysis of the method viewed as a random walk on the patch space’. The
most complete recent study is made in the realm of minimax approximation
theory. The horizon class of images, which are piecewise constant with a
sharp edge discontinuity (Maleki, Narayan and Baraniuk 2011b), is suitable
for asymptotic analysis. The images are discontinuous across the edge and
the edge itself is smooth, being in an Hα(C) class. A real function is in this
class for α ≥ 0 if new display

|h([α])(t)− h([α])(s)| ≤ C|t− s|α−[α],

where [α] is the integer part of α.
The principle is to measure the expected approximation rate of a denoising

algorithm applied to m noisy samples of an image u in the horizon class.
This image u is given by m samples, and these samples are perturbed by
a white noise with variance σ2. A denoising algorithm delivers a corrected
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function û. The risk function of this algorithm is defined as the expectation
Rm(u, û) of the mean square distance of u and û. Given a class of functions
F , the minimax risk is defined by

Rm(F) = inf
û

sup
u∈F

Rm(u, û),

where the inf is taken over all measurable estimators. It can be proved
(Mammen and Tsybakov 1995) that, for α ≥ 1,

Rm(Hα(C)) � m− 2α
α+1 . (1.1)

For example, for α = 2, which corresponds to edges with bounded curvature,

the optimal rate is n− 4
3 . This result gives a kind of yardstick to measure,

if not the performance, at least the theoretical limits of every denoising
algorithm. This analysis has been conducted for several basic denoising
methods, including NL-means. Maleki et al. (2011b) show that the decay
rate is about m−1, close to that obtained with wavelet threshold denoising,
better than rates of elementary filters such as linear convolution, the median

filter and the bilateral filter, which have rates m− 2
3 . The decay rate of

NL-means is nonetheless some distance from the optimal minimax rate of
m−4/3, which is only attained for α = 2 by the wedgelet transform. Maleki,
Narayan and Baraniuk (2011a) show that an anisotropic non-local means
(ANLM) algorithm is near minimax optimal for edge-dominated images
from the horizon class. The idea is to orient optimally rectangular thin
blocks for performing the comparison. The algorithms improve on NL-
means by approximately one decibel.

Other noise models

The present article focuses on algorithms removing white additive noise
from digital optical images. There are other types of noise in other imaging
systems. Therefore, this study cannot account for the burgeoning variety
of patch-based algorithms. Improvements or adaptations of NL-means have
been proposed in cryo-electron microscopy (Darbon et al. 2008), fluorescence
microscopy (Boulanger, Sibarita, Kervrann and Bouthemy 2008), magnetic
resonance imaging (MRI) (Manjón et al. 2008, Coupé et al. 2008, Wiest-
Daesslé et al. 2008, Naegel et al. 2009), multispectral MRI (Manjón, Robles
and Thacker 2007, Buades, Chien, Morel and Osher 2008a), and diffusion
tensor MRI (DT-MRI) (Wiest-Daesslé et al. 2007).

More invariance

Likewise, several papers have explored the degree of invariance that could
be applied to image patches. Zimmer, Didas and Weickert (2008) explore
a rotationally invariant block matching strategy improving NL-means, and
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Ebrahimi and Vrscay (2008a) use cross-scale (i.e., down-sampled) neigh-
bourhoods in the NL-means filter. See also the paper by Maleki et al.
(2011a), mentioned above as reaching better minimax limits, for which it
uses oriented anisotropic patches. Self-similarity has also been explored in
the Fourier domain for MRI, by Mayer et al. (2008).

Fast patch methods

Several papers have proposed fast and extremely fast (linear) NL-means
implementations, using block pre-selection (Mahmoudi and Sapiro 2005,
Bilcu and Vehvilainen 2008), Gaussian KD-trees, to classify image patches
(Adams, Gelfand, Dolson and Levoy 2009), singular value decomposition
(Orchard, Ebrahimi and Wong 2008), the fast Fourier transform, to com-
pute correlation between patches (Wang et al. 2006), statistical arguments
(Coupé, Yger and Barillot 2006), and approximate search (Barnes, Shecht-
man, Finkelstein and Goldman 2009), also used for optical flow.

Other image processing tasks

The non-local denoising principle has also been expanded to most image pro-
cessing tasks: demosaicing, the operation which transforms the ‘R or G or
B’ raw image in each camera into an ‘R and G and B’ image (Buades, Coll,
Morel and Sbert 2009a, Mairal, Elad and Sapiro 2008); movie colourization
(Elmoataz, Lézoray, Bougleux and Ta 2008b, Lézoray, Ta and Elmoataz
2008); image inpainting, by proposing a non-local image inpainting varia-
tional framework with a unified treatment of geometry and texture (Arias,
Caselles and Sapiro 2009; see also Wong and Orchard 2008); zooming, by
a fractal-like technique where examples are taken from the image itself at
different scales (Ebrahimi and Vrscay 2007); movie flicker stabilization, com-
pensating for spurious oscillations in the colours of successive frames (Delon
and Desolneux 2009); and super-resolution, an image zooming method fus-
ing several frames from a video, or several low-resolution photographs, into
a larger image (Protter, Elad, Takeda and Milanfar 2009). The main point
of this super-resolution technique is that it does not give an explicit estimate
of the motion, in fact allowing for multiple motions, since a block can look
like several other patches in the same frame. The very same observation is
made by Ebrahimi and Vrscay (2008b) on devising a super-resolution algo-
rithm, and also by Elad and Datsenko (2007) and Danielyan, Foi, Katkovnik
and Egiazarian (2008). Other classic image non-local applications include
image contrast enhancement, by applying a reverse non-local heat equation
(Buades, Coll and Morel 2006a), and stereo vision, by performing simulta-
neous non-local depth reconstruction and restoration of noisy stereo images
(Heo, Lee and Lee 2007).
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The link to PDEs, variational variants

The relationship of neighbourhood filters to classic local PDEs was dis-
cussed by Buades, Coll and Morel (2006b, 2006c), leading to an adaptation
of NL-means which avoids the staircase effect. Non-local image-adapted
differential operators and non-local variational methods were introduced by
Kindermann, Osher and Jones (2006), who proposed denoising and deblur-
ring by non-local functionals. The general goal of this development is in fact
to give a variational form to all neighbourhood filters, and to give a non-
local form to the total variation as well (Rudin, Osher and Fatemi 1992).
Several articles on deblurring have followed this variational approach: Jung
and Vese (2009), Mignotte (2008) and Gilboa and Osher (2008) for image
segmentation; Boulanger et al. (2008) for fluorescence microscopy; Zhang,
Burger, Bresson and Osher (2009) again for non-local deconvolution; and
Lou, Zhang, Osher and Bertozzi (2008) for deconvolution and tomographic
reconstruction. Elad and Datsenko (2007), in a paper dedicated to another
notoriously ill-posed problem, that of super-resolution, view the non-local
variational principle as an ‘emerging powerful family of regularization tech-
niques’, and propose use of the example-based approach as a ‘new regular-
izing principle in ill-posed image processing problems such as image super-
resolution from several low resolution photographs’. A particular notion of
non-local PDEs has emerged, whose coefficients are in fact image-dependent.
For instance, Elmoataz et al. (2008b) view the image colourization as the
minimization of a discrete partial differential functional on the weighted
block graph. Thus, it can be seen either as a non-local heat equation on the
image, or as a local heat equation on the space of image patches.

The geometric interpretation in a graph of patches

In an almost equivalent framework, Szlam, Maggioni and Coifman (2006)
view the set of patches as a weighted graph, and the weights of the edge be-
tween two patches centred at i and j, respectively, are decreasing functions
of the block distances. Then a graph Laplacian can be calculated on this
graph, seen as the sampling of a manifold, and NL-means can be interpreted
as the heat equation on the set of blocks endowed with these weights. In
the same way, the neighbourhood filter can be associated with a heat equa-
tion on the image graph (Peyré 2009). This approach has been further ex-
tended to a variational formulation on patch graphs by Elmoataz, Lézoray
and Bougleux (2008a). In this same framework Buades et al. (2006a) pro-
posed image contrast enhancement via a non-local reverse heat equation.
Finally, still in this non-local partial differential framework, Bresson and
Chan (2008) extend the Mumford–Shah image segmentation energy to con-
tain a non-local self-similarity term replacing the usual Dirichlet term. The
square of the gradient is replaced by the square of the non-local gradient.
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2. Noise

2.1. Noise models

Most digital images and movies are obtained by a CCD device and the
main source of noise is the so-called shot noise. Shot noise is inherent to
photon counting. The value ũ(i) observed by a sensor at each pixel i is
a Poisson random variable whose mean would be the ideal image. The
standard deviation of this Poisson distribution is equal to the square root
of the number of incoming photons ũ(i) in the pixel captor i during the
exposure time. This noise is the sum of thermal noise and electronic noise,
which are approximately additive and white.
For sufficiently large values of ũ(i) (e.g., ũ(i) > 1000), the normal distri-

bution N (ũ(i),
√
ũ(i)) is an excellent approximation to the Poisson distri-

bution. If ũ(i) is larger than 10, then the normal distribution is still a good
approximation if an appropriate continuity correction is performed, namely new display

P(ũ(i) ≤ a) � P(ũ(i) ≤ a+ 0.5),

where a is any non-negative integer.
Nevertheless, the pixel value is signal-dependent, since its mean and vari-

ance depend on ũ(i). To get back to the classic ‘white additive Gaussian
noise’ used in most research on image denoising, a variance-stabilizing trans-
formation can be applied. When a variable is Poisson-distributed with pa-
rameter ũ(i), its square root is approximately normally distributed with
expected value of about

√
ũ(i) and variance of about 1/4. Under this

transformation, the convergence to normality is faster than for the un-
transformed variable. The most classic variance stabilizing transformation
(VST) is the Anscombe transform (Anscombe 1948), which has the form
f(u0) = b

√
u0 + c.

The denoising procedure with the standard VST procedure follows three
steps:

(1) apply VST to approximate homoscedasticity,

(2) denoise the transformed data,

(3) apply an inverse VST.

Note that the inverse VST is not just an algebraic inverse of the VST, and
must be optimized to avoid bias (Makitalo and Foi 2011).
Consider any additive signal-dependent noisy image, obtained, for exam-

ple, by the Gaussian approximation of a Poisson variable explained above.
Under this approximation, the noisy image satisfies ũ � ũ + g(ũ)n, where
n � N (0, 1). We can search for a function f such that f(ũ) has uniform
standard deviation,

f(ũ) � f(ũ) + f ′(ũ)g(ũ)n.



14 M. Lebrun, M. Colom, A. Buades and J. M. Morel

Forcing the noise term to be constant, f ′(ũ)g(ũ) = c, we get

f ′(ũ) =
c

g(ũ)
,

and integrating gives

f(ũ) =

∫ ũ

0

c dt

g(t)
.

When a linear variance noise model is chosen, this transformation gives
an Anscombe transform. Most classical denoising algorithms can also be
adapted to signal-dependent noise. This requires varying the denoising pa-
rameters at each pixel, depending on the observed value ũ(i). Several de-
noising methods indeed deal directly with the Poisson noise. Wavelet-based
denoising methods (Nowak and Baraniuk 1997, Kolaczyk 1999) propose
adaptation of the transform threshold to the local noise level of the Pois-
son process. Lefkimmiatis, Maragos and Papandreou (2009) have explored
a Bayesian approach without applying a VST. Deledalle, Denis and Tupin
(2011a) argue that for high noise level it is better to adapt NL-means than
to apply a VST. They propose replacing the Euclidean distance between
patches with a likelihood estimate, taking into account the noise model.
This distance can be adapted to each noise model, such as Poisson, Laplace
or gamma noise (Deledalle, Tupin and Denis 2010a), and to more complex
(speckle) noise occurring in radar (SAR) imagery (Deledalle, Tupin and
Denis 2010b).

Nonetheless, dealing with white uniform Gaussian noise makes the dis-
cussion of denoising algorithms far easier. Recent papers on the Anscombe
transform by Makitalo and Foi (2011) (for low-count Poisson noise) and Foi
(2011) (for Rician noise) argue that, when combined with suitable forward
and inverse VST transformations, algorithms designed for homoscedastic
Gaussian noise work just as well as ad hoc algorithms based on signal-
dependent noise models. This explains why, in the rest of this paper, the
noise is assumed to be uniform, white and Gaussian, having previously ap-
plied a VST to the noisy image if necessary. This also implies that we deal
with raw images, namely images as close as possible to the direct camera
output before processing. Most reflex cameras, and many compact cameras
nowadays give access to this raw image.
But there is definitely a need to denoise current image formats, which

have undergone unknown alterations. For example, the JPEG-encoded im-
ages provided by many cameras contain noise that has been altered by
a complex chain of algorithms, ending with lossy compression. Noise in
such images cannot be removed by the current state-of-the-art denoising
algorithms without specific adaptation. The key is to have a decent noise
model. For this reason, the fundamentals of estimating noise from a single
image will be given in Section 2.2.
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2.2. Can noise be estimated from (just) one image?

Compared to the denoising literature, research on noise estimation is a poor
relation. Few papers are dedicated to this topic. Among recent papers we
can mention that of Zoran and Weiss (2009), which argues that images are
scale-invariant and therefore noise can be estimated by deviation from this
assumption. Unfortunately this method is not easily extendable to the esti-
mation of scale-dependent or signal-dependent noise, such as that observed
in most digital images in compressed format. As a rule of thumb, the noise
model is relatively easy to estimate when the raw image comes directly from
the imaging system, in which case the noise model is known and only a few
parameters must be estimated. Efficient methods are described by Foi,
Trimeche, Katkovnik and Egiazarian (2008) and Foi, Alenius, Katkovnik
and Egiazarian (2007) for Poisson and Gaussian noise.
In this short review we will focus on methods that allow for local, signal-

dependent and scale-dependent noise. Indeed, one cannot denoise an image
without knowing its noise model. It might be argued that the noise model
comes from knowledge of the imaging device. Nevertheless, the majority of
images dealt with by the public or by scientists have lost this information.
This loss is caused by format changes of all kinds, which may include re-
sampling, denoising, contrast changes and compression. All these operations
change the noise model and make it signal- and scale-dependent.

The question that arises is: Why are so many researchers working so hard
on denoising models if their corpus of noisy images is so ill-informed?
It is common practice among image processing researchers to add the

noise themselves to noise-free images to demonstrate the performance of
a method. This procedure permits reliable evaluation of denoising perfor-
mance, based on a controlled underlying ‘true’ image. Nevertheless denois-
ing performance may, after all, critically depend on how well we are able
to estimate the noise. Most images are actually encoded with lossy JPEG
formats. Thus, noise is partly removed by the compression itself. Further-
more, this removal is scale-dependent. For example, the JPEG 1985 format
divides the image into a disjoint set of 8 × 8 pixel blocks, computes their
discrete cosine transform (DCT), quantizes the coefficients, and small co-
efficients are replaced by zero. Thus JPEG performs frequency-dependent
thresholding, equivalent to a basic Wiener filter. The same is true for JPEG
2000 (based on the wavelet transform).
In addition, the Poisson noise of a raw image is signal-dependent. The

typical image processing operations, demosaicing, white balance and tone
curve (contrast change) alter this signal-dependency in a way that depends
on the image itself.
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(a) (b)

Figure 2.1. Two examples of the ten noise-free images used
in the tests: (a) computer and (b) traffic.

In short:

• the noise model is different for each image,

• the noise is signal-dependent,

• the noise is scale-dependent,

• the knowledge of each dependence is crucial to proper denoising of
any given image which is not raw, and for which the camera model is
available.

Thus, estimating JPEG noise is a complex and risky procedure, as is well
explained in Liu et al. (2008) and Liu, Freeman, Szeliski and Kang (2006).
Danielyan and Foi (2009) argue that noise can be estimated by using a
denoising algorithm. Again, this procedure is probably too risky for noise
and scale-dependent signals.
This section, following Buades, Colom and Morel (2012a), gives a con-

cise review and a comparison of existing noise estimation methods. The
classic methods estimate white homoscedastic noise only, but they can be
adapted easily to estimation of signal- and scale-dependent noise. To test
the methods, a set of ten noise-free images was used. These noiseless im-
ages were obtained by taking snapshots with a reflex camera of scenes in
good lighting conditions and with a low ISO. This means that the number
of photons reaching each captor was very high, and the noise level there-
fore small. To reduce the noise level further, the average of each block of
5 × 5 pixels was computed, reducing the noise by a factor of 5. Since the
images are RGB, taking the mean of the three channels reduces the noise
by a further factor of

√
3. The (small) initial noise was therefore reduced

by a factor of 5
√
3 � 8.66, and the images can be considered noise-free.

Two images from this noiseless set can be seen in Figure 2.1. The size of
each image is 704 × 469 pixels. For the uniform-noise tests, seven noise
levels were applied to these noise-free images: σ ∈ {1, 2, 5, 10, 20, 50, 80}.



Secrets of image denoising cuisine 17

Figure 2.2. Result of adding white homoscedastic Gaussian noise with
σ ∈ {2, 5, 10, 20, 50, 80} to the noise-free image traffic. It may need a
zoom in to perceive the noise for σ = 2, 5.

Figure 2.2 shows the result of adding white homoscedastic Gaussian noise
with σ ∈ {1, 2, 5, 10, 20, 50, 80} to the noise-free image traffic.
This study of noise estimation proceeds as follows. In Section 2.3 we

review in detail the method proposed by Buades et al. (2012a). This method
has all the features of the preceding methods, so we shall be able to make a
quick review (Section 2.4), followed by an overall comparison of all methods,
at all noise levels. It follows that the percentile method is the most accurate.
Nevertheless, the estimation of very low noise remains somewhat inaccurate,
with some 20% error for noises with standard deviation below 2.
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2.3. The percentile method

The percentile method, introduced in Ponomarenko et al. (2007), is based
on the fact that the histogram of the variances of all blocks in an image is
affected by the edges and textures, but this alteration appears mainly in its
rightmost part. The idea of the percentile method is to avoid the side effect
of edges and textures by taking the variance of a very low percentile of the
block variance histogram, and then to infer from it the real average variance
of blocks containing only noise. This correction multiplies this variance by
a factor that only depends on the choice of the percentile and the block
size. As usual in all noise estimation methods, to reduce the presence of
deterministic tendencies in the blocks, due to the signal, the image is first
high-passed. The commonly used high-pass filters are differential operators
or waveforms. The typical differential operators are directional derivatives,
the Δ (Laplace) operator, its iterations ΔΔ, ΔΔΔ, . . . , the wave forms
are wavelet or DCT coefficients. All of them are implemented as discrete
stencils. Filtering the image with a local high-pass filter operator removes
smooth variations inside blocks, which increases the number of blocks where
noise dominates and on which the variance estimate will be reliable. Ac-
cording to the performance tests, for observed σ̂ < 75 the best operator is
the wave associated to the highest-frequency coefficient of the transformed
2D DCT-II block with support 7× 7 pixels.
The coefficient X̃(6, 6) of the 2D DCT-II of a 7×7 block P of the image is

DCT(6, 6) =

6∑
n1=0

6∑
n2=0

F7(n1)F7(n2)P (n1, n2) cos

[
π

7

(
n1 +

1

2

)
6

]
cos

[
π

7

(
n2 +

1

2

)
6

]
,

where

F7(n) =

⎧⎨
⎩

1√
7

if n = 0,√
2
7 if n ∈ {1, . . . , 6}.

Therefore, the values of the associated discrete filter are

F7(n1)F7(n2) cos

[
π

7

(
n1+

1

2

)
6

]
cos

[
π

7

(
n2+

1

2

)
6

]
, n1, n2 ∈ {0, 1, . . . , 6}.

These values must of course be normalized in order to preserve the standard
deviation of the data, by dividing each value by the root of the sum of the
squared filter values.
The percentile method computes the variances of overlapping w×w blocks

in the high-pass filtered image. The means of the same blocks are computed
from the original image (before the high-pass). These means are classified
into a disjoint union of variable intervals, in such a way that each interval
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Table 2.1. Percentile method results for eleven noiseless images with white
homoscedastic Gaussian noise added. The last image is simply flat. The real noise
variance is σ; the estimated value is σ̂. The noise estimation error is remarkably
low for medium and high noise. It is nevertheless larger for very low noise (σ = 2
noise is not visible with the naked eye). Indeed, most photographed objects have
some micro-texture everywhere (except perhaps in blue sky, which can be fully
homogeneous). Such micro-textures are widespread and hardly distinguishable
from noise. The parameters of the method are a 0.5% percentile, a 21× 21 pixel
block size, and the DCT has support 7× 7. These parameters are valid if σ̂ < 75.
If σ̂ ≥ 75, the best parameters are a 50% percentile, a 21× 21 pixel block size and
a DCT with support 3× 3. Estimating the best parameters therefore requires a
first estimate followed by a second one with the correct parameters.

Image / σ̂ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.34 2.33 5.26 10.36 20.30 49.87 79.96
building1 1.12 2.17 5.24 10.14 20.48 50.19 80.45
computer 1.22 2.20 5.06 10.36 20.03 50.28 80.34
dice 1.11 2.00 5.01 10.03 20.02 49.95 79.79
flowers2 1.08 2.07 5.10 9.84 20.07 49.87 79.80
hose 1.15 2.13 5.10 10.15 20.06 49.99 79.99
leaves 1.51 2.43 5.38 10.29 19.82 50.07 80.04
lawn 1.57 2.50 5.57 10.48 20.42 50.05 79.92
stairs 1.42 2.27 5.19 10.15 19.96 49.92 79.93
traffic 1.25 2.35 5.33 10.61 20.64 50.10 80.29
flat image 0.99 2.00 5.09 9.77 19.91 50.12 79.73

contains (at least) 42 000 elements. These measurements permit, for each
interval of means, construction of a histogram of block variance with at least
42 000 samples, having their means in the interval. In each such variance
histogram the percentile value is computed. It was observed that, for ob-
served σ̂ < 75 and large images, the best results are given by the percentile
p = 0.5%, a block size w = 21 and a 7× 7 support for the DCT transform.
If σ̂ ≥ 75, the percentile that should be used is the median, the block is still
21× 21, but the support of the DCT should be 3× 3.
This percentile value is of course lower than the real average block vari-

ance, and must be corrected by a multiplicative factor. This correction only
depends on the percentile, block size and on the chosen high-pass filter.
Nevertheless, the constant is not easy to calculate explicitly, but can be
learned from simulations. For the 0.5% percentile, 21× 21 pixel blocks and
the DCT pre-filter operator with support 7 × 7, the empirical factor de-
rived from pure noise images was found to be 1.249441884. In summary, to
each interval of means, a standard deviation is associated. The association
mean→standard deviation yields a ‘noise curve’ associated with the image.
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Algorithm 2 Percentile method algorithm

PERCENTILE. Returns a list that relates the value of the image signal
with its noise level.
Input. Noisy image ũ; number of bins b; block dimensions w × w; per-
centile p; filter iterations filt.
Output. List made of pairs (mean, noise standard deviation), (M,S),
for each bin of grey-scale value.

h = FILTER(ũ). Apply high-pass filter to the image.
a, v =MEAN FILTERED VARIANCE(ũ, h, w). Obtain the list of the
block averages (in the original image ũ) and of the variances (of the filtered
image h) for all w × w blocks.
Divide the block mean value list a into intervals (bins), having all the same
number of elements. For each interval keep the corresponding values in v.

S = ∅; M = ∅.
for each bin do
v = Per(bin, p). Get the p-percentile v of the block variances whose
means belong to this bin.
m = Mean[Per(bin, p)]. Get the mean of the block associated to that
percentile.
S ← √

v. Store the standard deviation σ̂.
M ← m. Store mean.

end for
Sc = ∅. Corrected values.
for s ∈ S do
Apply correction C according to p, w and filter operator used.
s = Cs. Correct direct estimate.
Sc ← s.

end for
for k = 1 . . . filt do

Sc[k] = FILTER(Sc[k], filt). Filter the noise curve filt times.
end for

For each observed grey-scale value in the image, this noise curve predicts
the most likely underlying standard deviation due to noise. Optionally,
the noise curve obtained from real images can be filtered. Indeed, it may
present some peaks when variances measured for a given grey-scale interval
belong to a highly textured region. To filter the curve, the points that are
above the segment that joins the points on the left and on the right are
back-projected onto that segment. In general, no more than two filtering
iterations are needed. For the comparative tests presented here, the curves
were not filtered at all.
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The pseudo-code for the percentile method is given in Algorithm 2, and
the results for the white homoscedastic Gaussian noise in Table 2.1. When
the image is tested for white homoscedastic Gaussian noise, only one interval
for all grey-scale means is used, whereas in the signal-dependent noise case,
the grey-scale interval is divided into seven bins.

The percentile method with learning
The percentile method with learning is essentially the same algorithm ex-
plained in Section 2.3, with the difference that it tries to compensate the
bias caused by edges and micro-texture in the image by learning a rela-
tionship between observed values σ̂ and noise real values σ. The difference
value f(σ) = σ̂ − σ is called the correction, that is, the value that must
be subtracted from the direct estimate σ̂ without correction to get the fi-
nal estimate (which we shall still call σ̂ ≈ σ). These corrections depend
on the structure of real images. A mosaic of several noise-free images is
shown in Figure 2.3. Simulated noise of standard deviations σ = 0, . . . , 100
was added to these noiseless images. These images were selected randomly
from a large database, to be statistically representative of the natural world,
with textures, edges, flat regions, dark and bright regions. The correction
learned with these images is intended to be an average correction that works
for a broad range of natural images. It should of course be adapted to any
particular set of images. Furthermore, the correction depends on the size of
the image, and must be learned for each size.
When the observed noise level is high enough (σ̂ > 10 for pixel intensities

u ∈ {0, 1, . . . , 255}), the image becomes dominated by noise, that is, most of
the variance measured is due to the noise, and not due to micro-textures and
edges. It is therefore convenient to avoid applying the learned corrections
to direct estimates σ̂ when σ̂ > 10. Thus, for σ̂ > 10, only the percentile
correction is applied. Table 2.2 shows the σ̂ values estimated with the
percentile with learning method. The correction learned with the mosaic is
only applied for σ ∈ {1, 2, 5, 10}.

2.4. A crash course on all other noise estimation methods

It is easier to explain the other methods after having explained one method
in detail, as above, namely the percentile method. Most noise estimation
methods share the following features.

• They start by applying a high-pass filter, which concentrates the image
energy on boundaries, while the noise remains spatially homogeneous.

• They compute the energy for many blocks extracted from this high-
passed image.

• They estimate the noise standard deviation from the values of the
standard deviations of the blocks.
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Table 2.2. Percentile method with learning results, with white homoscedastic
Gaussian noise added. The correction learned with the mosaic is only applied for
σ ∈ {1, 2, 5, 10}. This method, being local on blocks, extends immediately to
estimation of signal-dependent noise, and the performance is similar (Buades
et al. 2012a).

Image / σ̂ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.15 2.11 5.05 10.26 20.06 49.68 80.05
building1 0.95 1.97 5.00 10.42 20.32 49.99 80.27
computer 1.04 2.00 4.88 10.39 20.13 50.29 80.16
dice 0.91 1.84 4.81 10.01 19.90 49.76 79.60
flowers2 0.92 1.88 4.87 9.47 20.00 49.48 79.67
hose 0.99 1.93 4.89 10.08 19.97 49.73 79.71
leaves 1.36 2.26 5.17 10.28 20.03 49.80 79.92
lawn 1.35 2.29 5.36 10.37 20.26 50.07 79.88
stairs 1.20 2.10 4.95 10.11 20.10 49.92 79.86
traffic 1.04 2.06 5.06 10.75 20.64 49.91 80.05
flat image 0.84 1.82 4.84 10.02 20.13 50.13 79.44

Figure 2.3. Mosaic used to learn the correction values in the percentile method.
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• To avoid blocks contaminated by the underlying image, a statistics
robust to (many) outliers must be applied. The methods therefore use
the flattest blocks, which belong to a (low) percentile of the histogram
of standard deviations of all blocks.

Table 2.3 shows a classification of the methods according to the pre-
ceding criteria. The ‘High-pass’ column shows the choice of high-pass fil-

ter, which can be a discrete differential operator of order two
(

∂2

∂x∂y

)
in

the estimation of image noise variance (EINV) method (Rank, Lendl and
Unbehauen 1999). It is obtained as a composition of two forward discrete
differences. Then we have a discrete Laplacian Δ (Olsen 1993), obtained
as the difference between the current pixel value and the average of a dis-
crete neighbourhood, an order-three operator (a difference Δ1 −Δ2 of two
different discretizations of the Laplacian (Immerkaer 1996)), a wave associ-
ated to a DCT coefficient (Buades et al. 2012a), and sometimes a non-linear
discrete differential operator as in the median method (Olsen 1993), which
uses the difference between the image and its median value on a 3 × 3
block, thus equivalent to the curvature operator curv. The high-pass fil-
ter was previously applied to all pixels of the image. In the case of the
DCT (Ponomarenko et al. 2003), the DCT is applied to a block centred
on the reference pixel, and the highest-frequency coefficients are kept, for
example DCT(6, 7), DCT(7, 6), DCT(7, 7). The most primitive methods,
the block method (Lee 1981, Mastin 1985), the pyramid method (Meer, Jo-
lion and Rosenfeld 1990) and the scatter method (Lee and Hoppel 1989),
do not apply any high-pass filter. Nevertheless, since they compute block
variances, they implicitly remove the mean from each block, which amounts
to applying a high-pass filter of Laplacian type.
The ‘Block’ column gives the size of the block on which the standard

deviation of the high-passed image is computed, which varies from 1 to
21. The pyramid method (Meer et al. 1990) uses standard deviations of
blocks of all sizes and is unclassifiable. Two methods, FNVE (Immerkaer
1996) and the gradient method (Bracho and Sanderson 1985, Voorhees and
Poggio 1987), do not compute any block standard deviation of the high-
passed image before the final estimation.
The ‘Percentile’ column gives the value of the (low) percentile on which

the block standard deviation are computed. When the slot contains ‘all’,
this means that the estimator takes into account all the values.
The ‘Estimator’ column characterizes the estimator, for which there are

several variants. The three compared percentile methods (Buades et al.
2012a) use a very low percentile 0.5% of the block standard deviations. The
average, median (Olsen 1993) and block methods (Lee 1981, Mastin 1985)
use a 1% percentile of the gradient to select the blocks for which variance is
kept, while the high-pass image is a higher-order differential operator. The
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Table 2.3. Table summarizing all methods. ‘Block deviation’ means standard deviation of block; ‘at percentile 1%’ means that
the chosen value is the one at which the 1% percentile is attained; ‘3-DCT’ means the three highest-frequency coefficients,
namely DCT(6, 7), DCT(7, 6), DCT(7, 7); ‘DCT 7× 7’ means the DCT wave associated to the highest-frequency coefficient of
the 7× 7 pixel support of the DCT-II transform of the block; MAD stands for median of absolute deviation (it is applied to
the three DCT coefficients for all blocks). The methods belong to three classes. The first main class (rows 1–5) does high-pass
+ standard deviation of blocks + low percentile. The second class (rows 6–7) replaces the percentile by a mode of the
high-pass filter histogram. Rows 8–11 are more primitive and do a simple mean of the block variances of the high-pass filtered
image. The last method is unclassifiable, and performs poorly.

Method Source High-pass Block Estimator Percentile

percentile Buades et al. (2012a), DCT 7× 7 21 block deviation at percentile 0.5%
with learning Ponomarenko et al. (2007)

percentile Buades et al. (2012a), DCT 7× 7 21 block deviation at percentile 0.5%
Ponomarenko et al. 2007)

block Lee (1981), Mastin (1985) none 7 mean of block deviation 1%

average Olsen (1993) Δ 3 mean of block deviation 1% of gradient histogram

median Olsen (1993) curv 3 mean of block deviation 1% of gradient histogram

scatter Lee & Hoppel (1989) none 8 block deviation at block deviation mode

gradient Bracho & Sanderson (1985), ∇ 1 |∇| mode all
Voorhees & Poggio (1987)

EINV Rank, Lendl & Unbehauen (1999) ∂2

∂x∂y
3 deconvolution of block dev. all

FNVE Immerkaer (1996) Δ1−Δ2 1 RMS all

DCT-MAD Donoho & Johnstone (1995) 3-DCT 8 MAD of 3 DCT coefficients all

DCT-mean Ponomarenko et al. (2003) 3-DCT 8 mean of variances all

pyramid Meer, Jolion & Rosenfeld (1990) none 2L block deviation complex
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Table 2.4. White homoscedastic Gaussian noise RMSE results for all methods
and for varying σ. The pyramid tests were omitted, being incomplete. As they
are obtained as an average over many noiseless images, the differences have been
checked to be statistically significant. It is also clear that the ranking of the
compared methods may vary with the amount of noise. Nevertheless, the ranks of
methods for noises larger than 20 are irrelevant, because all of them work at an
acceptable level of precision. Thus, this ranking is mainly relevant to low noise
levels, σ = 1, 2, 5, 10.

Method σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

percentile 0.309 0.276 0.265 0.315 0.293 0.130 0.229

percentile learning 0.182 0.152 0.157 0.364 0.240 0.248 0.270

block 1.093 0.961 0.949 1.056 0.984 0.922 0.840
average 2.669 2.556 2.375 2.165 1.771 1.227 0.874
median 2.841 2.762 2.640 2.460 2.110 1.684 1.502
scatter 4.533 4.013 3.141 2.290 1.436 1.488 1.862
gradient 1.887 1.851 1.474 1.393 1.354 1.234 2.949
EINV 1.406 1.159 0.924 0.842 0.656 0.450 0.557
FNVE 2.738 2.231 1.357 0.767 0.397 0.196 0.225
DCT-MAD 0.858 0.721 0.533 0.356 0.239 0.296 0.583
DCT-mean 1.895 1.469 0.837 0.462 0.316 0.355 0.726

pyramid method (Meer et al. 1990) is quite complex, but uses all standard
deviations of all possible blocks in the image. We do not provide the detailed
algorithm. The FNVE method (Immerkaer 1996) in fact has no outlier
elimination, taking simply the root mean square of all samples of the high-
passed image.
Rather than using a percentile of the block variance histogram followed

by a compensation factor, several methods extract a mode, considering that
the mode (peak of the histogram variance) must correspond to the noise.
The gradient method (Bracho and Sanderson 1985, Voorhees and Poggio
1987) sets σ̂ to be the peak of the modulus of the gradient histogram.
The scatter method (Lee and Hoppel 1989) also computes a mode when
estimating white homoscedastic noise, namely the value at which the peak
of the block standard deviations histogram is attained. The EINV method
(Rank et al. 1999) does a kind of iterative deconvolution of the histogram
of block variances and also extracts its mode.
All the values obtained by these methods are proportional to the noise

standard deviation when the image is white noise. Thus the final step,
not mentioned in the table, is to apply a correction factor to get the final
estimated noise standard deviation, as explained in the percentile method
(Section 2.3).
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The comparison of the methods which use the highest DCT coefficients,
DCT-mean (Ponomarenko et al. 2003) and DCT-MAD (Donoho and John-
stone 1995), where MAD stands for median of absolute deviation, clearly
shows the advantage of a robust estimator: the estimate is obtained by aver-
aging the three medians of absolute deviation of the three highest-frequency
DCT coefficients for all blocks.
The ultimate choice of method is of course steered by the RMSE, that is,

the root mean square error between the estimated value of σ and σ itself,
taken over a representative set of images. As Table 2.4 shows, the ordering
of methods by their RMSE is consistent and points to the percentile method
as the best one. This method is further improved by learning. A good point
justifying all methods is that they perform satisfactorily for all large noise
values, down to σ = 20. But, with the exception of the percentile method
with learning, no method performs acceptably for σ < 5.

3. Four denoising principles

In this section we will review the main algorithmic principles proposed for
noise removal. All of them of course use a model for the noise, which in our
study will always be Gaussian white noise. More interestingly, each prin-
ciple implies a model for the ideal noiseless image. The Bayesian principle
is coupled with a Gaussian (or a mixture of Gaussians) model for noiseless
patches. Transform thresholding assumes that most image coefficients are
high and sparse in a given well-chosen orthogonal basis, while noise remains
white (and therefore with homoscedastic coefficients in any orthogonal ba-
sis). Sparse coding assumes the existence of a dictionary of patches on which
most image patches can be decomposed with a sparse set of coefficients. Fi-
nally the averaging principle relies on an image self-similarity assumption.
Thus four considered denoising principles are:

• Bayesian patch-based methods (Gaussian patch model),

• transform thresholding (sparsity of patches in a fixed basis),

• sparse coding (sparsity on a learned dictionary),

• pixel averaging and block averaging (image self-similarity).

As we will see in this review, the current state-of-the-art denoising recipes
are in fact a smart combination of all these ingredients.

3.1. Bayesian patch-based methods

Let u be the noiseless ideal image, and let ũ be the noisy image corrupted
with Gaussian noise of standard deviation σ, so that

ũ = u+ n. (3.1)
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Then the conditional distribution P(ũ | u) is given by

P(ũ | u) = 1

(2πσ2)
M
2

e−
‖u−ũ‖2

2σ2 , (3.2)

where M is the total number of pixels in the image.
In order to compute the probability of the original image given the de-

graded one, P(u | ũ), we need to introduce a prior on u. In the first models
(Geman and Geman 1984), this prior was a parametric image model de-
scribing the stochastic behaviour of a patch around each pixel by a Markov
random field, specified by its Gibbs distribution. A Gibbs distribution for
an image u takes the form

P(u) =
1

Z
e−E(u)/T ,

where Z and T are constants and E is called the energy function, and is
given by

E(u) =
∑
C∈C

VC(u),

where C denotes the set of cliques associated with the image and VC is
a potential function. The maximization of the a posteriori distribution is
given by Bayes’ formula

argmax
u

P(u | ũ) = argmax
u

P(ũ | u)P(u),

which is equivalent to the minimization of − logP(u | ũ),

argmin
u

‖u− ũ‖2 + 2σ2

T
E(u).

This energy is thus a sum of local derivatives of pixels in the image, and
is therefore equivalent to a classical Tikhonov regularization (Geman and
Geman 1984, Brémaud 1999).
Recent Bayesian methods have abandoned as too simplistic the global

patch models formulated by an a priori Gibbs energy. Instead, the methods
build local non-parametric patch models learned from the image itself, usu-
ally as a local Gaussian model around each given patch, or as a Gaussian
mixture. The term ‘patch model’ is now preferred to the terms ‘neigh-
bourhood’ or ‘clique’, previously used for the Markov field methods. In
the non-parametric models the patches are larger, usually 8 × 8, while the
cliques are often confined to 3× 3 neighbourhoods. Given a noiseless patch
P of u with dimension κ × κ, and an observed noisy version P̃ of P , the
same model gives

P(P̃ |P ) = c · e−
‖P̃−P‖2

2σ2 , (3.3)

by the independence of noise pixel values, where P and P̃ are regarded as
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vectors with κ2 components and ‖P‖ denotes the Euclidean norm of P , i.e.,
the Frobenius norm on κ × κ matrices. Knowing P̃ , our goal is to deduceplease check

P by maximizing P(P |P̃ ). Using Bayes’ rule, we can compute this last
conditional probability as

P(P |P̃ ) =
P(P̃ |P )P(P )

P(P̃ )
. (3.4)

Given P̃ , this formula can in principle be used to deduce the patch P maxi-
mizing the right term, viewed as a function of P . This is only possible if we
have a probability model for P , and these models will generally be learned
from the image itself, or from a set of images. For example, Chatterjee and
Milanfar (2012) apply a clustering method to the set of patches of a given
image, and Zoran and Weiss (2011) apply it to a huge set of patches ex-
tracted from many images. Each cluster of patches is thereafter treated as
a set of Gaussian samples. This permits us to associate the likeliest cluster
with each observed patch, and then to denoise it with a Bayesian estimate
in this cluster. A more direct way to build a model for a given patch P̃
is to group the patches similar to P̃ in the image. Assuming that these
similar patches are samples of a Gaussian vector yields a standard Bayesian
restoration (Lebrun, Buades and Morel 2011). We shall now discuss this
particular case, where all observed patches are noisy.
Why Gaussian? As usual when we have several observations but no par-

ticular knowledge of the form of the probability density, a Gaussian model
is adopted. In the case of the patches Q, similar to a given patch P , the
Gaussian model has some pertinence, as it is assumed that many contin-
gent random factors explain the difference between Q and P : other details,
e.g., texture, slight lighting changes, shadows. The Gaussian model, to-
gether with a combination of many such random and independent factors,
is heuristically justified by the central limit theorem. Thus, for good or
ill, assume that the patches Q similar to P follow a Gaussian model with
(observable, empirical) covariance matrix CP and (observable, empirical)
mean P . This means that

P(Q) = c · e−
(Q−P )TC−1

P
(Q−P )

2 . (3.5)

From (3.2) and (3.4), for each observed P̃ we obtain the following equivalent
problems:

max
P

P(P |P̃ ) ⇔ max
P

P(P̃ |P )P(P )

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P )TC−1

P
(P−P )

2

⇔ min
P

‖P − P̃‖2
σ2

+ (P − P )TC−1
P (P − P ).
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This expression does not yield an algorithm. Indeed, the noiseless patch
P and the patches similar to P are not observable. Nevertheless, we can
observe the noisy version P̃ and compute the patches Q̃ similar to P̃ . An
empirical covariance matrix can therefore be obtained for the patches Q̃
similar to P̃ . Furthermore, using (3.1) and the fact that P and the noise n
are independent,

CP̃ = CP + σ2I, EQ̃ = P . (3.6)

Note that these relations assume a search for patches similar to P̃ , at
a sufficiently large distance to include all patches similar to P but not so
large that it contains outliers. Thus the safe strategy is to search for similar
patches at a distance slightly larger than the expected distance caused by
noise. If the above estimates are correct, our MAP (maximum a posteri-
ori estimation) problem finally reduces via (3.6) to the following feasible
minimization problem:

max
P

P(P |P̃ ) ⇔ min
P

‖P − P̃‖2
σ2

+ (P − P̃ )T (CP̃ − σ2I)−1(P − P̃ ).

Differentiating this quadratic function with respect to P and equating to
zero yields

P − P̃ + σ2(CP̃ − σ2I)−1(P − P̃ ) = 0.

Taking into account that I+σ2(CP̃ −σ2I)−1 = (CP̃ −σ2I)−1CP̃ , this yields

(CP̃ − σ2I)−1CP̃P = P̃ + σ2(CP̃ − σ2I)−1P̃ ,

and therefore

P = C−1
P̃

(CP̃ − σ2I)P̃ + σ2C−1
P̃

P̃

= P̃ + σ2C−1
P̃

(P̃ − P̃ )

= P̃ +
[
I− σ2C−1

P̃

]
(P̃ − P̃ )

= P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ).

Thus we have proved that a restored patch P̂1 can be obtained from the
observed patch P̃ by the one step estimate

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ), (3.7)

which resembles a local Wiener filter.
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Remark. It is easily deduced that the expected estimation error is

E‖P − P̂1‖2 = Tr

[(
C−1

P +
I

σ2

)−1]
.

Sections 5.2–5.6 and 5.9 will examine no less than six Bayesian algorithms
deriving patch-based denoising algorithms from variants of (3.7). The first
question, when looking at this formula, is obviously how the matrix CP̃ can
be learned from the image itself. Each method proposes a different approach
to learning the patch model.
Of course, other non-Gaussian Bayesian models are possible, depending

on patch density assumptions. For example, Raphan and Simoncelli (2010)
assume a local exponential density model for the noisy data, and give a
convergence proof for the optimal (Bayes) least-squares estimator as the
amount of data increases.

3.2. Transform thresholding

Classical transform coefficient thresholding algorithms, such as the DCT or
wavelet denoising, use the observation that images are faithfully described
by keeping only their large coefficients in a well-chosen basis. By keeping
these large coefficients and setting to zero the small ones, noise should be
removed and image geometry kept. By any orthogonal transform, the co-
efficients of a homoscedastic de-correlated noise remain de-correlated and
homoscedastic. For example, the wavelet or DCT coefficients of Gaussian
white noise with variance σ2 remain Gaussian white noise with variance σ2.please update

Thus, a threshold on the coefficients at, say, 3σ removes most of the coef-
ficients that are only due to noise. (The expectation of these coefficients is
assumed to be zero.) The sparsity of image coefficients in certain bases is
only an empirical observation. It is nevertheless invoked in most denoising
and compression algorithms, which rely essentially on coefficient thresholds.
The established image compression algorithms are based on the DCT (in
the JPEG 1992 format) or, like the JPEG 2000 format (Antonini, Barlaud,
Mathieu and Daubechies 1992), on biorthogonal wavelet transforms (Cohen,
Daubechies and Feauveau 1992).
Let B = {Gi}Mi=1 be an orthonormal basis of RM , where M is the number

of pixels of the noisy image Ũ (regarded here as a ‘long’ vector). Then we
have

〈Ũ , Gi〉 = 〈U,Gi〉+ 〈N,Gi〉, (3.8)

where Ũ , U and N denote, respectively, the noisy, original and noise im-
ages. We always assume that the noise values N(i) are uncorrelated and
homoscedastic with zero mean and variance σ2. The following calculation
shows that the noise coefficients in the new basis remain uncorrelated, with
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zero mean and variance σ2:

E[〈N,Gi〉 〈N,Gj〉] =
M∑

r,s=1

Gi(r)Gj(s)E[w(r)w(s)]

= 〈Gi, Gj〉σ2 = σ2δ[j − i].

Each noisy coefficient 〈Ũ , Gi〉 is modified independently, and then the so-
lution is estimated by the inverse transform of the new coefficients. Noisy
coefficients are modified by multiplying by an attenuation factor a(i), and
the inverse transform yields the estimate

DŨ =

M∑
i=1

a(i) 〈Ũ , Gi〉Gi. (3.9)

D is also called a diagonal operator. Noise reduction is achieved by attenu-
ating or setting to zero small coefficients of order σ, assumed to be due to
noise, while the original signal is preserved by keeping the large coefficients.
This intuition is corroborated by the following result.

Theorem 3.1. The operatorDinf minimizing the mean square error (MSE),

Dinf = argmin
D

E{‖U −DŨ‖2},

is given by the family {a(i)}i, where

a(i) =
|〈U,Gi〉|2

|〈U,Gi〉|2 + σ2
, (3.10)

and the corresponding expected MSE is

E{‖U −Dinf Ũ‖2} =
M∑
i=1

|〈U,Gi〉|2σ2

|〈U,Gi〉|2 + σ2
. (3.11)

The previous optimal operator attenuates all noisy coefficients. If one re-
stricts a(i) to be 0 or 1, one gets a projection operator. In that case, a
subset of coefficients is kept, and the rest are set to zero. The projection
operator that minimizes the MSE under that constraint is obtained using

a(i) =

{
1 |〈U,Gi〉|2 ≥ σ2,

0 otherwise,

and the corresponding MSE is

E{‖U −Dinf Ũ‖2} =
∑
i

min(|〈U,Gi〉|2, σ2). (3.12)

A transform thresholding algorithm therefore keeps the coefficients with a
magnitude larger than the noise, while setting the zero the rest. Note that
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both above-mentioned filters are ‘ideal’, or ‘oracular’ operators. Indeed,
they use the coefficients 〈U,Gi〉 of the original image, which are not known.
These algorithms are therefore usually called oracle filters. We shall discuss
their implementation in the following subsections. For the moment, we shall
introduce the classical thresholding filters, which approximate the oracle
coefficients by using the noisy ones.
As is classical, the optimal operator (3.10) is called the Fourier–Wiener

filter when B is a Fourier basis. By the use of the Fourier basis, global
image characteristics may prevail over local ones and create spurious peri-
odic patterns. To avoid this effect, the bases are usually more local, of the
wavelet or block DCT type.

Sliding-window DCT

The local adaptive filters were introduced by Yaroslavsky and Eden (2003)
and Yaroslavsky (1996). The noisy image is analysed in a moving window,
and at each position of the window its DCT spectrum is computed and
modified by using the optimal operator (3.10). Finally, an inverse transform
is used to estimate only the signal value in the central pixel of the window.
This method is called the empirical Wiener filter, because it approximates

the unknown original coefficients 〈u,Gi〉 by using the identity

E|〈Ũ , Gi〉|2 = |〈U,Gi〉|2 + σ2,

and thus replacing the optimal attenuation coefficients a(i) with the family
{α(i)}i,

α(i) = max

{
0,

|〈Ũ , Gi〉|2 − cσ2

|〈Ũ , Gi〉|2

}
.

where c is a parameter, usually larger than one.

Wavelet thresholding

Let B = {Gi}i be a wavelet orthonormal basis (Mallat 1999). The so-called
hard wavelet thresholding method (Donoho and Johnstone 1994) is a (non-
linear) projection operator setting to zero all wavelet coefficients smaller
than a certain threshold. According to the expression of the MSE of a
projection operator (3.12), the performance of the method depends on the
ability of the basis to approximate the image U by a small set of large
coefficients. There has been a strenuous search for wavelet bases adapted
to images (Pennec and Mallat 2003).
Unfortunately, image features, just like noise, can also cause many small

wavelet coefficients, which are nevertheless lower than the threshold. The
dramatic cancellation of wavelet (or DCT) coefficients near the image edges
creates small oscillations, a Gibbs phenomenon often called ringing. Spu-
rious wavelets can also be seen in flat parts of the restored image, caused
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by the undue cancellation of some of the small coefficients. These artifacts
are sometimes called wavelet outliers (Durand and Nikolova 2003). These
undesirable effects can be partially avoided with the use of soft thresholding
(Donoho 1995), for example,

α(i) =

{ 〈Ũ ,Gi〉−sgn(〈Ũ ,Gi〉)μ
〈Ũ ,Gi〉 |〈Ũ , Gi〉| ≥ μ,

0 otherwise.

The continuity of this soft thresholding operator reduces the Gibbs oscilla-
tion near image discontinuities.
Several orthogonal bases adapt better to image local geometry and discon-

tinuities than wavelets, particularly the ‘bandlets’ (Pennec and Mallat 2003)
and ‘curvelets’ (Starck, Candès and Donoho 2002). This tendency to adapt
the transform locally to the image is accentuated by the methods adapting
a different basis to each pixel, or selecting a few elements or ‘atoms’ from a
huge patch dictionary to linearly decompose the local patch on these atoms.
This perspective is sketched in the next subsection, on sparse coding.

3.3. Sparse coding

Sparse coding algorithms learn a redundant set D of vectors called a dic-
tionary, and choose the right atoms to describe the current patch.
For a fixed patch size, the dictionary is encoded as a matrix of size κ2 ×

ndict, where κ2 is the number of pixels in the patch and ndict ≥ κ2. The
dictionary patches, which are columns of the matrix, are normalized (in
the Euclidean norm). This dictionary may contain the usual orthogonal
bases (e.g., discrete cosine transform, wavelets, curvelets), but also patches
extracted (or learned) from clean images, or even from the noisy image itself.
The dictionary permits computation of a sparse representation α of each

patch P , where α is a coefficient vector of size n2
dict satisfying P ≈ Dα.

This sparse representation α can be obtained with an ORMP (orthogonal
recursive matching pursuit: Cotter, Adler, Rao and Kreutz-Delgado (1999)).
The ORMP gives an approximate solution to the (NP-complete) problem

argmin
α

‖α‖0 such that ‖P −Dα‖22 ≤ κ2(Cσ)2, (3.13)

where ‖α‖0 refers to the l0-norm of α, i.e., the number of non-zero co-
efficients of α. This last constraint brings in a new parameter C. This
coefficient multiplying the standard deviation σ guarantees that, with high
probability, white Gaussian noise of standard deviation σ on κ2 pixels has
an l2-norm lower than κCσ. The ORMP algorithm is introduced in Cotter
et al. (1999). Details of how this minimization can be achieved are given in
Section 5.7 on the K-SVD algorithm. (It has been argued that the l0-norm
of the set of coefficients can be replaced by the much easier l1 convex norm.
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This remark is the starting point of the compressive sampling method; see
Candès and Wakin (2008).)
In K-SVD and other current sparse coding algorithms, the previous de-

noising strategy is used as the first step of a two-step algorithm. The selec-
tion step is iteratively combined with an update of the dictionary, taking
into account the image and the sparse codifications already computed. More
details will be found in Section 5.7.
Several of our referees have objected to considering sparse coding and

transform thresholding as two different denoising principles. As models,
both indeed assume the sparsity of patches in some well-chosen basis. Nev-
ertheless, some credit must be given to historical development. The notion
of sparsity is associated with a recent and sophisticated variational prin-
ciple, where the dictionary and the sparse decompositions are computed
simultaneously. Transform thresholding methods existed before the term
sparsity was even used. They simply pick a local wavelet or DCT basis and
threshold the coefficients. In both algorithms, the sparsity is implicitly or
explicitly assumed. But transform threshold methods use orthogonal bases,
while the dictionaries are redundant. Furthermore, the algorithms are very
different.

3.4. Image self-similarity leading to pixel averaging

The principle of many denoising methods is quite simple: they replace the
colour of a pixel with an average of the colours of nearby pixels. It is a
powerful and basic principle, when applied directly to noisy pixels with
independent noise. If m pixels with the same colour (up to the fluctuations
due to noise) are averaged, the noise is reduced by a factor of

√
m.

The MSE between the true (unknown) value u(i) of a pixel i and the
value estimated by a weighted average of pixels j is

E

∥∥∥∥u(i)−∑
j

w(j)ũ(j)

∥∥∥∥
2

= E

∥∥∥∥∑
j

w(j)(u(i)− u(j))−
∑
j

w(j)n(j)

∥∥∥∥
2

=
∑
j

w(j)2(u(i)− u(j))2 + σ2
∑
j

w(j)2, (3.14)

where we assume that the noise, the image and the weights are independent
and that the weights {w(j)}j satisfy

∑
jw(j) = 1.

The above expression implies that the performance of the averaging de-
pends on the ability to find many pixels j with an original value u(j) close to
u(i). Indeed, the variance term

∑
jw(j)

2 is minimized by a flat distribution

probability w(j) = 1/m, where m is the number of averaged pixels. The first
term measures the bias caused by the fact that pixels do not have exactly
the same deterministic value. Each method must find a trade-off between
the bias and variance terms of equation (3.14).
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Averaging spatially close pixels

An initial rather trivial idea is to average the closest pixels to a given pixel.
This amounts to convolving the image with a fixed radial positive kernel.
The archetype of such kernels is the Gaussian kernel.
The convolution of the image with a Gaussian kernel ensures a fixed

noise standard deviation reduction factor that equals the kernel standard
deviation. But nearby pixels do not necessarily share their colours. Thus,
the first error term in (3.14) can quickly increase. This approach is only
valid for pixels for which nearby pixels have the same colour, that is, it only
works inside the homogeneous image regions but not for their boundaries.

Averaging pixels with similar colours

A simple solution to the above-mentioned dilemma is given by the sigma
filter (Lee 1983) or neighbourhood filter (Yaroslavsky 1985). These filters
average only nearby pixels of i having also a similar colour value. We shall
denote these filters by YNF (Yaroslavsky neighbourhood filter). Their for-
mula is simply

YNFh,ρ ũ(i) =
1

C(i)

∑
j∈Bρ(i)

ũ(j) e−
|ũ(i)−ũ(j)|2

h2 , (3.15)

where Bρ(i) is a ball of centre i and radius ρ > 0, h > 0 is the filtering
parameter, and

C(i) =
∑

j∈Bρ(i)

e−
|ũ(j)−ũ(i)|2

h2

is the normalization factor. The parameter h controls the degree of colour
similarity that needs to be taken into account in the average. According
to the Bayesian interpretation of the filter we should have h = σ. The
filter (3.15), due to Yaroslavsky and Lee, has been reinvented several times,
and has received the alternative names of SUSAN filter (Smith and Brady
1997) and bilateral filter (Tomasi and Manduchi 1998). The relatively minor
difference in these algorithms is that instead of considering a fixed spatial
neighbourhood Bρ(i), they weigh the spatial distance to the reference pixel
i by a Gaussian.
Neighbourhood filters choose the ‘neighbouring’ pixels by comparing their

noisy colour. The weight distribution is therefore computed by using noisy
values and is not independent of the noise. Therefore the error formula
(3.14) is not applicable. For a flat zone and for a given pixel with colour
value a, the nearby pixels with an intensity difference lower than h will
be independent and identically distributed, with a probability distribution
which is the restriction of the Gaussian to the interval (a− h, a+ h). If the
search zone (or spatial neighbourhood) is broad enough, then the average
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value will tend to the expectation of this random variable. Thus, the increase
of the search zone, and therefore of the number of pixels being averaged
beyond a reasonable value, will not increase the noise reduction capability
of the filter. More precisely, the asymptotic noise reduction factor is given
in the next theorem, taken from Buades (2006).

Theorem 3.2. Assume that n(i) are independent identically distributed,
with zero mean and variance σ2. Then a noise n filtered by the neighbour-
hood filter YNFh satisfies

VarYNFh,ρ n = f

(
h

σ

)
σ2,

where

f(x) =
1

(2π)3/2

∫
R

1

β2(a, x)
(e2xa − 1)2e(a+x)2e

−a2

2 da

and

β(a, x) =
1√
2π

∫ a+x

a−x
e−t2/2 dt.

The function f(x) is decreasing with f(0) = 1 and

lim
x→∞ f(x) = 0

(see Figure 3.1). The noise reduction increases with the ratio h/σ. We
see that f(x) is close to zero for values of x over 2.5 or 3, that is, values
of h over 2.5σ or 3σ. This corresponds to the values proposed in the
original papers by Lee and Yaroslavsky. However, for a Gaussian variable,
the probability of observing values at a distance to the average above 2.5
or 3 times the standard deviation is very small. Thus, taking these large
values excessively increases the probability of mismatching pixels that in fact

1 2 3 4 5
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0.4

0.6

0.8

1

Figure 3.1. Noise reduction function f(x) given by Theorem 3.2.



Secrets of image denoising cuisine 37

belong to other objects. This explains the observed decaying performance
of the neighbourhood filter when the noise standard deviation or the search
zone B(i, ρ) increase too much.
The image model underlying neighbourhood filters is that of image self-

similarity, namely the presence in the image of pixels j which have the same
law as i. In Section 5.1 we will introduce the NL-means algorithm (Buades
et al. 2005b), which can be seen as an extension of the neighbourhood filters
attenuating their main drawbacks. In NL-means, the ‘neighbourhood of
a pixel i’ is defined as any set of pixels j in the image such that a patch
around j looks like a patch around i. In other words NL-means estimates the
value of i as an average of the values of all the pixels j whose neighbourhood
looks like the neighbourhood of i.

4. Noise reduction: generic tools

This section describes four generic tools that permit an increase in the
performance of any denoising principle. We shall illustrate them for DCT
denoising. Starting from the application of a simple DCT transform thresh-
old, the four generic tools will be applied successively. We shall observe a
dramatic improvement of the denoising performance. This observation is
valid for all denoising principles.

4.1. Aggregation of estimates

Aggregation techniques combine for any pixel a set of m possible estimates.
If these estimates were independent and had equal variance, then a uniform
average would reduce this estimator variance by a factor of m. Such an
aggregation strategy was the main proposition of the translation-invariant
wavelet thresholding algorithm (Coifman and Donoho 1995). This method
denoises several translations of the image by a wavelet thresholding algo-
rithm and averages these different estimates once the inverse translation has
been applied to the denoised images.
An interesting case is when one is able to estimate the variance of the

m estimators. Statistical arguments lead us to attribute to each estima-
tor a weight inversely proportional to its variance (Nemirovski 2000). For
most denoising methods the variance of the estimators is high near image
edges. When applied without aggregation, the denoising methods leave vis-
ible ‘halos’ of residual noise near edges. For example, in the sliding-window
DCT method, patches containing edges have many large DCT coefficients
which are kept by thresholding. In flat zones, however, most DCT coeffi-
cients are cancelled and the noise is completely removed. The proposition
of Guleryuz (2007) is to use the aggregation for DCT denoising, approx-
imating the variance of each estimated patch by the number of non-zero
coefficients after thresholding. In the online paper by Yu and Sapiro (2011)
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one can test an implementation of DCT denoising. They use an aggregation
with uniform weights: ‘translation invariant DCT denoising is implemented
by decomposing the image to sliding overlapping patches, calculating the
DCT denoising in each patch, and then aggregating the denoised patches to
the image averaging the overlapped pixels. The translation invariant DCT
denoising significantly improves the denoising performance, typically from
about 2 to 5 dB, and removes the block artifact’ (Yu and Sapiro 2011).
The same risk of ‘halos’ occurs with non-aggregated NL-means (Sec-

tion 5.1), since patches containing edges have far fewer similar instances
in the image than flat patches. Thus the non-local averaging is made over
fewer samples, and the final result keeps more noise near image edges. The
same phenomenon occurs with BM3D (Section 5.8) if the aggregation step
is not applied (Dabov et al. 2007). As a consequence, an aggregation step is
applied in all patch-based denoising algorithms. This weighted aggregation
favours, at each pixel near an edge, the estimates given by patches which
contain the pixel but do not meet the edge.
Aggregation techniques aim at superior noise reduction by increasing the

number of values being averaged to obtain the final estimate, or select-
ing those estimates with lower variance. Kervrann and Boulanger (2008)
considered the whole bias+variance decomposition in order to also adapt
the search zone of neighbourhood filters or NL-means. Since the bias term
depends on the original image, it cannot be computed in practice, and
Kervrann and Boulanger proposed minimization of both bias and variance
by choosing the smallest spatial neighbourhood attaining a stable noise re-
duction.
Another type of aggregation technique considers the risk estimate rather

than the variance, to locally attribute more weight to the estimators with
small risks. Van De Ville and Kocher (2009) give a closed-form expression of
Stein’s unbiased estimator of the risk (SURE) for NL-means. (See also the
generalizations of the SURE estimator to the non-Gaussian case in Raphan
and Simoncelli (2007).) The aim is to select globally the best bandwidth
for a given image. Duval, Aujol and Gousseau (2011) also use the SURE
technique to minimize the risk by selecting the bandwidth locally. Deledalle,
Duval and Salmon (2012) apply the same technique to combine the results
of NL-means with different window sizes and shapes. A similar treatment
can be found in Raphan and Simoncelli (2010), but with the assumption of
a local exponential density for the noisy patches.

4.2. Iteration and ‘oracle’ filters

Iterative strategies to remove residual noise would drift from the initial
image. Instead, a first step denoised image can be used to improve the
reapplication of the denoising method to the initial noisy image. In a second
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step application of a denoising principle, the denoised DCT coefficients, or
the patch distances, can be computed in the first step denoised image. They
are an approximation to the true measurements that would be obtained
from the noise-free image. Thus, the first step denoised image is used as an
‘oracle’ for the second step.
For averaging filters such as neighbourhood filters or NL-means, the image

u can be denoised in a first step by the method under consideration. This
first step denoised image, denoted by û1, is used to compute more accurate
colour distances between pixels. Thus the second step neighbourhood filter
is given by

YNFh,ρ ũ(i) =
1

C(i)

∑
j∈Bρ(j)

ũ(j) e−
|û1(j)−û1(i)|2

h2 ,

where ũ is the observed noisy image and û1 the image previously denoised
by (3.15).
Similarly, for linear transform Wiener-type methods, the image is first

denoised by its classical definition, which amounts to approximating the
oracle coefficients of Theorem 3.1 using the noisy ones. In a second iteration,
the coefficients of the denoised image approximate the true coefficients of
the noise-free image. Thus the second step filter following the first step (3.9)
is given by

DŨ =
∑
i

a(i) 〈Ũ , Gi〉 Gi, with a(i) =
|〈Û1, Gi〉|2

|〈Û1, Gi〉|2 + σ2
,

where Û1 is the denoised image formed by initially applying the thresholding
algorithm to the observed image Ũ .

Alternatives and extensions: ‘twicing’ and Bregman iterations

In the recent review paper by Milanfar (2011), many denoising operators are
formalized in a general linear framework, noting that they can be associated
with a doubly stochastic diffusion matrix W with non-negative coefficients.
In NL-means, for example, this matrix is obtained by the symmetrization
of the matrix of the NL-means weights wP̃ ,Q̃ defined in Algorithm 1. Unless
it is optimal, as is the case with an ideal Wiener filter, the matrix W asso-
ciated with the denoising filter can be iterated. A study of MSE evolution
with these iterations is proposed by Milanfar (2011) for several denoising
operators, considering several different patch types (texture, edge, flat).
Iteration is, however, different from the oracle iteration described above.
In the oracle iteration, the matrix W is changed at each step, using the
better estimate given by the previously denoised image. One does not gen-
erally observe much improvement by iterating the oracle method more than
once. Milanfar (2011) points out another generic tool, used at least for total
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variation denoising: so-called ‘twicing’, a term due to Tukey (1977). Instead
of repeated applications of a filter, the idea is to process the residual ob-
tained as the difference between the estimated image and the initial image.
If the residuals contain some of the underlying signal, filtering them should
recover part of it. Milanfar (2011) shows that the Bregman iterations (Osher
et al. 2004) used for improving total-variation-based denoising are a twicing,
and so is the matching pursuit method used in the K-SVD filter described
in Section 5.7.

4.3. Dealing with colour images

The straightforward strategy to extend denoising algorithms to colour or
multivalued images is to apply the algorithm independently to each chan-
nel. The use of this simple strategy often introduces colour artifacts, easily
detected by the eye. Two different strategies are observable in state-of-the-
art denoising algorithms.
Depending on the algorithm formulation, a vector-valued version dealing

with all colour channels simultaneously can be proposed. This solution is
adopted by averaging filters such as neighbourhood filters or NL-means.
These algorithms compute colour differences directly in the vector-valued
image, thus yielding a unified weight configuration which is applied to each
channel.
The alternative option is to convert the usual RGB image to a different

colour space, where the independent denoising of each channel does not cre-
ate noticeable colour artifacts. Most algorithms use the YUV system, which
separates the geometric and chromatic parts of the image. This change of
variables is expressed as a linear transform by multiplication of the RGB
vector by the matrices

Y UV =

⎛
⎜⎝

0.30 0.59 0.11

−0.15 −0.29 0.44

0.61 −0.51 −0.10

⎞
⎟⎠, YoUoVo =

⎛
⎜⎝

1
3

1
3

1
3

1
2 0 −1

2
1
4 −1

2
1
4

⎞
⎟⎠.

The second colour transform to the space YoUoVo is an orthogonal transform.
It has the advantage of maximizing the noise reduction of the geometric
component, since this component is an average of the three colours. The
geometric component is perceptually more important than the chromatic
ones, and the noise reduction permits better performance of the algorithm
in this component. It also permits higher noise reduction on the chromatic
components Uo and Vo, due to their observable regularity.
This latter strategy is adopted by transform thresholding filters, for which

the design of an orthonormal basis coupling the different colour channels is
not trivial.
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4.4. Trying all generic tools on an example

This subsection incrementally applies the above generic denoising tools to
the DCT sliding window, to illustrate how these additional tools permit
drastic improvement of algorithm performance. We start with the basic
DCT ‘neighbourhood filter’, as proposed by Yaroslavsky and Eden (2003).
Its principle is to denoise a patch around each pixel, and to keep only the
central denoised pixel.
Figure 4.1 displays the denoised images obtained by incrementally apply-

ing each of the following ingredients.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.1. (a, b) Original and noisy images with additive Gaussian
white noise of standard deviation 25. (c–h) Close-ups of denoised
images by sliding DCT thresholding filters and incrementally adding
use of a YoUoVo colour system, uniform aggregation, variance-based
aggregation and iteration with the ‘oracle’ given by the first step. The
corresponding PSNRs are 26.85, 27.33, 30.65, 30.73, 31.25, respectively.
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• A basic DCT thresholding algorithm using the neighbourhood filter
technique (keeping only the central pixel of the window). Each colour
channel is treated independently.

• Use of an orthogonal geometric and chromatic decomposition colour
system YoUoVo: grey parts are better reconstructed and colour artifacts
are reduced.

• Uniform aggregation: the noise reduction is superior and isolated noise
points are removed.

• Adaptive aggregation using the estimator variance: the noise reduction
near edges is increased and ‘halo’ effects are removed.

• Additional iteration using ‘oracle’ estimation: residual noise is totally
removed and the sharpness of details is increased.

The PSNRs obtained by incrementally applying the previous strategies
respectively are 26.85, 27.33, 30.65, 30.73, 31.25. This experiment illustrates
how the use of these additional tools is crucial to achieving competitive re-
sults. This last version of the DCT denoising algorithm, incorporating all
the proposed generic tools, will be the one used in Section 6. A complete
description of the algorithm can be found in Algorithm 3. The colour ver-
sion of the algorithm applies the denoising independently to each YoUoVo

component. This version is therefore slightly better than the version online
in Yu and Sapiro (2011), which does not use the oracle step.

5. Detailed analysis of nine methods

In this section we give a detailed description and analysis of nine denois-
ing methods. Six of them, for which reliable faithful implementations are
available, will be compared in Section 6.

5.1. Non-local means

The non-local means (NL-means) algorithm tries to take advantage of the
redundancy of most natural images. The redundancy (or self-similarity)
hypothesis is that for every small patch in a natural image one can find sev-
eral similar patches in the same image, as illustrated in Figures 5.1 and 5.2.
This similarity is true for patches whose centres are within one pixel of the
centre of the reference patch. In that case the self-similarity boils down
to a local image regularity assumption. Such regularity is guaranteed by
Shannon and Nyquist’s sampling conditions, which require the image to be
blurry. In a much more general sense inspired by neighbourhood filters, one
can define the ‘neighbourhood of a pixel i’ to be any set of pixels j in the
image such that a patch around j looks like a patch around i. All pixels in
that neighbourhood can be used for predicting the value at i, as was first
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Algorithm 3 DCT denoising algorithm. DCT coefficients lower than 3σ are
cancelled in the first step and a Wiener filter is applied in the ‘oracle’ second
step. The colour DCT denoising algorithm applies the current strategy
independently to each YoUoVo component.

Input. Noisy image ũ, noise standard deviation σ.
Optional. Prefiltered image û1 for ‘oracle’ estimation.
Output. Denoised image.

Set parameter κ = 8: size of patches.
Set parameter h = 3σ: threshold parameter.

for each pixel i do

Select a square reference patch P̃ around i of size κ× κ.
if û1 then
Select a square reference patch P1 around i in û1.

end if

Compute the DCT transform of P̃ .
if û1 then
Compute the DCT transform of P1.

end if

if û1 then
Modify DCT coefficients of P̃ as

P̃ (i) = P̃ (i)
P1(i)

2

P1(i)2 + σ2

else
Cancel coefficients of P̃ with magnitude lower than h.

end if

Compute the inverse DCT transform obtaining P̂ .

Compute the aggregation weight

wP̃ = 1/{number of non-zero DCT coefficients}.
end for

for each pixel i do
Aggregation. Recover the denoised value at each pixel i by averaging
all values at i of all denoised patches Q̂ containing i, weighted by wQ̃.

end for
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Figure 5.1. Here q1 and q2 have a large weight because their similarity
windows are similar to that of p. On the other hand the weight
w(p, q3) is much smaller because the intensity grey-scale values in the
similarity windows are very different.

shown in Efros and Leung (1999) for the synthesis of texture images. This
self-similarity hypothesis is a generalized periodicity assumption. The use
of self-similarities has in fact been well known in information theory from
its foundation. In his paper ‘A mathematical theory of communication’,
Shannon (2001) analysed the local self-similarity (or redundancy) of natu-
ral written language, and gave what was probably the first stochastic text
synthesis algorithm. The Efros–Leung texture synthesis method adapted
this algorithm to images, and NL-means (Buades, Coll and Morel 2004)
seems to be the first adaptation of the same idea to denoising.2

NL-means denoises a square reference patch P̃ around i of dimension
κ × κ by replacing it with an average of all similar patches Q̃ in a square
neighbourhood of i of size λ×λ. To do this, a normalized Euclidean distance
between P̃ and Q̃, d(P̃ , Q̃) = κ−2‖P̃ − Q̃‖2 is computed for all patches Q̃
in the search neighbourhood. Then the weighted average is

P̂ =

∑
Q̃ Q̃ e−

d(P̃ ,Q̃)2

h2∑
Q̃ e−

d(P̃ ,Q̃)2

h2

.

2 Nevertheless, some researchers have pointed out to us the report by De Bonet (1997)
as giving an early discovery that intuition could use signal redundancy. This very short
paper describes an experiment in a few sentences. It suggests that region redundancy
on both sides of an edge can be detected, and used for image denoising. Nevertheless,
no algorithm is specified in the paper.
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The concentration of the noise law gives NL-means the edge over neighbour-
hood filters, as the number of pixels increases. Because the distances are
computed on many patch samples instead of only one pixel, the fluctuations
of the quadratic distance due to the noise are reduced.

Related attempts

Weissman et al. (2005) proposed a ‘universal denoiser’ for digital images,
and proved that this denoiser is universal in the sense of ‘asymptotically
achieving, without access to any information on the statistics of the clean
signal, the same performance as the best denoiser that does have access
to this information’. Ordentlich et al. (2003) presented an implementation
valid for binary images with an impulse noise, with excellent results. Awate
and Whitaker (2006) also proposed a method whose principles stand close
to NL-means, since the method involves comparison between patches to
estimate a restored value. The objective of the algorithm is to denoise the
image by decreasing the randomness of the image.

A consistency theorem for NL-means

NL-means is intuitively consistent under stationarity conditions, that is, if
one can find many samples of every image detail. It can be proved (Buades
et al. 2005b) that if the image is a fairly general stationary and mixing
random process, for every pixel i, NL-means converges to the conditional
expectation of i knowing its neighbourhood, which is the best Bayesian
estimate.

NL-means as an extension of previous methods

A Gaussian convolution preserves only flat zones, while contours and fine
structure are removed or blurred. Anisotropic filters can instead preserve
straight edges, but flat zones present many artifacts. One might consider
combining these methods to improve both results. A Gaussian convolution
could be applied in flat zones, while an anisotropic filter could be applied
on straight edges. However, other types of filters should be designed to
specifically restore corners, or curved edges, or periodic texture. Figure 5.2
illustrates how NL-means chooses the right weight configuration for each
type of image self-similarity.
NL-means is easily extended to the denoising of image sequences and

video, indiscriminately involving pixels belonging to a space–time neigh-
bourhood. The algorithm favours pixels with a similar local configuration.
When the similar configuration moves, so do the weights. Thus, as shown
by Buades, Coll and Morel (2008b), the algorithm is able to follow mov-
ing similar configurations without any explicit motion computation (see
Figure 5.3).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2. The right-hand image of each pair shows the weight distribution
used to estimate a centred patch of the left-hand image by NL-means. (a) In
flat zones, the weights are uniformly distributed, and NL-means acts like a
low-pass isotropic filter. (b) On straight edges, the weights are distributed in
the direction of the edge (as for anisotropic filters). (c) On curved edges, the
weights favour pixels belonging to the same contour. (d) In a flat
neighbourhood, the weights are distributed in a grey-scale neighbourhood
(just as for neighbourhood filters). For (e) and (f), the weights are
distributed across the more similar configurations, even though they are far
away from the observed pixel. This behaviour justifies the term ‘non-local’.

Indeed, this fact contrasts with previous classical movie denoising algo-
rithms, which were motion-compensated. The underlying idea of motion
compensation is the existence of a underlying ‘true’ image for the physical
motion. Legitimate information about the colour of a given pixel should
exist only along its physical trajectory. But one of the major difficulties
in motion estimation is the ambiguity of trajectories, the so-called aperture
problem. The aperture problem, viewed as a general phenomenon of movies,
can be positively interpreted in the following way. There are many pixels in
the succeeding or preceding frames which resemble the current pixel. Thus,
it seems sound to use not just one trajectory, but rather all similar pixels
to the current pixel across time and space, as NL-means does (see Buades
et al. (2008b) for more details of this discussion).



Secrets of image denoising cuisine 47

(a)

(b)

(c)

Figure 5.3. Weight distribution of NL-means applied to a movie. The upper
row of each group (a), (b) and (c) shows a five-frame image sequence. The
lower row shows the weight distribution used to estimate the central pixel
(in white) of the middle frame is shown. The weights are equally distributed
over the successive frames, including the current one. They actually involve
all the candidates for the motion estimation instead of picking just one per
frame. The aperture problem can be exploited for better denoising
performance by using more pixels to compute the average.
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Algorithm 4 NL-means algorithm (parameter values for κ, λ are indicative)

Input. Noisy image ũ, noise standard deviation σ.
Output. Denoised image.

Set parameter κ = 3: size of patches.
Set parameter λ = 31: size of search zone for similar patches.
Set parameter h = 0.6σ: bandwidth filtering parameter.

for each pixel i do

Select a square reference patch P̃ around i of dimension κ× κ.

Set P̂ = 0 and Ĉ = 0.

for each patch Q̃ in a square neighbourhood of i of size λ× λ do

Compute the normalized Euclidean distance between P̃ and Q̃,
d(P̃ , Q̃) = 1

κ2 ‖P̃ − Q̃‖2.

Accumulate Q̃e−
d(P̃ ,Q̃)2

h2 to P̂ and e−
d(P̃ ,Q̃)2

h2 to Ĉ.

end for

Normalize the average patch P̂ by dividing it by the sum of weights Ĉ.

end for

for each pixel x do
Aggregation. Recover the denoised value at each pixel i by averaging
all values at i of all denoised patches Q̂ containing i.

end for

5.2. Non-local Bayesian denoising

It is clear that (3.7) in Section 3.1,

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ),

is itself a denoising algorithm, provided we can compute the patch expecta-
tions and patch covariance matrices. We shall now explain how the non-local
Bayes algorithm proposed by Lebrun et al. (2011) achieves this. Let P(P̃ )
be the set of patches Q̃ similar to the patch P̃ , which have been obtained
with a suitably chosen tolerance threshold, so that we can assume that they
represent noisy versions of the patches similar to P . Then, by the law of
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large numbers, we have

CP̃ � 1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)T
,

P̃ � 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃.

(5.1)

Nevertheless, the selection of similar patches at the first step is not optimal, 2-line display

and can be improved in a second estimation step where the first step esti-
mate is used as the oracle. Thus, in a second step, where all patches have
been denoised at the first step, all the denoised patches can be used again
to obtain an estimate CP̂1

for CP , the covariance of the cluster containing

P , and a new estimate of P̃ , the average of patches similar to P̃ . Indeed,
the patch similarity is better estimated with the denoised patches. Then it
follows from (3.6) and (3.7) that we can obtain a second improved denoised
patch, namely

P̂2 = P̃
1
+CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
), (5.2)

where

CP̂1
� 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1)(
Q̂1 − P̃

1)T
,

P̃
1
� 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

(5.3)

We denote the denoised patches by P̃ in (5.1) and P̃
1
in (5.2). Indeed, in

(5.2), the denoised version of P̃ is computed as the average of noisy patches

Q̃ whose denoised patch is similar to P̂1.
In short, the estimates (3.7) and (5.2) appear to be equivalent, but in

practice they are not. CP̂1
, obtained after a first denoising step, is a better

estimate than CP̃ . Furthermore, P̃
1
is a more accurate mean than P̃ : it

uses a better evaluation of patch similarities. Since all the above quantities
are computable from the noisy image, we obtain the two-step Algorithm 5.
As pointed out by Buades, Lebrun and Morel (2012b), the non-local Bayes

algorithm is only an interpretation (with some generic improvements such as
aggregation) of the PCA-based algorithm proposed by Zhang, Dong, Zhang
and Shi (2010). This paper has a self-explanatory title: ‘Two-stage image
denoising by principal component analysis with local pixel grouping’. It
is equivalent to applying PCA on the patches similar to P̃ , followed by a
Wiener filter on the coefficients of P̃ for this PCA, or applying formula
(3.7) with the covariance matrix of the similar patches. Indeed, the PCA
simply computes the eigenvalues of the empirical covariance matrix. Thus,
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Algorithm 5 Non-local Bayes image denoising

Input. Noisy image.
Output. Denoised image.

for all patches P̃ of the noisy image do

Find a set P(P̃ ) of patches Q̃ similar to P̃ .

Compute the expectation P̃ and covariance matrixCP̃ of these patches:

CP̃ � 1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)T
,

P̃ � 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃.

Obtain the first-step estimate:

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ).

end for
Obtain the pixel value of the basic estimate image û1 as an average of all
values of all denoised patches Q̂1 which contain i.
for all patches P̃ of the noisy image do

Find a new set P1(P̃ ) of noisy patches Q̃ similar to P̃ by comparing
their denoised ‘oracular’ versions Q1 to P1.

Compute the new expectation P̃
1
and covariance matrix CP̂1

of these
patches:

CP̂1
� 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1)(
Q̂1 − P̃

1)T
,

P̃
1
� 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

Obtain the second-step patch estimate:

P̂2 = P̃
1
+CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
).

end for
Obtain the pixel value of the denoised image û(i) as an average of all

values of all denoised patches Q̂2 which contain i.
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the method in Zhang et al. (2010) finds its Bayesian interpretation. A
study of the compared performance of local PCA versus global PCA for
two-stage image denoising (TSID) is in fact proposed by Deledalle, Salmon
and Dalalyan (2011b).

5.3. Patch-based locally optimal Wiener (PLOW )

In the non-local Bayes method of Section 5.2, a local model is estimated in
a neighbourhood of each patch. In the PLOW method of Chatterjee and
Milanfar (2012), however, the idea is to learn from the image a sufficient
number of patch clusters, in fact 15, and to apply the LMMSE estimate
to each patch after having assigned it to one of the clusters obtained by
clustering. Thus, this empirical Bayesian algorithm starts by clustering the
patches by the classic K-means clustering algorithm. To take into account
the fact that similar patches can have varying contrast, the inter-patch
distance is photometrically neutral, and Chatterjee and Milanfar call it a
‘geometric distance’. The clustering phase is accelerated by dimension re-
duction obtained by applying PCA to the patches. The clustering is there-
fore a segmentation of the set of patches, and the denoising of each patch is
then performed within its cluster. Since each cluster contains patches that
are geometrically similar but not necessarily photometrically similar, the
method identifies the photometrically similar patches for each patch in the
cluster as being those whose quadratic distance to the reference patch are
within the bounds allowed by noise. Then an LMMSE estimate (Kay 1993)
is obtained for the reference patch by a variant of (3.7). The algorithm
uses a first phase, which performs a first denoising before constituting the
clusters. Thus the main phase is actually using the first phase as an oracle
to obtain the covariance matrices of the sets of patches.

5.4. Inherent bounds in image denoising

By ‘shotgun’ patch denoising methods, we mean methods that intend to
denoise patches by a fully non-local algorithm, in which the patch is com-
pared to a patch model obtained from a large or very large patch set. The
‘sparse-land’ methods intend to learn a sparse patch dictionary on which
to decompose any given patch, from a single image or from a small set of
images. The shotgun methods instead learn from a very large patch set
extracted from tens of thousands of images (up to 1010 patches). Then
the patch is denoised by deducing its likeliest estimate from the set of all
patches. In the case of Zoran and Weiss (2011), this patch space is orga-
nized as a Gaussian mixture with about 200 components. Shotgun methods
have begun to be used in several image restoration methods: for example
in Hays and Efros (2007), for image inpainting, with a fairly explicit title,
‘Scene completion using millions of photographs’.
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Algorithm 6 PLOW denoising

Input. Image in vector form Ũ .
Output. Denoised image in vector form Û .

Set parameters: patch size κ× κ = 11× 11, number of clusters K = 15;
Estimate noise standard deviation σ̂ by σ̂ = 1.4826median(|∇Ũ −
median(∇Ũ)|);
Set parameter: h2 = 1.75σ̂2κ2;
Pre-filter image Ũ to obtain a pilot estimate Û1;
Extract overlapping patches of size κ× κ, Q̃ from Ũ and Q̂1 from U1;
Geometric clustering with K-means of the patches in Û1 (using a variant
of PCA for the patches). The distance is a geometric distance, photomet-
rically neutral.
for each patch cluster Ωk do
Estimate from the patches Q̂1 ∈ Ωk the mean patch P k �

∑
Q̂1∈Ωk

Q̂1

and the cluster covariance Ck
P .

for each patch Q̂1,i ∈ Ωk do

Consider its associated noisy patch Q̃i. Identify photometrically sim-
ilar patches Q̃j in the cluster as those with a quadratic distance to

Q̃i within the bounds allowed by noise, namely γ2 + 2κ2σ̂2, with
γ = γ(κ) a ‘small’ threshold.

Compute similarity weights wij = e−
‖Q̃i−Q̃j‖2

h2 .

Compute the LMMSE estimator for the noisy patch Q̃i (slightly more
complex than usual, because the cluster contains patches that are
geometrically similar but not necessarily photometrically similar):

Q̂i = P +

[
I−

(∑
j

wijC
k
P + I

)−1]∑
j

wij∑
j wij

(Q̃j − P ).

end for
end for
At each pixel aggregate multiple estimates from all P̂ containing it, with
weights given as inverses of the variance of each estimator.

The approach of Levin and Nadler (2011) is to define the simplest uni-
versal ‘shotgun’ method, where a huge set of patches is used to estimate
the upper limits a patch-based denoising method would ever reach. The
results support the ‘near-optimality of state-of-the-art denoising results’,
the results obtained by the BM3D algorithm being only 0.1 decibel away
from optimality for methods using small patches (typically 8× 8).
To evaluate the MMSE this experiment uses a set of 20 000 images from

the LabelMe dataset (Russell, Torralba, Murphy and Freeman 2008). The
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Algorithm 7 Shotgun NL-means

Input. Noisy image ũ in vectorial form; very large set of M patches Pi

extracted from a large set of noiseless natural images.
Output. Denoised image û.

for all patches P̃ extracted from ũ do
Compute the MMSE denoised estimate of P̃ :

P̂ �
∑M

i=1 P(P̃ | Pi)Pi∑M
i=1 P(P̃ | Pi)

,

where P(P̃ | Pi) is known from (5.4).
end for
At each pixel i get û(i) as P̂ (i), where the patch P is centred at i.
(Optional Aggregation.) For each pixel j of u, compute the denoised

version ûj as the average of all values P̂ (j) for all patches containing j.
(This step is not considered in Levin and Nadler (2011).)

method, even though certainly impractical, is of exquisite simplicity. Given
a clean patch P , the noisy patch P̃ with Gaussian noise, of standard
deviation σ, has probability distribution

P(P̃ | P ) =
1

(2πσ2)
κ2

2

e−
‖P−P̃‖2

2σ2 , (5.4)

where κ2 is the number of pixels in the patch. Then, given a noisy patch
P̃ , its optimal estimator for the Bayesian minimum squared error (MMSE)
is, by Bayes’ formula,

P̂ = E[P | P̃ ] =

∫
P(P | P̃ )P dP =

∫
P(P̃ | P )

P(P̃ )
P(P )P dP. (5.5)

Using a huge set of M natural patches (with a distribution supposedly ap-
proximating the real natural patch density), we can approximate the terms
in (5.5) by P(P ) dP � 1

M and P(P̃ ) � 1
M

∑
i P(P̃ | Pi), which in view of

(5.4) yields

P̂ �
1
M

∑
i P(P̃ | Pi)Pi

1
M

∑
i P(P̃ | Pi)

.

Thus the final MMSE estimator is simply the exact application of NL-means,
denoising each patch by matching it to the huge patch database. Clearly
this is not just a theoretical algorithm. Web-based application could provide
a way to denoise online any image by organizing a huge patch database. The
final algorithm is summarized in Algorithm 7.
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(a) σ = 18 (b) σ = 55 (c) σ = 170

Figure 5.4. From Levin and Nadler (2011). The PSNR (−10 log10 (MMSE))
of several denoising algorithms – K-SVD (Mairal et al. 2009a), BM3D
(Dabov et al. 2007), Gaussian scale mixture (Portilla et al. 2003) –
compared with the PNSR predicted by MMSEL and MMSEU . The
performance of all algorithms is bounded by the MMSEU estimate, but
BM3D approaches this upper bound to within fractional dB values.
Nevertheless, the performance bounds consider more restrictive patch-based
algorithms than the class to which BM3D belongs. Thus the actual distance
to optimality may be greater.

However, as mentioned earlier, the main focus of Levin and Nadler (2011)
is elsewhere: they use shotgun denoising to estimate universal upper and
lower bounds of the attainable PSNR by any patch-based denoising algo-
rithm. More precisely, the algorithm gives upper and lower bounds to the
following problem: Given a noisy patch P̃ , and given the law p(P ) of all
possible patches, find the best possible estimate (in the sense of MMSE ).
The shotgun algorithm gives a best possible estimate for any patch-based
denoising algorithm of this kind.
The upper bound obtained by Levin and Nadler (2011) turns out to be

very close to results obtained with BM3D (see Section 5.8), and they con-
clude that for small window sizes, or moderate to high noise levels, the quest
for the best denoising algorithm might be close to an end. More precisely,
only fractions of decibels separate the current best algorithms from these
demonstrated upper bounds. The EPLL method (Zoran and Weiss 2011)
can be viewed as a first (slightly) more practical realization of this quasi-
optimality by a shotgun algorithm, and there is no doubt that other more
practical ones will follow. We now describe how the lower and upper bounds
of Levin and Nadler (2011) can be estimated from a sufficient set of natural
images.
The MSE for a given denoising algorithm can be obtained by randomly

sampling patches P , then adding noise to generate noisy patches P̃ , and
measuring the reconstruction error ‖P−P̂‖2. Then the mean reconstruction
error is

MSE =

∫
P(P )

∫
P(P̃ | P )‖P − P̂‖2 dP̃ dP. (5.6)
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Conversely, one can start from a noisy patch P̃ and measure the variance
of P(P | P̃ ) around it. According to Levin and Nadler (2011), this amounts

to computing the sum of weighted distances between the restored P̂ and all
possible P explanations:

MSE =

∫
P(P̃ )

∫
P(P | P̃ )‖P − P̂‖2 dP̃ dP. (5.7)

This last equation follows from (5.6) by Bayes’ rule. For each noisy P̃ one
can define its MMSE:

MMSE(P̃ ) = E[‖P̂ − P̃‖2 | P̃ ] =

∫
P(P | P̃ )(P − P̂ )2 dP. (5.8)

The main interest of this formulation is that it allows us to prove that the
MMSE, out of all the denoising algorithms, is the one that minimizes the
overall MSE. Indeed, differentiating (5.7) with respect to P̂ returns the
MMSE estimator (5.5). The best overall MMSE achievable by any given
denoising algorithm is therefore

MMSE =

∫
P(P̃ )E[‖P̂−P̃‖2 | P̃ ] =

∫
P(P̃ )P(P | P̃ )(P−P̂ )2 dP dP̃ . (5.9)

The goal of Levin and Nadler (2011) is to bound the MMSE from below,
ignoring of course the probability distribution P(P ), but having enough
samples of it. The main idea is to derive an upper and lower bound on the
MMSE from the two MSE formulations (5.6)–(5.7). Given a set of M clean
and noisy pairs {(Pj , P̃j)}, j = 1, . . . ,M , and another independent set of
N clean patches {Pi}, i = 1, . . . , N , both randomly sampled from natural
images, the proposed estimates are

MMSEU =
1

M

∑
j

‖P̂j − Pj‖2 (5.10)

and

MMSEL =
1

M

∑
j

∑
i P(P̃j | Pi)‖P̂j − Pi‖2∑

i P(P̃j | Pi)
. (5.11)

A striking feature of both estimates is that MMSEU uses explicit knowl-
edge of the original noise-free patch Pj , while MMSEL does not. Since
MMSEU simply measures the error for a given denoising algorithm, it ob-
viously provides an upper bound for the MMSE of any other denoising
algorithm. As Levin and Nadler (2011) observe, MMSEU and MMSEL are
random variables that depend on the choice of the samples. When the
sample size approaches infinity, both converge to the exact MMSE. Never-
theless, Levin and Nadler (2011) give a simple proof that, for a finite sample,
in expectation, MMSEU and MMSEL provide upper and lower bounds on
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the best possible MMSE. When both MMSEU and MMSEL coincide, they
provide an accurate estimate of the optimal denoising possible with a given
patch size.
For very high noise levels, Levin and Nadler (2011) also tried to apply the

linear minimum mean square error (LMMSE) estimator (or Wiener filter)
using only the second-order statistics of the data, by fitting a single k2-
dimensional Gaussian to the set of M image k × k patches. They conclude
that even this simple approach is close to optimal for large noise.

5.5. The expected patch log likelihood (EPLL) method

The patch Gaussian mixture model

This other shotgun method (Zoran and Weiss 2011) is an almost literal
application of the piecewise linear estimator (PLE) method (Yu, Sapiro
and Mallat 2012) (see Section 5.9). But it is indeed shotgun, that is, it is
applied to a huge set of patches instead of the image itself. A Gaussian
mixture model is learned from a set of 2 × 106 patches, sampled from the
Berkeley database, with their mean removed. The 200 mixture components
with zero means and full covariance matrices are obtained using the EM
(expectation maximization) algorithm. This training took about 30 hours
with public-domain MATLAB code.3 Thus were learned: 200 means (in fact
they are all zero), 200 full covariance matrices and 200 mixing weights, which
constitute the Gaussian mixture model of this set of patches. Figure 5.5
shows some six bases extracted from the Gaussian mixture. Each one shows
the patches that are eigenvectors of some of the covariance matrices, sorted
by eigenvalue.
Once the Gaussian mixture is learned, the denoising method maximizes

the expected patch log likelihood (EPLL) while being close to the corrupted
image in a way which is dependent on the (linear) corruption model. Given
an image U (in vector form), the EPLL of U under prior P is defined by

EPLLP(U) =
∑
i

logP(PiU),

where Pi is a matrix which extracts the ith patch Pi from the image U
out of all overlapping patches, while logP(PiX) is the likelihood of the
ith patch under the prior P. Assuming a patch location in the image is
chosen uniformly at random, EPLL can be interpreted as the expected log
likelihood of a patch in the image (up to a multiplication by 1/M). Given
a corrupted image Ũ in vector form and a model of image corruption of the

3 http://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-
gaussian-mixture-model
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Figure 5.5. Eigenvectors of six randomly selected covariance matrices
from the learned Gaussian mixture model, sorted by eigenvalue from
largest to smallest (from Zoran and Weiss (2011)). The authors notice
the similarity of these basis elements to DCT, but also that many seem
to model texture boundaries and edges at various orientations.

form ‖AU − Ũ‖2, the restoration is made by minimizing

fP(U |Ũ) =
λ

2
‖AU − Ũ‖2 − EPLLP(U).

According to Zoran and Weiss (2011), ‘This equation has the familiar form
of a likelihood term and a prior term, but note that EPLLP(U) is not the
log probability of a full image. Since it sums over the log probabilities of
all overlapping patches, it “double counts” the log probability. Rather, it is
the expected log likelihood of a randomly chosen patch in the image.’
The optimization is made by ‘half-quadratic splitting’, which amounts to

introducing auxiliary patch variables Zi, i = 1, . . . ,M , one for each patch
Pi, and minimizing the auxiliary functional

CP,β(U, {Zi}|Ũ) :=
λ

2
‖AU − Ũ‖2 + β

2

∑
i

‖PiU − Zi‖2 − logP(Zi).

Solving for U given {Zi} amounts to the inversion

U =

(
λATA+ β

∑
i

PT
i Pi

)−1(
λAT Ũ + β

∑
i

PT
i Z

i

)
.

In the case of denoising, A is simply the identity, and the above formula
boils down to computing for each pixel j a denoised value U(j) as a weighted
average over all patches Pi containing this given pixel j of the noisy pixel
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Algorithm 8 Patch restoration once the patch Gaussian mixture is known

for each noisy patch Q̃ do
Compute the conditional mixture weights π′

k = P(k | Q̃) (given by EM);

Pick the component k with highest conditional mixing weight: kmax =
maxk π

′
k;

The MAP estimate Q̂ is a Wiener solution for the kmaxth component:

Q̂ =
(
Ckmax + σ2I

)−1(
CkmaxQ̃+ σ2μkmax

)
.

end for

value Ũ(j) and of the patch denoised values Zi(j):

U(j) =
λŨ(j) +

∑
Pi	j Zi(j)

λ+ βk2
, (5.12)

where k2 is the patch size.
Then, solving for {Zi} given U amounts to solving a MAP (maximum

a posteriori) problem of estimating the most likely patch under the prior P,
given PiU and parameter β.

Once the Gaussian mixture model is known, calculating the log likelihood
of a given patch is trivial:

logP(Q) = log

( K∑
k=1

πkN (Q|μk,Ck)

)
,

where πk are the mixing weights for each of the mixture component, and
μk and Ck are the corresponding mean and covariance matrix.
Given a noisy patch Q̃, the MAP estimate is computed with the procedure

shown in Algorithm 8.
Zoran and Weiss (2011) comment that this is one iteration of the ‘hard

version’ of the EM algorithm for finding the modes of a Gaussian mixture
(Carreira-Perpinan 2000). The method can be used for denoising, and sev-
eral experiments seem to indicate that it equals the performance of BM3D
and LLSC (Mairal et al. 2009a).

5.6. Portilla et al. wavelet neighbourhood denoising (BLS-GSM )

The basic idea of this algorithm is modelling a noiseless ‘wavelet coefficient
neighbourhood’, P , by a Gaussian scale mixture (GSM), which is defined by

P =
√
zU,

where U is a zero-mean Gaussian random vector and z is an independent
positive scalar random variable. The wavelet coefficient neighbourhood
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turns out to be a patch of an oriented channel of the image at a given
scale, complemented with a coefficient of the channel at the same orienta-
tion and the next lower scale. Thus, we again adopt the patch notation
P . (Arguably, this method is the first patch-based method.) Using a GSM
model for P estimated from the image itself, the method makes a Bayes
least-squares (BLS) estimator. For this reason, the method will be called
here BLS-GSM (Bayes least-squares estimate of Gaussian scale mixture;
Portilla et al. called it simply BLS). Without loss of generality it is assumed
that Ez = 1, and therefore the random variables U and P have similar
covariances. To use the GSM model for wavelet patch denoising, the noisy
input image is first decomposed into a wavelet pyramid, and each image
of the pyramid will be separately denoised. The resulting denoised image
is obtained by the reconstruction algorithm from the wavelet coefficients.
To avoid ringing artifacts in the reconstruction, a redundant version of the
wavelet transform, the so-called steerable pyramid, is used. For an n1 × n2

image, the pyramid P is generated in log2(min(n1, n2)− 4) scales and eight
orientations using the following procedure. First the input image is de-
composed into one low-pass and eight oriented high-pass component images
using two polar filters in quadrature in the Fourier domain (the sum of their
squares is equal to 1). Using polar coordinates (r, θ) in the Fourier domain,
the low-pass and high-pass isotropic filters are

l(r) =

⎧⎪⎨
⎪⎩

1 0 ≤ r < 0.5,

cos(π2 (− log2 r − 1)) 0.5 ≤ r < 1,

0 1 ≤ r ≤
√
2,

(5.13)

and

h(r) =

⎧⎪⎨
⎪⎩

0 0 ≤ r < 0.5,

cos(π2 (log2 r)) 0.5 ≤ r < 1,

1 1 ≤ r ≤
√
2.

(5.14)

The high-pass filter h is decomposed again into eight oriented components,

ak(r, θ) = h(r)gk(θ), k ∈ [0,K − 1], (5.15)

where K = 8, and

gk(θ) =
(K − 1)√

K[2(K − 1)]

[
2 cos

(
θ − πk

K

)]K−1

. (5.16)

Then the steerable pyramid is generated by iteratively applying the ak filters
to the result of the low-pass filter to obtain bandpass images, and calculating
the residual using the l filter followed by sub-sampling. For example, in the
case of a 512× 512 image we have a five-scale pyramid consisting of 49 sub-
bands: eight high-pass oriented sub-bands, from P1 to P8, eight bandpass
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oriented sub-bands for each scale, from P9 to P48, in addition to one low-
pass non-oriented residual sub-band, P49. (Without loss of generality we
shall keep this number 49 as a landmark, but the number of course depends
on the image size.) Assume now that the image has been corrupted by
independent additive Gaussian noise. Therefore, a typical neighbourhood
of wavelet coefficients can be represented by

P̃ = P +N =
√
zU +N, (5.17)

where noise, N , and P are considered to be independent. Define ps(i, j)
to be the sample at position (i, j) of the sub-band Ps, the sub-bands being
enumerated as s = 1, . . . , 49, for example. The neighbourhood of the wavelet
coefficient ps(i, j) is composed of its spatial neighbours for the same sub-
band s. It could also have contained coefficients from other sub-bands at
the same scale as ps(i, j) but with different orientations, and could finally
also contain sub-band coefficients from the adjacent scales, up and down.
Surprisingly, the final neighbourhood is quite limited. Portilla et al. claim
that the best efficiency is reached with a 3× 3 spatial block around ps(i, j),
supplemented with one coefficient at the same location and, at the next-
coarser scale (considering its up-sampled parent by interpolation), with the
same orientation. Hence, the neighbourhood size is 10 and contains only
{ps(i − 1, j − 1), . . . , ps(i + 1, j + 1), ps+8(i, j)}. There are two exceptions
to this. First, the neighbourhood of coarsest-scale coefficients (without any
coarser scale) necessarily has only nine surrounding coefficients. Second,
the boundary coefficients are processed using special steps described below.
Using the observed noisy vector, P̃ , an estimate of P can be obtained by

E(P | P̃ ) =

∫ ∞

0
P(z | P̃ )E(P | P̃ , z) dz.

This estimate is the Bayesian denoised value of the reference coefficient.
The integral is computed numerically on experimentally obtained sampled
intervals of z. Here, only 13 equally spaced values of z in the interval
[ln(zmin), ln(zmax)] = [−20.5, 3.5] are used. Therefore E(P | P̃ ) is computed
using

E(P | P̃ ) =
13∑
i=1

P(zi | P̃ )E(P | P̃ , zi). (5.18)

The only question left is how to compute the conditional probability and
the conditional expectation, P(zi | P̃ ) and E(P | P̃ , zi). For each sub-band
Ps, except for the low-pass residual P49, which remains unchanged, define
Cs

N and Cs
P̃
, respectively the noise and the observation covariance matrices

of the wavelet neighbourhood. If ns denotes the size of neighbourhood at
sub-band Ps (so ns is 10 or 9, as explained above), Cs

N is an ns×ns matrix
which can be experimentally generated by first decomposing a delta function
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σδ on the steerable pyramid. Here σ is the known noise variance and δ is
an n1 × n2 image defined by

δ(i, j) =

{
1 (i, j) =

(
n1
2 , n2

2

)
,

0 otherwise.

(This covariance matrix is equal to the covariance of the white noise defined
as a band-limited function obtained by randomizing uniformly the phase of
the Fourier coefficients of the discrete Dirac mass δ.) Using the steerable
pyramid decomposition of σδ, define Ns to be the matrix which has as
its rows all neighbourhoods of the sub-band Ps. This is a matrix with ns

columns and (n1−2)(n2−2) rows, subtracting 2 to eliminate the boundary
coefficients. The covariance matrix Cs

N of the neighbourhood samples for
each sub-band is computed using

Cs
N =

NT
s Ns

(n1 − 2)(n2 − 2)
.

Since all the noise removal steps are calculated for each sub-band separately,
in the following we skip the superscript s to simplify the notation. Similarly,
but using the pyramid of observed noisy samples, CP̃ can be computed.
Using (5.17) and the assumption Ez = 1, for each sub-band s we have

CU = CP̃ −CN .

CU can be forced to be positive semi-definite by setting its negative eigen-
values to zero. We can now calculate E(P | P̃ , zi). Using the fact that P
and N are independent Gaussian random variables and also that the noise
is additive, E(P | P̃ , zi) is simply a local Wiener estimate,

E(P | P̃ , z) =
zCU

zCU +CN
P̃ ,

where the matrix fraction notation is understood to mean C
W := CW−1.

Clearly it would be cumbersome to compute as many matrix inversions
as zis. Fortunately, with a bit of linear algebra this computation can be
rendered common to all zi. Let {Q,Λ} be the eigenvectors and eigenvalues
of S−1CUS

−T , where Sns×ns is the symmetric square root of CN , CN =
SST . So we have S−1CUS

−T = QΛQT . Furthermore, set M = SQ, v =
M−1P̃ . Then we have

E(P | P̃ , z) =
zCU

zCU +CN
P̃

=
zCU

zCU + SST
P̃

=
zCU

S(zS−1CUS
−T + I)ST

P̃
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=
zCU

SQ(zΛ+ I)QTST
P̃

= zCUS
−TQ(zΛ+ I)−1QTS−1P̃

= zSS−1CUS
−TQ(zΛ+ I)−1QTS−1P̃

= zSQΛ(zΛ+ I)−1QTS−1P̃

= zMΛ(zΛ+ I)−1v.

The interesting point is that one can calculate M, Λ and v once for each
sub-band. The scalar final formulation of the above equation is

E(P | P̃ , zi)c =
ns∑
j=1

zimc,jλj,jvj
ziλj,j + 1

, (5.19)

where mc,j , λj,j and vj are the elements of M, Λ and v respectively, and c
is the index of the reference coefficient in the neighbourhood.
The second component of (5.18) is P(zi | P̃ ), which can be obtained

using Bayes’ rule. Here pz(z) denotes the density function of the random
variable z,

P(zi | P̃ ) =
P(P̃ | zi)pz(zi)∫∞

0 P(P̃ | α)pz(α) dα
,

or its discrete form,

P(zi | P̃ ) =
P(P̃ | zi)pz(zi)∑13
j=1 P(P̃ | zj)pz(zj)

, (5.20)

where the density of the observed noisy neighbourhood vector P̃ , condi-
tioned on zi, is a zero-mean Gaussian with covariance

CP̃ |zi := ziCU +CN ,

so that

P(P̃ | zi) =
e−

1
2
P̃T (zCU+CN )−1P̃√
|zCU +CN |

.

Using the above definitions of v and Λ and the same simplifications as for
E(P | P̃ , zi), we obtain

P(P̃ | zi) =
e
− 1

2

∑ns

j=1

v2j
zjλj,j+1√

Πns

j=1(ziλj,j + 1)
, (5.21)

The only question left is the form of pz(z). Portilla et al. (2003), after
a somewhat puzzling discussion, adopt a ‘non-informative Jeffreys prior’,
pz(z) � 1

z . Since this function cannot be a density, being non-integrable,
the function is cut off to zero near z = 0. The algorithm of Portilla et al.
(2003) is given here as Algorithm 9.
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Algorithm 9 Portilla et al. wavelet neighbourhood denoising (BLS-GSM)

Input. Noisy image.
Output. Denoised image.

Parameters: n1 × n2 the image size,
number of pyramid scales log2(min(n1, n2)− 4).
Parameter s, enumeration of all oriented channels at each scale
(8 per scale).
Establish ns, dimension of wavelet neighbourhood coefficient (10 or 9).

Apply the wavelet pyramid (5.13)–(5.16), respectively, to the noise image
δ and to the observed image.
Regroup the obtained wavelet coefficients to obtain P̃ s, the wavelet co-
efficient neighbourhoods of rank s and N s the noise wavelet coefficient
neighbourhoods of rank s.
for each filter index s do

Compute Cs
N and Cs

P̃
, the noise and observation covariance matrices

of Ns and P̃s. (The subscript s is omitted hereafter.) Deduce CU =
CP̃ −CN .

Compute {Q,Λ}, the eigenvectors and eigenvalues of S−1CUS
−T ,

where S is the symmetric square root of CN , CN = SST .
end for
for each wavelet coefficient neighbourhood P̃ and i ∈ {1, . . . , 13} do

Compute M = SQ, v = M−1P̃ .

Using (5.19) obtain E(P | P̃ , zi)c =
∑ns

j=1
zimc,jλj,jvj
ziλj,j+1 , where mc,j , λj,j

and vj are the elements of M, Λ and v respectively, and c is the index
of the reference coefficient in the neighbourhood.
Apply (5.20) to get

P(zi | P̃ ) =
P(P̃ | zi)pz(zi)∑13
j=1 P(P̃ | zj)pz(zj)

,

using the value obtained by (5.21) for

P(P̃ | zi) =
e
− 1

2

∑ns

j=1

v2j
zjλj,j+1√

Πns

j=1(ziλj,j + 1)
.

By (5.18) finally obtain E(P | P̃ ) =
∑13

i=1 P(zi | P̃ )E(P | P̃ , zi),
where pz(z) � 1

z and zi are quantized uniformly on the interval
[ln(zmin); ln(zmax)] = [−20.5, 3.5].

end for
Reconstruct the restored image from its restored neighbourhood coeffi-
cients E(P | P̃ ) by the inverse steerable pyramid.
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As we shall see in Section 7, in spite of its formalism, this method is in fact
extremely similar to other patch-based Bayesian methods. It has received
a more recent extension, reaching state-of-the-art performance, in Lyu and
Simoncelli (2009): this paper proposes an extension of the above method
modelling the wavelet coefficients as a global random field of Gaussian scale
mixtures.

5.7. K-SVD

The K-SVD method was introduced by Aharon, Elad and Bruckstein (2006),
whose whole objective was to optimize the quality of sparse approximations
of vectors in a learnt dictionary. Although they noted the relevance of the
technique to image processing tasks, it was Elad and Aharon (2006) who
made a detailed study of the denoising of grey-scale images. Since then, the
adjustment to colour images has been treated by Mairal et al. (2008). Let
us note that Mairal et al. (2008) proved that the K-SVD method can also
be useful in other image processing tasks, such as non-uniform denoising,
demoisaicing and inpainting. For a detailed description of K-SVD the reader
is referred to Mairal (2010) and Mairal et al. (2009b).

The algorithm is divided into three steps. In the two first steps an opti-
mal dictionary and a sparse representation are built for each patch in the
image, using among other tools a singular value decomposition (SVD). In
the last step, the restored image is built by aggregating the computed sparse
representations of all image patches. The algorithm requires an initializa-
tion of the dictionary, which is updated during the process. The dictionary
initialization may contain the usual orthogonal basis (e.g., the discrete co-
sine transform, or wavelets), or patches from clean images, or even from the
noisy image itself.
The first step looks for sparse representations of all patches of size κ2 in

the noisy image in vector form Ũ using a fixed dictionary D. A dictionary
is represented as a matrix of size κ2×ndict, with ndict ≥ κ2, whose columns
(the ‘atoms of the dictionary’) are normalized in the Euclidean norm. For
each noisy patch RiŨ (where the index i indicates that the top left corner of
the patch is the pixel i, andRi is the matrix extracting the patch vector from
Ũ), a ‘sparse’ column vector αi (of size ndict) is calculated by optimization.
This vector of coefficients should have only a few non-zero coefficients, the
distance between RiŨ and its sparse approximation Dαi remaining as small
as possible. The dictionary allows one to compute a sparse representation αi

of each patch RiŨ . These sparse vectors are assembled in a matrix α with
κ2 rows and Np columns, where Np is the number of patches of dimension
κ2 of the image.
More precisely, an ORMP (orthogonal recursive matching pursuit) gives

an approximate solution of the (NP-complete) problem

argmin
αi

‖αi‖0 such that ‖RiŨ −Dαi‖22 ≤ κ2(Cσ)2, (5.22)
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Algorithm 10 K-SVD algorithm for grey-scale images

Input. Noisy image ũ, Ũ in vector form, noise standard deviation σ;
dimension of patches κ2 (number of pixels); dictionary size ndict; iteration
number K of the dictionary optimization; initial patch dictionary Dinit

as matrix with ndict columns and κ2 rows.
Output. Image in vector form Û .

Collect all noisy patches of dimension κ2 in column vectors RiŨ .
Set D̂ = Dinit.

for k=1 to K do

An ORMP is applied to the vectors RiŨ in such a way that a vector
of sparse coefficients α̂i is obtained verifying RiŨ ≈ Dα̂i.

Introduce ωl = { i | α̂i(l) �= 0 };
For i ∈ ωl, obtain the residual

eli = RiŨ − D̂α̂i + d̂lα̂i(l);

Put these column vectors together in a matrix El. Values α̂i(l) are also
assembled in a row vector denoted by α̂l for i ∈ ωl;
Update d̂l and α̂l as solutions of the minimization problem:

(d̂l, α̂
l) = argmin

dl,αl
‖El − dlα

l‖2F .

A truncated SVD is applied to the matrix El. It partially provides U,
V (orthogonal matrices) and Δ (filled in with zeros except on its first

diagonal), such that El = UΔVT . Then d̂l is defined again as the first
column of U and α̂l as the first column of V multiplied by Δ(1, 1).

end for

Aggregation. For each pixel the final result Û in vector form is obtained
thanks to the weighted aggregation

Û =

(
λI+

∑
i

RT
i Ri

)−1(
λŨ +

∑
i

RT
i D̂α̂i

)
.

where ‖αi‖0 refers to the l0-norm of αi, i.e., the number of non-zero coeffi-
cients of αi. The additional constraint guarantees that the residual has an
l2-norm lower than κCσ. C is a user parameter.
The second step tries to update one by one the columns of the dictionary

D and the representations α, to improve the overall fidelity of the patch
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approximation. The goal is to decrease the quantity∑
i

‖Dαi −RiŨ‖22 (5.23)

while keeping the sparsity of the vectors αi. We will denote by d̂l (1 ≤
l ≤ ndict) the columns of the dictionary D̂. First, the quantity (5.23)

is minimized without taking care of the sparsity. The atom d̂l and the
coefficients α̂i(l) are modified to make the approximations of all the patches
more efficient. For each i, introduce the residual

eli = RiŨ − D̂α̂i + d̂lα̂i(l), (5.24)

which is the error committed by deciding to omit d̂l from the representation
of the patch RiŨ . Thus eli is a vector of size κ2.
These residuals are grouped together in a matrix El (whose columns are

indexed by i). The values of the coefficients α̂i(l) are also grouped in a row
vector denoted by α̂l. Therefore, El is a matrix of size κ2 ×Np (recall that
Np is the total number of patches in the image) and α̂l is a row vector of

size Np. We must try to find a new d̂l and a new row vector α̂l minimizing∑
i

‖D̂α̂i − d̂lα̂i(l) + dlα
l −RiŨ‖22 = ‖El − dlα

l‖2F , (5.25)

where the squared Frobenius norm ‖M‖2F refers to the sum of the squared
elements of M. This Frobenius norm is also equal to the sum of the squared
(Euclidean) norms of the columns, and it is plausible that minimizing (5.25)

amounts to reducing the approximation error caused by d̂l. It is well known
that the minimization of such a Frobenius norm consists of a rank-one ap-
proximation, which always admits a solution, obtained in practice using the
SVD. Using the SVD of El,

El = UΔVT ,

where U and V are orthogonal matrices and Δ is a diagonal matrix whose
diagonal elements are non-negative and decreasing, the updated values of
d̂l and α̂l are, respectively, the first column of U and the first column of V
multiplied by Δ(1, 1).

After K iterations of these two steps, a denoised patch D̂α̂i is available
for each patch position i, where D̂ is the final updated dictionary. The third
and last (aggregation) step consists in merging the denoised versions of all
patches of the image in order to obtain a global estimate. This is achieved
by solving the minimization problem

Û = arg min
U0∈RM

λ‖U0 − Ũ‖22 +
∑
i

‖D̂α̂i −RiU0‖22
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using the closed formula

Û =

(
λI+

∑
i

RT
i Ri

)−1(
λŨ +

∑
i

RT
i D̂α̂i

)
. (5.26)

For each pixel this amounts to averaging its initial noisy value with the aver-
age of all estimates obtained with all patches containing it. The parameter
λ controls the trade-off between these two values and thus measures the
fidelity to the initial noisy image.
Mairal et al. (2008) proposed direct extension of the algorithm to vector-

valued images, instead of converting the colour image to another colour
system decorrelating geometry and chromaticity. The previous algorithm is
applied to column vectors which are a concatenation of the R,G,B values.
In this way, the algorithm, when updating the dictionary, takes into account
the inter-channel correlation. We shall describe the algorithm for grey-scale
images: the colour version simply requires an adaptation of the Euclidean
norm to the colour space.

5.8. BM3D

BM3D is a sliding-window denoising method extending DCT denoising and
NL-means. Instead of adapting locally a basis or choosing from a large
dictionary, it uses a fixed basis. The main difference from DCT denois-
ing is that a set of similar patches are used to form a three-dimensional
block, which is filtered by using a three-dimensional transform, hence the
name collaborative filtering. The method has four steps: (a) finding the
image patches similar to a given image patch and grouping them in a
three-dimensional block, (b) three-dimensional linear transform of the three-
dimensional block, (c) shrinkage of the transform spectrum coefficients, and
(d) inverse three-dimensional transformation. This three-dimensional fil-
ter therefore filters out simultaneously all two-dimensional image patches
in the three-dimensional block. By attenuating the noise, collaborative fil-
tering reveals even the finest details shared by the grouped patches. The
filtered patches are then returned to their original positions and an adap-
tive aggregation procedure is applied by taking into account the number of
kept coefficients per patch during the thresholding process (see Section 4
for more details of aggregation).
The first collaborative filtering step is much improved in a second step

using an oracle Wiener filtering. This second step mimics the first step,
with two differences. The first difference is that it compares the filtered
patches instead of the original patches, as described in Section 4. The
second difference is that the new three-dimensional group (built with the
unprocessed image samples, but using the patch distances of the filtered
image) is processed by an oracle Wiener filter, using coefficients from the
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Algorithm 11 BM3D first iteration algorithm for grey-scale images

Input. Noisy image ũ, noise standard deviation σ.
Output. Basic estimate û1 of the denoised image.

Set parameter κ× κ = 8× 8: dimension of patches.
Set parameter λ× λ = 39× 39: size of search zone for similar patches.
Set parameter Nmax = 16: maximum number of similar patches retained during
the grouping part.
Set parameter s = 3: step in both rows and columns between two reference
patches.
Set parameter λ3D = 2.7: coefficient used for the hard thresholding.
Set parameter τ = 2500 (if σ > 40, τ = 5000): threshold used to determine
similarity between patches.

for each pixel i, with a step s in rows and columns do

Select a square reference patch P̃ around i of size κ× κ.

Look for square patches Q̃ in a square neighbourhood of i of size λ×λ having
a distance to P̃ lower than τ .

if there are more than Nmax similar patches then
keep only the Nmax closest similar patches to P̃ according to their Euclidean
distance

else
keep 2p patches, where p is the largest integer such that 2p is smaller than
the number of similar patches

end if

A 3D group P(P̃ ) is built with those similar patches.

A biorthogonal spline wavelet (Bior 1.5) is applied on every patch in P(P̃ ).

A Walsh–Hadamard transform is then applied along the third dimension of
the 3D group P(P̃ ).

A hard thresholding with threshold λ3Dσ is applied to P(P̃ ). An associated
weight wP̃ is computed:

wP̃ =

{
(NP̃ )

−1 NP̃ ≥ 1,

1 NP̃ = 0,

where NP̃ is the number of retained (non-zero) coefficients.

The estimate ûQ̃,P̃
1 for each pixel i in similar patches Q̃ of the 3D group P(P̃ )

is then obtained by applying the inverse of the Walsh–Hadamard transform
along the third dimension, followed by the inverse of the biorthogonal spline
wavelet on every patches of the 3D group.

end for

for each pixel i do
Aggregation. Recover the denoised value at i by averaging all estimates of
all patches Q̃ in all 3D groups P(P̃ ) containing i, using the weights ωP̃ .

end for
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Algorithm 12 BM3D second iteration algorithm for grey-scale images

Input. Noisy image ũ; noise standard deviation σ; basic estimate û1 obtained
at the first step.
Output. Final denoised image û.

Set parameter κ×κ = 8×8 (up to 12 for high noise level): dimension of patches.
Set parameter λ× λ = 39× 39: size of search zone for similar patches.
Set parameter Nmax = 32: maximum number of similar patches retained during
the grouping part.
Set parameter s = 3: step in both rows and columns between two reference
patches.
Set parameter τ = 400 (if σ > 40, τ = 3500): threshold used to determinate
similarity between patches.

for each pixel i, with a step s in rows and columns do

Take the square reference patches P̃ and P̂1 centred at i, of size κ× κ in the
initial and basic estimation images.

Look for square patches Q̂1 in a square neighbourhood of i of size λ×λ having
a distance lower than τ in the basic estimate image û1.

Select the number of similar patches as done in the first step.

Two 3D groups P(P̃ ) and P(P̂1) are built with those similar patches, one from
the noisy image ũ and one from the basic estimate image û1.

A 3D transform (denoted by τ3D) is applied on both 3D groups:

– First a 2D DCT is applied on every patch contained in P(P̃ ) and P(P̂1);
– Then a Walsh–Hadamard transform is applied along the third dimension

of P(P̃ ) and P(P̂1).

Compute the Wiener coefficient ωP̃ = |τ3D(P(P̂1)|2
|τ3D(P(P̂1)|2+σ2

.

The Wiener collaborative filtering of P(P̃ ) is realized as the element-by-
element multiplication of the 3D transform of the noisy image τ3D(P(P̃ )) with
the Wiener coefficients ωP̃ .

An associated weight wP̃ is computed:

wP̃ =

{
(‖ωP̃ ‖2)−2 ‖ωP̃ ‖2 > 0,

1 ‖ωP̃ ‖2 = 0.

The estimate ûQ̃,P̃
2 for each pixel i in similar patches Q̃ of the 3D group P(P̃ ) is

then obtained by applying the inverse of the 1D Walsh–Hadamard transform
along the third dimension, followed by the inverse of the 2D DCT on every
patch of the 3D group.

end for

for each pixel i do
Aggregation. Recover the denoised value û(i) at i by averaging all estimates
of patches Q̃ in all 3D groups P(P̃ ) containing i, using the weights ωP̃ .

end for
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denoised image obtained at the first step to approximate the true coefficients
given by Theorem 3.1. The final aggregation step is identical to that of the
first step.
The algorithm is extended to colour images via the YoUoVo colour system.

The previous strategy is applied independently to each channel, with the
exception that similar patches are always selected by computing distances
in the channel Yo.
Here we have described the basic implementation given in the original

paper, and which will also be used in Section 6. However, BM3D has sev-
eral more recent variants that improve its performance. As for NL-means,
there is a variant with shape-adaptive patches (Dabov, Foi, Katkovnik and
Egiazarian 2009). In this algorithm, called BM3D-SAPCA, the sparsity
of image representation is improved in two respects. First, it employs im-
age patches (neighbourhoods) which can have a data-adaptive shape. Sec-
ond, the PCA bases are obtained by eigenvalue decomposition of empirical
second-moment matrices that are estimated from groups of similar adaptive-
shape neighbourhoods. This method improves BM3D, especially in preserv-
ing image details and introducing very few artifacts. The anisotropic shape-
adaptive patches are obtained using the 8-directional LPA-ICI techniques
(Katkovnik, Egiazarian and Astola 2006).
The very recent development of BM3D is presented in Katkovnik, Daniel-

yan and Egiazarian (2011) and Danielyan, Katkovnik and Egiazarian (2012),
where it is generalized to become a generic image restoration tool, including
deblurring.

5.9. The piecewise linear estimation (PLE ) method

The ambitious Bayesian restoration model proposed by Yu, Sapiro and Mal-
lat (2010, 2012) is a general framework for restoration, including denois-
ing, deblurring, and inpainting. An image is decomposed into overlapping
patches P̃i = AiPi + Ni, where Ai is the degradation operator restricted
to the patch i, Pi is the original patch, P̃i the degraded one, and Ni the
noise restricted to the patch. Since we are only studying the denoising prob-
lem, we shall take Ai to be the identity. The (straightforward) extension
including a linear perturbation operator is beyond our scope.
The patch density law is modelled as a mixture of Gaussian distributions

{N (μk,Ck)}1≤k≤K parametrized by their means μk and covariance matrices

Ck. Thus each patch P̃i is assumed to be independently drawn from one of
these Gaussians with an unknown index k and the density function

p(Pi) =
1

(2π)
κ2

2 |Cki |
1
2

e
− 1

2
(Pi−μk)

TC−1
ki

(Pi−μk).
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Algorithm 13 Piecewise linear estimation (PLE)

Input. Noisy image ũ given by the family of its noisy patches (P̃i)i; initial
set of 19 Gaussian models N (μk,Ck) obtained as: (a) the 18 PCAs of the
patches of 18 synthetic edge images, each with a different orientation, (b)
a Gaussian model with a diagonal covariance matrix on the DCT basis.
Output. Denoised image û.

E-STEP
for all patches P̃i of the noisy image do

for each k do
Estimate the MAP of Pi knowing k: P k

i = μk + (I+ σ2C−1
k )−1P̃i.

end for
Select the best Gaussian model ki for Pi as
ki = argmink

(
‖P k

i − P̃i‖2 + σ2(P k
i − μk)

TC−1
k (P k

i − μi) + log |Ck|
)
.

Obtain the best estimate of Pi knowing the Gaussian models (μk,Ck),

P̂i = P ki
i .

end for

M-STEP
for all k do

Compute the expectation μk and covariance matrix Ck of each Gaus-
sian by

μk =
1

#Ck
∑
i∈Ck

P̂i, Ck =
1

#Ck − 1

∑
i∈Ck

(P̂i − μk)(P̂i − μk)
T .

end for
Iterate E-STEP and M-STEP
Aggregation. Obtain the pixel value of the denoised image u(i) as a
weighted average of all values of all denoised patches Pi which contain i.

Estimating all patches Pi from their noisy observations P̃i amounts to solv-
ing the following problems:

• estimating the Gaussian parameters (μk,Ck)1≤k≤K from the degraded

data P̃i,

• identifying the index ki of the Gaussian distribution generating the
patch Pi,

• estimating Pi from its corresponding Gaussian distribution (μki ,Cki)

and from its noisy version P̃i.

In consequence PLE (Yu et al. 2012) has two distinct steps in the estimation
procedure. In an E-step (E for estimate), the Gaussian parameters (μk,Ck)k
are known, and for each patch the maximum a posteriori (MAP) estimate
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P̂ k
i is computed with each Gaussian model. Then the best Gaussian model

ki is selected to obtain the estimate P̂i = P̂ ki
i .

In the M-step (M for model), the Gaussian model selection ki and the

signal estimates f̂i are assumed to be known for all patches i, and again
permit estimation of the Gaussian models (μk,Ck)1≤k≤K . According to the
terminology of Section 4.2, this subsection gives the oracle allowing us to
estimate the patches by a Wiener-type filter in the E-step.
For each image patch with index i, the patch estimate and its model selec-

tion are obtained by maximizing the log a posteriori probability P(Pi | P̃i, k),

(P̂i, ki) = argmax
P,k

logP(Pi | P̃i,Ck) (5.27)

= argmax
P,k

(
logP(P̃i | Pi,Ck) + logP(Pi | Ck)

)
= argmin

Pi,k

(
‖Pi − P̃i‖2 + σ2(Pi − μk)

TC−1
k (Pi − μk) + σ2 log |Ck|

)
where the second equation follows from Bayes’ rule and the third one as-
sumes white Gaussian noise with diagonal covariance matrix σ2I (of the
dimension of the patch) and Pi � N (μk,Ck). This minimization can be
made first over Pi, which amounts to a linear filter, and then over k, which
is a simple comparison of a small set of real values. The index k being fixed,
the optimal P k

i satisfies

P k
i = argmin

Pi

(
‖Pi − P̃i‖2 + σ2(Pi − μk)

TC−1
k (Pi − μi) + log |Ck|

)
,

and therefore

P k
i = μk + (I+ σ2C−1

ki
)−1(P̃i − μk),

which is the formula (5.2) already seen in Section 5.2. Then the best Gaus-
sian model ki is selected as

ki = argmin
k

(
‖P k

i − P̃i‖2 + σ2(P k
i − μk)

Tσ−1
k (P k

i − μi) + log |Ck|
)
.

Assuming now that, for each patch Pi, the model ki and estimate P̂i are
known, the next question is to give the maximum likelihood estimate for
(μk,Ck) for each k, given all the patches assigned to the kth cluster Ck,
namely,

(μk,Ck) = arg max
μk,Ck

logP({P̂i}i∈Ck | μk,Ck).

This yields the empirical estimate

μk =
1

#Ck
∑
i∈Ck

P̂i, Ck =
1

#Ck − 1

∑
i∈Ck

(P̂i − μk)(P̂i − μk)
T ,

which are the estimates (5.3) also used in Section 5.2.
Finally, the above MAP-EM algorithm is iterated and Yu et al. observe
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(a) (b) (c)

Figure 5.6. From Yu et al. (2012). (a) Typical dictionary atoms learned
from the classic image Lena with K-SVD. (b, c) The numerical procedure to
create one of the oriented PCAs. (b) A synthetic edge image. Patches 8× 8
touching the edge are used to calculate an initial PCA basis. (c) The first 8
patches of the PCA basis (ordered by the larger eigenvalue).

that the MAP probability of the observed signals P({P̂i}i | {P̃i}i, {μk,Ck}k)
always increases. The clusters and the patch estimates converge. Neverthe-
less, this algorithm requires a good initialization. Noting that having the
adequate Gaussians describing the patch space amounts to having a good
set of PCA bases for intuitive patch clusters, Yu et al. create 19 orthogonal
bases in the following way. One of them, say k = 0, is the classic DCT basis
and corresponds to the ‘texture cluster’. The others are obtained by fixing
18 uniformly sampled directions in the plane. For each direction, PCA is
applied to a set of patches extracted from a synthetic image containing an
edge in that direction. The PCA yields an oriented orthonormal basis. In
short, the initial clusters segment the patch set into 18 classes of patches
containing an edge or an oriented texture and one class containing the more
isotropic patches.
The study by Yu et al. (2012) gives an interpretation of the patch dictio-

nary methods such as K-SVD and fuses them with Bayesian methods and
the Wiener method. In particular, Yu et al. show how the K-SVD method
actually learns patches that are quite similar to oriented patches obtained
by the above procedure, as illustrated in Figure 5.6. This analysis provides
the framework for the synthesis proposed in Section 7.

6. Comparison of denoising algorithms

In this section we shall compare the following ‘state-of-the-art’ denoising
algorithms:

• the sliding DCT filter as specified in Algorithm 3,

• the wavelet neighbourhood Gaussian scale mixture (BLS-GSM) algo-
rithm as specified in Algorithm 9,

• the classical vector-valued NL-means as specified in Algorithm 4,
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• the BM3D algorithm as specified in Algorithms 11 and 12,

• the K-SVD denoising method as described in Algorithm 10, and

• the non-local Bayes algorithm as specified in Algorithm 5.

These algorithms have been chosen for two reasons. First they have a public
and completely transparent code available, which is in agreement with their
present description. Second, they all represent distinct denoising principles
and therefore illustrate the methodological progress and the diversity of
denoising principles.
The comparison, using public-domain IPOL algorithms when possible,

will be based on four quantitative and qualitative criteria: visualization of
the method noise, namely the part of the image that the algorithm has taken
out as noise; the visual verification of the noise-to-noise principle; the mean
square error or PSNR tables; and last but but not least, the visual quality
of the restored images, which must of course be the ultimate criterion. It
is easily seen that a single criterion is not enough to judge a restoration
method. A good denoising solution must have high performance under all
mentioned criteria.

6.1. ‘Method noise’

The difference between the original image and its filtered version shows
the ‘noise’ removed by the algorithm. The procedure was introduced by
Buades, Coll and Morel (2005a), who called this difference method noise.
They pointed out that the method noise should look like a noise, at least
in the case of additive white noise. A visual inspection of this difference
tells us which geometrical features or details have been unduly removed
from the original. Only human perception is able to detect these unduly
removed structures in the method noise. Furthermore, for several classical
algorithms, such as Gaussian convolution, anisotropic filters, neighbourhood
filters or wavelet thresholding algorithms, a closed formula permits mathe-
matical analysis of the method noise, and thus gives an explanation of the
observed structure of image differences when applying the denoising method
(Buades et al. 2005b). Such an analysis is unfortunately not available, and
not easy for the state-of-the-art algorithms compared in this section. The
degree of complexity of each method does not allow for a mathematical
study of the method noise. Therefore the evaluation of this criterion will be
based only on visual inspection.
When the standard deviation of the added noise is higher than contrast in

the original image, a visual exploration of the method noise is nevertheless
not reliable. Image features in the method noise may be hidden in the
removed noise. For this reason, the evaluation of the method noise should
not rely on experiments where white noise with standard deviation larger
than 5 or 10 has been added to the original.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.1. Method noise. The noisy image was obtained by adding
Gaussian white noise of standard deviation 5. (a) Slightly noisy image,
(b) DCT sliding window (StD = 4.69), (c) BLS-GSM (StD = 4.28),
(d) NL-means (StD = 5.78), (e) K-SVD (StD = 5.67), (f) BM3D (StD =
4.25) and (g) non-local Bayes (StD = 4.28). All methods have a difference
similar to white noise even if the magnitudes of the NL-means and K-SVD
differences are larger. This is corroborated by the standard deviation of each
residual noise. Due to the thresholding nature of DCT, BLS-GSM, BM3D
and NL-Bayes, which make little change to the coefficients larger than those
predicted by noise, noise is not removed in textured and edge zones. This
can be easily seen in Figure 6.2, where a piece of the residual noise has
been enlarged.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.2. Enlargement of the method noise difference of Figure 6.1.
(a) Slightly noisy image, and the method noise for (b) DCT sliding window,
(c) BLS-GSM, (d) NL-means, (e) K-SVD, (f) BM3D and (g) non-local
Bayes. The amplitude of the noise removed by NL-means and K-SVD is
uniform all over the image, while it is region-dependent for the rest of the
algorithms. Threshold-based algorithms prefer to keep noisy values nearly
untouched on highly textured or edge zones.
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Figure 6.1 displays the method noise for the state-of-the-art algorithms
compared in this section, when Gaussian white noise of standard devia-
tion σ = 5 has been added. The image differences have been rescaled from
[−4σ, 4σ] to [0, 255] for visualization purposes, and values outside this range
have been saturated. In a first visual inspection, we see that all methods
have a difference similar to white noise. This is an outstanding property
of these algorithms, which is not shared by classical denoising techniques
such as anisotropic filtering, total variation minimization or wavelet thresh-
olding (see Buades et al. (2005b) for a more detailed study). We also see
immediately that the magnitude of the method noise of NL-means and K-
SVD is larger than for the rest of the methods. This is corroborated by the
standard deviation of each residual noise (see Figure 6.1), which is � 5.7
for NL-means and K-SVD, � 4.7 for DCT denoising, and � 4.25 for the
other algorithms. DCT-denoising, BLS-GSM, BM3D and non-local Bayes
keep the transform coefficients that are larger than those predicted by noise.
This explains why they remove little noise in textured or edge regions. This
fact can be easily seen in Figure 6.2, where a piece of the residual noise
of Figure 6.1 has been enlarged. The amplitude of the noise removed by
NL-means and K-SVD is uniform all over the image, while it depends on
the underlying image for the rest of the algorithms.

6.2. The ‘noise-to-noise’ principle

The noise-to-noise principle, introduced by Buades et al. (2008b), requires
a denoising algorithm to transform white noise into white noise. This para-
doxical requirement seems to be the best way to characterize artifact-free
algorithms. The transformation of white noise into any correlated signal
creates structure and artifacts. Only white noise is perceptually devoid of
structure, as was pointed out by Attneave (1954).
The noise-to-noise of classical denoising algorithms was studied by Buades

et al. (2008b), who showed that neighbourhood filters and, asymptotically,
NL-means transform white noise into white noise. The convolution with a
Gauss kernel keeps the low frequencies and cancels the high ones. Thus, the
filtered noise actually shows big grains due to its prominent low frequencies.
Noise filtered by a wavelet or DCT thresholding is no longer white noise.
The few coefficients with a magnitude larger than the threshold are spread
all over the image. The pixels which do not belong to the support of one of
these coefficients are set to zero. The visual result is a constant image with
superimposed wavelets or cosines if the DCT is used. The mathematical
analysis of the rest of the algorithms is not feasible due to its degree of
complexity. Thus, only a visual inspection of this filtered noise is possible.
The methodology adopted to process the noise-to-noise and to exhibit it

is as follows.
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Table 6.1.

Method PSNR RMSE

NL-Bayes 45.45 1.36
BM3D 45.03 1.43
NL-means 41.45 2.16
TV denoising 41.06 2.26
DCT denoising 40.91 2.30
K-SVD 38.44 3.05

(a) (b) (c)

(d) (e) (f)

Figure 6.3. The noise-to-noise principle: a three-channel colour noisy image
filtered by the state-of-the-art methods. (a) The noisy image (flat, with
independent homoscedastic noise added on each channel). Then, the same
image denoised by (b) DCT sliding window, (c) NL-means, (d) K-SVD,
(e) BM3D and (f) non-local Bayes. The more the denoised image of a noisy
image looks like a noisy image the better. Indeed, structured noise creates
artifacts. BLS-GSM was not compared because we lack a colour version for
this algorithm. None of the methods gives a satisfactory result: they all
create a lower-frequency oscillation or local artifacts for DCT and BM3D.
Only a multiscale version could cope with the low-frequency remaining noise.
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• Since most recent methods process colour images (except BLS-GSM),
the noise-to-noise is applied on a colour flat image, i.e., an image with
three channels of slightly different values:4 RGB = (127, 128, 129).

• To reduce the variations due to the random nature of the noise, the
tests are performed on relatively large noisy images. The chosen size ’noise

images’?is 1024 × 1024. The PSNR and RMSE results then become fairly
independent of the simulated noise.

• Noise is added to each channel independently. It is therefore a colour
noise, and its standard deviation is equal to 30 on each channel of the
flat original image.

• All compared algorithms are processed on this noisy image.

• The denoised image is displayed. The mean on every channel is set
to 128, and the difference to this mean is enhanced by a factor of 5.
A small part with size 256 × 256 of the denoised image is shown in
close-up in Figure 6.3.

The results in PSNR and RMSE are summarized in Table 6.1. The ‘order’
of performance of the methods is almost respected, except for TV denoising,
which shows a really good result compared to K-SVD. Figure 6.3 displays
the filtered noisy images by several state-of-the-art algorithms. ’noise

images’?As expected, threshold-based methods present noticeable artifacts, in par-
ticular DCT denoising and BM3D. The NL-means result reflects the size of
the search zone, and therefore leaves behind a low-frequency oscillation.
Despite its good results, TV denoising presents a lot of artifacts which do
not look like noise, and are uglier than the K-SVD artifacts. Only non-
local Bayes has no artifacts. Indeed, it detects flat patches and replaces
them with their mean. This trick could in fact be applied to all algorithms.
Last but not least, each method leaves a sizeable low-frequency noise, which
could be removed with a multiscale approach.

6.3. Comparing visual quality

The visual quality of the restored image is obviously a necessary, if not
sufficient, criterion to judge the performance of a denoising algorithm. It
permits control of the absence of artifacts and the correct reconstruction
of edges, texture and fine structure. Figures 6.5–6.7 display the noisy and
denoised images for the algorithms under comparison for noise standard
deviations of 20, 30 and 40.
Figure 6.5 presents an image with straight edges and flat and fine struc-

tures with a noise of standard deviation 20. The main artifacts are notice-
able in the DCT, BLS-GSM and K-SVD denoised images. These are the

4 Values are different on each channel in order to force the algorithm to consider this
image as a colour image, and not a grey-scale image with a single channel.
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(a) alley (b) computer (c) dice

(d) flowers (e) girl (f) traffic

(g) trees (h) Valldemossa

Figure 6.4. A set of noiseless images used for the comparison tests.

most local algorithms and therefore have more trouble removing the low fre-
quencies of the noise. As a consequence, the denoised images present many
low-frequency colour artifacts in flat and dark zones. These artifacts are no-
ticeable for all these algorithms even though each uses a different strategy
to deal with colour images. DCT uses the YoUoVo, K-SVD a vector-valued
algorithm and BLS-GSM is applied independently to each RGB compo-
nent. NL-means does not suffer from these noise low-frequency problems,
but it leaves some isolated noise points on non-repetitive structures, mainly
on corners. These isolated noise points could be attenuated by using the
YoUoVo colour space instead of the vector-valued algorithm. In this experi-
ment, BM3D and non-local Bayes give similar performance, superior to the
rest of algorithms.
Figures 6.6 and 6.7 again illustrate the low-frequency colour artifacts of

DCT, BLS-GSM and K-SVD. In these figures, DCT and BLS-GSM also
suffer from a strong Gibbs effect near all image boundaries. This Gibbs
effect is nearly unnoticeable in the denoised image by K-SVD, since the
use of the whole dictionary permits better reconstruction of edges when the
right atoms are present in the dictionary. The image denoised by NL-means
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 6.5. Comparison of visual quality. The noisy image was obtained by
adding Gaussian white noise of standard deviation 20. (a) Original,
(b) noisy, (c) DCT sliding window, (d) BLS-GSM, (e) NL-means,
(f) K-SVD, (g) BM3D and (h) non-local Bayes.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 6.6. Comparison of visual quality. The noisy image was obtained by
adding Gaussian white noise of standard deviation 30. (a) Original,
(b) noisy, (c) DCT sliding window, (d) BLS-GSM, (e) NL-means,
(f) K-SVD, (g) BM3D and (h) non-local Bayes.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 6.7. Comparison of visual quality. The noisy image was obtained by
adding Gaussian white noise of standard deviation 40. (a) Original,
(b) noisy, (c) DCT sliding window, (d) BLS-GSM, (e) NL-means,
(f) K-SVD, (g) BM3D and (h) non-local Bayes.
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has no visual artifacts but is more blurred than those given by BM3D and
non-local Bayes, which clearly have superior performance to the rest of the
algorithms. The image denoised by BM3D has some Gibbs effect near edges,
which sometimes degrades the visual quality of the solution. The non-local
Bayes image shows no artifacts. It often preserves better textures than
BM3D, in which trees and vegetation can be slightly blurred by the use of
the linear transform threshold.
In short, the visual quality of DCT, BLS-GSM and K-SVD is inferior

to that of NL-means, BM3D and non-local Bayes, because of strong colour
noise low frequencies in flat zones, and of a Gibbs effect. NL-means does not
show noticeable artifacts but the denoised image is more blurred than those
of BM3D and non-local Bayes. BM3D still has some Gibbs effect due to
the use of a single basis for all pixels and a slightly inferior noise reduction,
compared to non-local Bayes.

6.4. Comparing by PSNR

The mean square error is the square of the Euclidean distance between the
original image and its estimate. In the denoising literature an equivalent
measurement, up to a decreasing scale change, is the PSNR:

PSNR = 10 log10

(
2552

MSE

)
.

These numerical quality measurements are the most objective, since they
do not rely on any visual interpretation. Tables 6.2 and 6.3 display the
PSNR of state-of-the-art denoising methods using the images in Figure 6.4
and several values of σ from 2 to 40.
Before jumping to conclusions, we would like to point out that such a

PSNR comparison is merely informative, and cannot lead to an objective
ranking of algorithms. Indeed, what is really needed is a comparison of
denoising principles. To compare them, these denoising principles must be
implemented in denoising recipes containing several ingredients. Since the
PSNR difference between recipes is very close, the way generic tools are
implemented, and the degree of sophistication with which each principle
is implemented, do matter. For example, two of our readers, Alessandro
Foi and Vladimir Katkovnik,5 have pointed out to us that an experimental
analysis carried out exclusively on colour images does not permit a com-
parison between the different strategies devised to take advantage of spatial
redundancy. They suggest complementing the denoising results on colour
images with experiments on grey-scale images. Then it would be possible to:
(1) compare the degree of success of these different denoising principles in

5 Personal communication.
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Table 6.2. PSNR table for σ = 2, 5 and 10. Only the three first digits are actually
significant; the last one may vary with different white noise realizations.

NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising

σ = 2

alley 45.42 44.95 – 41.51 42.75 44.58
computer 45.96 45.22 44.69 44.52 44.03 44.54
dice 49.00 48.86 48.59 47.79 48.51 48.39
flowers 47.77 47.31 47.12 47.09 46.36 47.05
girl 47.56 47.40 47.14 47.28 46.96 46.76
traffic 45.33 44.56 44.15 43.80 43.55 44.26
trees 43.51 43.07 – 42.05 42.22 42.95
Valldemossa 45.17 44.68 44.41 40.08 43.33 44.50

mean 46.22 45.76 – 44.27 44.71 45.37

σ = 5

alley 39.24 38.95 – 38.45 37.18 38.37
computer 40.69 39.98 39.30 39.58 38.86 39.03
dice 46.09 45.80 45.21 45.27 45.12 45.22
flowers 43.44 42.99 42.76 43.09 42.05 42.78
girl 44.26 44.03 43.70 43.59 43.44 43.36
traffic 39.70 38.67 38.10 38.75 37.50 38.21
trees 36.70 36.10 – 35.61 34.69 35.76
Valldemossa 38.73 38.33 38.02 37.87 35.94 37.94

mean 41.11 40.61 – 40.28 39.35 40.08

σ = 10

alley 35.05 34.82 – 34.29 33.53 34.22
computer 36.58 36.28 35.47 35.79 35.44 35.34
dice 43.30 43.02 42.21 41.71 42.06 42.22
flowers 39.52 39.49 39.10 39.31 38.49 39.03
girl 41.69 41.45 41.14 40.29 40.42 40.55
traffic 34.93 34.54 33.92 34.69 33.89 34.11
trees 36.70 36.10 – 35.61 29.42 30.92
Valldemossa 38.73 38.33 38.02 37.87 32.02 33.45

mean 37.06 36.83 – 36.31 35.66 36.23
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Table 6.3. PSNR table for σ = 20, 30 and 40.

NL-Bayes BM3D BLS-GSM K-SVD NL-means DCT denoising

σ = 20

alley 31.36 31.23 – 30.55 29.94 30.21
computer 33.08 32.71 31.89 31.96 31.59 31.45
dice 40.19 39.93 39.00 37.23 38.17 38.67
flowers 35.87 35.85 35.34 35.24 34.56 34.89
girl 38.92 38.71 38.49 36.36 36.81 37.27
traffic 31.14 30.83 30.14 30.70 30.12 29.98
trees 27.22 26.92 – 26.88 26.28 26.27
Valldemossa 29.81 29.57 26.97 29.08 28.37 28.91

mean 33.45 33.22 – 32.25 31.98 32.20

σ = 30

alley 29.42 29.33 – 28.60 27.58 28.25
computer 31.00 30.67 29.90 29.84 28.98 29.20
dice 38.20 37.88 37.05 36.52 37.18 35.89
flowers 33.67 33.73 33.19 33.54 32.66 32.46
girl 37.12 36.97 36.91 35.38 35.54 34.67
traffic 29.08 28.87 28.20 28.60 27.40 27.87
trees 24.95 24.64 – 24.52 23.29 23.83
Valldemossa 27.51 27.30 26.97 26.80 25.55 26.48

mean 31.37 31.17 – 30.48 29.77 29.83

σ = 40

alley 28.16 28.08 – 27.29 26.30 27.14
computer 29.55 29.15 28.52 28.25 27.31 27.44
dice 36.91 36.28 35.50 34.49 35.31 33.06
flowers 31.94 32.10 31.68 31.90 30.99 30.80
girl 36.09 35.62 35.61 33.73 34.03 32.01
traffic 27.67 27.50 26.93 27.19 26.01 26.49
trees 23.35 23.17 – 23.06 21.91 22.46
Valldemossa 27.51 25.78 25.50 25.28 24.10 25.08

mean 30.15 29.71 – 28.90 28.25 28.05
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exploiting spatial redundancy, and (2) evaluate the effectiveness of the var-
ious ways in which these grey-scale algorithms are extended to colour data.
In short, Foi and Katkovnik do not share our analysis or our conclusions

drawn from the experimental results, because these results are very much
influenced by the way colour data are treated, while many of the conclu-
sions are applied concerning the relative effectiveness in exploiting spatial
redundancy.
For the same reasons, they also disagree with the taxonomy summarized

in Table 7.1 (page 90), where it seems that the extension to colour is to pageref
addedbe considered as a feature of a particular algorithm. Some methods are

applied to colour data in a very simple non-adaptive way and thus cannot
be expected to fully decorrelate the colour channels. For instance, this is
the case for BM3D, which uses a YUV/Opp colour transformation. Data-
adaptive colour transformations for multispectral data are considered in
Danielyan, Foi, Katkovnik and Egiazarian (2010). This adaptive method
provides substantially better results than a standard colour transformation.
Another reason for being cautious is that all methods in existence do

in fact have variants, and we are using the basic algorithms as stated in
their original papers. For example, it is shown in Hou, Zhao, Yang and
Cheng (2011) that BM3D can be slightly improved for heavy noise > 40 by
changing the method parameters.
In other words, the following PSNR comparison of colour images must be

taken ‘as is’: it gives some hints, and these hints depend on the particular
implementation of the denoising principles. We observe in the results that
DCT denoising, BLS-GSM, K-SVD and NL-means have a similar PSNR.
The relative performance of the methods depends on the kind of image and
on noise level σ. On average, K-SVD and BLS-GSM are slightly superior
to the other two, even if this is not the case visually, where K-SVD and
BLS-GSM have poor visual quality compared to NL-means. In all cases,
BM3D and non-local Bayes have better PSNR performance than the others.
Because of superior noise reduction in flat zones and the presence of fewer
artifacts of non-local Bayes, the PSNR of BM3D is slightly inferior to non-
local Bayes. BM3D seems to retain the best conservation of detail. Some
ringing artifacts near boundaries can probably be eliminated by the same
trick as for non-local Bayes, namely detecting and giving a special treatment
to flat three-dimensional groups.

7. Synthesis

We have showed that all methods either already use or should adopt the
same three generic denoising tools described in Section 4. Since all meth-
ods denoise not just the pixel but a whole neighbourhood, they give several
evaluations for each pixel. Thus, they all use an aggregation step. There is
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only one method for which the aggregation is not explicitly stated as such,
the wavelet neighbourhood (BLS-GSM) algorithm. Nevertheless, closer ex-
amination shows that it denoises not just one but some 49 wavelet channels
for a 512× 512 image. The applied wavelet transform is redundant. Thus,
an aggregation is implicit in its final reconstruction step from all channels.
BLS-GSM is also patch-based. Indeed, each ‘wavelet neighbourhood’ con-
tains a 3×3 patch of a wavelet channel, complemented by one more sample
from the down-scale channel sharing the same orientation. Thus, like the
others, this algorithm builds Bayesian estimates of patches. The difference
is that the patches belong to the wavelet channels. Each one of these chan-
nels is denoised separately, before the reconstruction of the image from its
wavelet channels.
In short, even if the BLS-GSM formalization initially looks different from

the other algorithms, it relies on similar principles: it estimates patch mod-
els to denoise them, and aggregates the results. But it is also the only
multiscale algorithm among those considered here. Indeed, it denoises the
image at all scales. Furthermore, it introduces a scale interaction. These
features are neglected in the other algorithms and might make a significant
difference in future algorithms.
Why is its performance slightly inferior to that of the current state-of-the-

art algorithms? First of all, this algorithm, like many wavelet-based algo-
rithms, has not proposed a good solution to deal with colour. Applying the
colour space tool of Section 4.3 can probably bring about a PSNR improve-
ment. Portilla et al. (2003) do not specify whether there is an aggregation
step, but a first aggregation step is possible (the second aggregation being
implicit in the reconstruction step from all redundant channels). Indeed,
each wavelet channel patch contains ten coefficients, and these coefficients
are therefore estimated ten times. These estimates might be aggregated.

7.1. The synoptic table

Table 7.1 shows a synopsis of the ten methods that have been thoroughly
discussed. The classification criteria are as follows.

The method’s denoising principle

Our task here is to show that, in spite of the different language used for each
method, the underlying principles are, in fact, very similar. The dominant
principle is to compute a linear minimum least-squares estimator (LMMSE)
after building a Bayesian patch model. As a matter of fact, even if this is
not always explicit, allmethods follow the same LMMSE estimator principle
very closely. For example, the DCT threshold is simply a Wiener thresh-
olding version of the Bayesian LMMSE. This threshold is used because the
DCT of the underlying noiseless image is unknown. The same argument
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applies for NL-means, which was interpreted as an LMMSE in Section 5.1.
A close examination of K-SVD can convince the user that this algorithm
is very close to PLE, PLOW or EPLL, and conversely. Indeed, the patch
clustering performed in these three algorithms interprets the patch space as
a redundant dictionary. Each cluster is treated by a Bayesian estimator as
a Gaussian vector, for which an orthogonal eigenvector basis is computed.
This basis is computed from the cluster patches by PCA. Thus, PLE, PLOW now PLE

and EPLL actually deliver a dictionary, which is the union of several or-
thogonal bases of patches. For each noisy patch, PLE, PLOW and EPLL now PLE

select one of the bases, for which the patch will be sparse. In short, like
K-SVD, they compute a sparse representation for each patch in an over-
complete dictionary. In this argument, we follow the simple and intelligent
interpretation proposed for the PLE method by Yu et al. (2010, 2012), who
summarize their method as follows:

An image representation framework based on structured sparse model selection is
introduced in this work. The corresponding modeling dictionary is comprised of a
family of learned orthogonal bases. For an image patch, a model is first selected
from this dictionary through linear approximation in a best basis, and the signal
estimation is then calculated with the selected model. The model selection leads
to a guaranteed near optimal denoising estimator. The degree of freedom in the
model selection is equal to the number of the bases, typically about 10 for natural
images, and is significantly lower than with traditional overcomplete dictionary
approaches, stabilizing the representation.

From the algorithmic viewpoint, EPLL is a variant of PLE, but used in
a different setting. The comparison of these two almost identical Gaussian
mixture models is of particular interest. EPLL is applied to a huge set
of patches (of the order of 1010) united in some 200 clusters. PLE is ap-
plied with 19 clusters, each learned from some 64 patches. Thus, the open
question is: How many clusters and how many learning patches are truly
necessary to obtain the best PSNR? The disparity between these figures is
certainly too large to be realistic.
Finally, we must wonder if transform thresholding methods fit into the

united view of all algorithms. The Bayesian–Gaussian estimate used by
most algorithms mentioned can be interpreted as a Wiener filter on the
eigenvector basis of the Gaussian. It sometimes includes a threshold (to
avoid negative eigenvalues for the covariance matrix of the Gaussian vec-
tor). Thus, the only difference between Bayesian–Gaussian methods and
the classic transform thresholding is that in the Bayesian methods the or-
thogonal basis is adapted to each patch. Therefore, they appear to be
a direct extension of transform thresholding methods, and have logically
replaced them. BM3D combines several linear transform thresholds (2D
bior 1.5, 2D DCT, 1D Walsh–Hadamard), applied to the three-dimensional
block obtained by grouping similar patches. Clearly, it has found, by a
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Table 7.1. Synoptic table of all methods considered.

Method Denoising principle Patches Size Aggr. Oracle Col.

DCT transform threshold one 8 yes yes yes
NL-means average neighbourhood 3 yes yes no
NL-Bayes Bayes neighbourhood 3–7 yes yes yes
PLOW Bayes, 15 clusters image 11 yes yes yes
shotgun-NL Bayes 1010 patches 3–20 yes no no
EPLL Bayes, 200 clusters 2× 1010 patches 8 yes yes yes
BLS-GSM Bayes in GSM image 3 yes no no
K-SVD sparse dictionary image 8 yes yes yes
BM3D transform threshold neighbourhood 8–12 yes yes yes
PLE Bayes, 19 clusters image 8 yes yes yes

rather systematic exploration, the right two-dimensional orthogonal bases,
and therefore does not need to estimate them for each patch group.
We shall now reunite two groups of methods that are only superficially

different. NL-means, non-local Bayes, shotgun-NL, and BM3D denoise a
patch after comparing it with a group of similar patches. The other five
patch-based Bayesian methods do not perform a search for similar patches.
These other patch methods, PLE, PLOW, EPLL, BLS-GSM and K-SVD,

globally process the ‘patch space’ and construct patch models. Nevertheless,
this difference is easily reduced. Indeed, PLE, PLOW and EPLL segmentnow PLE

the patch space into a sufficient number of clusters, each one endowed with
a rich structure (an orthonormal basis). Thus, the patches contributing
to the denoising of a given patch estimation are not compared with each
other, but they are compared with the clusters. Similarly, dictionary-based
methods such as K-SVD propose over-complete dictionaries learned from the
image or from a set of images. Finding the best elements of the dictionary
to decompose a given patch, as K-SVD does, amounts to classifying this
patch. This is suggested by Yu et al. (2012), for PLE: the dictionary is a
list of orthogonal bases which are initiated by sets of oriented edges. Each
basis is therefore associated with an orientation (plus one associated with
the DCT). Thus PLE is very similar to BLS-GSM, which directly applies
a set of oriented filters. Another link between the Bayesian method and
sparse modelling is elaborated in Zhou et al. (2011).

Patches

The ‘Patches’ column in Table 7.1 indicates the number of patches used for
the denoising method, and where they are found. Trivial DCT uses only the
current patch to denoise it. NL-means, non-local Bayes and BM3D compare
the reference patch with a few hundred patches in its spatial neighbourhood.
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PLE, PLOW, BLS-GSM and K-SVD compare each noisy patch to a learned
model of all image patches. Finally, shotgun-NL and EPLL involve a virtu-
ally infinite number of patches in the estimation. Surprisingly enough, the
performance of all methods is relatively similar. Thus, the huge numbers
used to denoise in shotgun-NL and EPLL clearly depend on the fact that
the patches were not learned from the image itself, and their number can
arguably be considerably reduced.

Size (of patches)

The ‘Size’ column compares the patch sizes. All methods without exception
try to deduce the correct value of a given pixel i by using a neighbourhood
of i called a patch. This patch size goes from 3× 3 to 8× 8, with a strong
dominance of 8× 8 patches. Nevertheless, the size of the patches obviously
depends on the amount of noise and should be adapted to the noise standard
deviation. For very large noises, a size of 8× 8 can be insufficient, while for
small noises small patches might be better. As a matter of fact, all articles
focus on noise standard deviations around 30 (most algorithms are tested
for σ between 20 and 80). Little work has been done on small noise (below
10). For large noise, above 50, most algorithms do not deliver a satisfactory
result and most papers show denoising results for 20 ≤ σ ≤ 40. This may
also explain the homogeneity of the patch size.

Aggregation, oracle, colour

A good sign of maturity of the methods is that the three generic improve-
ment tools described in Section 4 are used by most methods. When a ‘no’ is
present in the table in these three columns, this indicates that the method
can probably be substantially improved with little effort by using the corre-
sponding tool. Shotgun-NL and BLS-GSM can probably gain some decibels
via aggregation and via the oracle strategy.

Algorithms compared by complexity and information

Current research focuses on obtaining the best possible results, and per-
haps the optimal results. We have followed this path and have completely
ignored complexity issues in this comparison. For example, the ‘shotgun’
patch methods are not reproducible in an acceptable time. But ‘all is fair
in love and war’. The question of how to obtain the best acceptable re-
sults must be solved first, by every possible means, before fast algorithms
are devised. On the other hand, complexity does not seem to be a serious
obstacle. Indeed, several of the mentioned algorithms are already realiz-
able, and five of them are even functioning online at Image Processing On
Line. At least two of them give state-of-the-art results. Thus, we hold the
view that complexity is not a central issue in the current debate. Another
question that emerged in this study is the amount of information needed to



92 M. Lebrun, M. Colom, A. Buades and J. M. Morel

achieve optimal denoising. Here, we have observed that the methods divide
into two groups. The simplest one (DCT denoising) uses only one image
patch and gets results only 1 dB from optimal results. The classic non-local
methods only use a larger neighbourhood of a given pixel, in spite of their
‘non-local’ epithet. Then, an intermediate class of methods uses all image
patches simultaneously. The shotgun methods use virtually all possible ex-
isting image patches. The fact that the performance gap between them is so
small seems to indicate that all obtain a decent estimate of the ‘patch space’
around each given image patch. This also means that, arguably, there is
enough information for that in just one image.

7.2. Conclusion

Most patch-based image denoising methods follow one paradigm: they unite
the transform thresholding method and a Markovian–Bayesian estimation.
This unification is complete when the patch space is assumed to be a Gaus-
sian mixture. Each Gaussian is associated with its orthonormal basis of
patch eigenvectors. Thus, transform thresholding (or a Wiener filter) is
applied to these local orthogonal bases.
This method seems to be almost optimal. It yields satisfactory results for

an interval of standard deviations ranging from 5 to 40. (These figures are
valid for current image formats, with a range of [0, 255].) Small noise (below
5) and large noise (above 50) are largely unexplored. They may require
new tools or a different theory. Are they important? The answer is yes,
because for several applications, such as photogrammetry and stereovision,
the precision varies inversely with the signal-to-noise ratio. Thus, even with
good-quality stereo pairs, it is relevant to remove even more noise. For
high noise, near-optimal denoising can be obtained by applying a global
Wiener filter using the second-order statistics of the image. Nevertheless,
all existing filters produce too many artifacts for large noise.
The multiscale aspect of denoising has been explored only on three dyadic

scales (since most patch methods use 8× 8 patches). It may be insufficient.
The success of denoising methods suggests that the statistical exploration
of images has been advancing slowly. The exploration of the huge ‘patch
space’ is only starting. Its structure remains largely unknown, and we know
little of its geometry. Its representation by a sum of Gaussians, or by a
Gaussian scale mixture, is only a first rough approximation.
Are image denoising algorithms close to achieving their optimal bounds?

For the ranges of noise that we have tested, the image visual improvement
obtained by state-of-the-art denoising methods is undeniable and sometimes
spectacular. For movies, which are much more redundant, this effect is
even more impressive. Can we deduce from the arguments developed by
Levin and Nadler (2011) and Chatterjee and Milanfar (2010) that the cur-
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rent methods are close to optimality? In these papers optimal bounds for
all patch-based methods are proposed. Nevertheless, a closer examination
shows that existing methods are probably further away from optimality
than is understood. Indeed, all state-of-the-art patch-based methods use
the aggregation step, which doubles the size of the neighbourhood effec-
tively used. Thus, in a fair comparison, the shotgun Bayesian estimate
(Levin and Nadler 2011) should use 16 × 16 patches. We might be facing
the curse of dimensionality.
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P. Coupé, P. Yger and C. Barillot (2006), Fast non local means denoising for 3D
MRI images. In Medical Image Computing and Computer-Assisted Interven-
tion: MICCAI 2, pp. 33–40.
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and M. Robles (2008), ‘MRI denoising using non-local means’, Medical Image
Analysis 12, 514–523.

J. Manjón, M. Robles and N. Thacker (2007), Multispectral MRI denoising using
non-local means. In Proc. MIUA, Vol. 7, pp. 41–45.

G. Mastin (1985), ‘Adaptive filters for digital image noise smoothing: An evalua-
tion’, Computer Vision, Graphics, and Image Processing 31, 103–121.

G. Mayer, E. Vrscay, M. Lauzon, B. Goodyear and J. Mitchell (2008), ‘Self-
similarity of images in the Fourier domain, with applications to MRI’, In
Proc. International Conference on Image Analysis and Recognition: ICIAR
2008, Vol. 5112 of Lecture Notes in Computer Science, Springer, pp. 43–52.

P. Meer, J. Jolion and A. Rosenfeld (1990), ‘A fast parallel algorithm for blind
estimation of noise variance’, IEEE Trans. Patt. Anal. Machine Intell. 12,
216–223.

Y. Meyer (1993), Wavelets: Algorithms and Applications, SIAM.
M. Mignotte (2008), ‘A non-local regularization strategy for image deconvolution’,

Pattern Recognition Letters 29, 2206–2212.
P. Milanfar (2011), ‘A tour of modern image filtering’, IEEE Signal Processing

Magazine. Preprint at http://users.soe.ucsc. edu/∼milanfar/publications/.
B. Naegel, A. Cernicanu, J. Hyacinthe, M. Tognolini and J. Vallée (2009), ‘SNR

enhancement of highly-accelerated real-time cardiac MRI acquisitions based
on non-local means algorithm’, Med. Image Anal. 13, 598–608.

A. Nemirovski (2000), Topics in non-parametric statistics. In Lectures on Proba-
bility Theory and Statistics: Saint-Flour 1998, Vol. 1738 of Lecture Notes in
Mathematics, Springer, pp. 85–277.

R. Nowak and R. Baraniuk (1997), ‘Wavelet-domain filtering for photon imaging
systems’, IEEE Trans. Image Processing 8, 666–678.

S. Olsen (1993), ‘Estimation of noise in images: An evaluation’, CVGIP: Graphical
Models and Image Processing 55, 319–323.

J. Orchard, M. Ebrahimi and A. Wong (2008), Efficient non-local-means denoising
using the SVD. In Proc. IEEE International Conference on Image Processing,
pp. 1732–1735.



100 M. Lebrun, M. Colom, A. Buades and J. M. Morel

E. Ordentlich, G. Seroussi, S. Verdu, M. Weinberger and T. Weissman (2003), A
discrete universal denoiser and its application to binary images. In Interna-
tional Conference on Image Processing, Vol. 1, pp. 117–120.

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin (2004), Using geometry
and iterated refinement for inverse problems 1: Total variation based image
restoration. Department of Mathematics, UCLA, 90095, 04–13.

E. Pennec and S. Mallat (2003), Geometrical image compression with bandelets.
In Proc. SPIE 2003, Vol. 5150, pp. 1273–1286.
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N. Wiest-Daesslé, S. Prima, P. Coupé, S. Morrissey and C. Barillot (2007), Non-
local means variants for denoising of diffusion-weighted and diffusion tensor
MRI. In Proc. 10th International Conference on Medical image Computing
and Computer-Assisted Intervention: MICCAI 2007, Vol. 4792 of Lecture
Notes in Computer Science, Springer, pp. 344–351.
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