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Abstract
Video provides not only rich visual cues such as motion

and appearance, but also much less explored long-range
temporal interactions among objects. We aim to capture
such interactions and to construct a powerful intermediate-
level video representation for subsequent recognition. Mo-
tivated by this goal, we seek to obtain spatio-temporal over-
segmentation of a video into regions that respect object
boundaries and, at the same time, associate object pix-
els over many video frames. The contributions of this pa-
per are two-fold. First, we develop an efficient spatio-
temporal video segmentation algorithm, which naturally in-
corporates long-range motion cues from the past and fu-
ture frames in the form of clusters of point tracks with co-
herent motion. Second, we devise a new track clustering
cost function that includes occlusion reasoning, in the form
of depth ordering constraints, as well as motion similarity
along the tracks. We evaluate the proposed approach on
a challenging set of video sequences of office scenes from
feature length movies.

1. Introduction
One of the great challenges in computer vision is auto-

matic interpretation of complex dynamic content of videos,
including detection, localization, and segmentation of ob-
jects and people, as well as understanding their interac-
tions. While this can be attempted by analyzing individual
frames independently, video provides rich additional cues
not available for a single image. These include motion of
objects in the scene, temporal continuity, long-range tem-
poral object interactions, and the causal relations among
events. While instantaneous motion cues have been widely
addressed in the literature, the long-term interactions and
causality remain less explored topics that are usually ad-
dressed by high-level object reasoning. In this work, we
seek to develop an intermediate representation, which ex-
ploits long-range temporal cues available in the video, and
thus provides a stepping stone towards automatic interpre-
tation of dynamic scenes.
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In particular, we aim to obtain a spatio-temporal over-
segmentation of video that respects object boundaries, and
at the same time temporally associates (subsets of) object
pixels whenever they appear in the video. This is a chal-
lenging task, as local image measurements often provide
only a weak cue for the presence of object boundaries. At
the same time, object appearance may significantly change
over the frames of the video due to, for example, changes
in the camera viewpoint, scene illumination or object orien-
tation. While obtaining a complete segmentation of all ob-
jects in the scene may not be possible without additional su-
pervision, we propose to partially address these challenges
in this paper.

We combine local image and motion measurements with
long-range motion cues in the form of carefully grouped
point-tracks, which extend over many frames in the video.
Incorporating these long point-tracks into spatio-temporal
video segmentation brings three principal benefits: (i) pixel
regions can be associated by point-tracks over many frames
in the video; (ii) locally similar motions can be disam-
biguated over a larger frame baseline; and (iii) motion and
occlusion events can be propagated to frames with no ob-
ject/camera motion.

The main contributions of this paper are two-fold. First,
we develop an efficient spatio-temporal video segmentation
algorithm, which naturally incorporates long-range motion
cues from past and future frames by exploiting groups of
point tracks with coherent motion. Second, we devise a new
track grouping cost function that includes occlusion reason-
ing, in the form of depth ordering constraints, as well as
motion similarity along the tracks.

1.1. Related work
Individual frames in a video can be segmented inde-

pendently using existing single image segmentation meth-
ods [10, 14, 27], but the resulting segmentation is not con-
sistent over consecutive frames. Video sequences can also
be segmented into regions of locally coherent motion by an-
alyzing dense motion fields [26, 37] in neighboring frames.
Zitnick et al. [40] jointly estimate motion and image over-
segmentation in a pair of frames. Stein et al. [31] analyze
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local motion and image cues in a small number of neighbor-
ing frames to estimate occlusion boundaries [3, 30]. Bren-
del and Todorovic [8] attempt to segment objects in video
by tracking and splitting/merging image regions. Vazquez-
Reina et al. [34] extract multiple segmentation hypotheses
in each frame, and then search for a segmentation consis-
tent over multiple frames. Spatio-temporal segmentation of
video sequences into segments with coherent local prop-
erties has been also addressed by mean-shift [10] meth-
ods [13, 35] or graph-based approaches [16]. However,
these methods are limited by the analysis performed at a
local level. We build on the hierarchical, graph-based seg-
mentation method of Grundmann et al. [16] and extend it
by incorporating long-range motion cues into the segmen-
tation.

There has been significant related work on layered rep-
resentation methods [33, 36, 38], which learn parametric
motion and appearance models of video. In this line of re-
search Kumar et al. [20] demonstrate detection and tracking
of articulated models of walking people and animals, but
assume consistent appearance and a locally affine paramet-
ric motion model of each object part. In contrast, we are
not restricted to such assumptions. Our work is also related
to epipolar plane image (EPI) analysis [5], but it focuses
on static scenes and constrained camera motions. More re-
cently, Apostoloff and Fitzgibbon [1] assumed only locally
linear camera motion, and built an appearance-based detec-
tor of spatio-temporal T-junctions with the goal of detecting
occluding contours in video. However, they do not address
the video segmentation problem. Several high-accuracy in-
teractive video segmentation tools were also developed to
target computer graphics applications [2]. It not clear if
such methods are easily adaptable to the non-interactive
case we consider.

Similar to video segmentation, grouping point trajec-
tories in video sequences based on independent motions
has received significant attention. Multi-body factorization
approaches [11, 15, 29, 39] have focused on multiple (at
least locally) rigidly moving 3D objects under affine cam-
era models. However, complex non-rigid motions, partial
and noisy measurements in real-world videos still present
a significant challenge. Recently, impressive results in
grouping point trajectories were shown by Brox and Ma-
lik [9] who carefully analyze motion differences between
pairs of tracks and segment the resulting affinity matrix us-
ing normalized cuts [27]. We build on this work, but at-
tempt over-segmentation of the video sequence into spatio-
temporal regions that respect object boundaries, rather than
segment into complete objects, which, we believe, is an
under-constrained task, based on motion alone and with-
out additional supervisory signal. In addition, we design a
novel track clustering cost function that includes occlusion
reasoning and allows recovering partial depth ordering be-

(a) (b)
Figure 1. A toy example illustrating x-t video slices. (a): Objects A
and B can be separated early in time if we propagate their motion
from a latter point in time. (b): Objects A and C can be separated
despite their motion similarity if we take the relative depth order-
ing, as induced by occlusions, into account. Here, A is occluded
by B, and B is occluded by C.

tween groups of tracks. Finally, we incorporate the resulting
track clusters into an efficient pixel-level video segmenter.

The rest of the paper is organized as follows. Sec-
tion 2 details the point-track clustering, including the novel
occlusion-based cost function. Section 3 builds on the ob-
tained track clusters and describes our extension of the sin-
gle image segmenter [14] to video sequences using long-
range motion cues in the form of clustered point-tracks. Fi-
nally, results are presented in Section 4.

2. Track clustering with occlusion reasoning
Long-term motion can provide strong low-level cues for

many vision tasks. For example, two static objects can be
separated based on their past or future independent motion
if this motion evidence is propagated over time (see Fig-
ure 1(a)). Similarly, if an object B occludes A while C oc-
cludes B (as shown in Figure 1(b)), we can reason that A
and C are in fact two different objects based on the rela-
tive depth ordering. Such analyses can also be very useful
for higher-level scene understanding in terms of objects and
event categories. For example, a point cloud which appears
at the door and descends to a chair is very likely to belong
to a sitting person who just entered a room.

Our goal in this work is to over-segment the video into
groups of pixels belonging to the same object over time and
to provide novel building blocks for higher level video inter-
pretation. We start reasoning about the long-term motion by
clustering a sparse set of point-tracks extracted from many
frames of a video [9]. Our method, however, is not specific
to this particular choice and could be used with other point
tracking algorithms such as KLT [32] or Particle Video [25].

2.1. Depth order based track clustering
We propose a novel energy-based method for track clus-

tering, which both: (i) groups tracks together based on their
similarity, and (ii) establishes a relative depth ordering be-
tween track clusters based on the occlusion and disocclu-
sion relations among tracks. As a direct consequence, the
method is able to separate tracks, which have similar mo-
tion, based on their depth ordering, provided there is suffi-
cient occlusion evidence in the video.
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We represent each track with a random variable Xi,
which takes a label xi ∈ L, representing its cluster as-
signment. The label set L = {1, 2, . . . , c}, denotes the
set of clusters. We select the number of labels manu-
ally. However, an automatic selection of number of labels
can be addressed with a label cost term, such as in [12].
Let n be the number of tracks in the video sequence, and
X = {X1, X2, . . . , Xn} be the set of random variables. A
labelling x refers to any possible assignment of labels to the
random variables, and takes values from the set L = Ln.
We define the cost of a label assignment E(x), i.e. E(X =
x), as follows:

E(x) =
∑

(i,j)∈E

[
αijφ1(xi, xj) + (1− αij)φ2(xi, xj)

+ γijφ3(xi, xj)
]
, (1)

where E is the set of pairs of interacting tracks. As detailed
later, αij and γij measure, respectively, the motion similar-
ity and occlusion cost for a pair of tracks (i, j). The three
potentials, φ1(xi, xj), φ2(xi, xj), and φ3(xi, xj) model the
joint cost of labelling tracks i and j. Interacting tracks, E ,
are only required to have a temporal overlap of at least two
frames, i.e. any two tracks in the video sequence can poten-
tially interact. This would be equivalent to a generalization
of the four or the eight neighborhood used in standard pixel-
wise Markov random field models [7]. Note that since our
goal is to generate an unsupervised segmentation of a given
video sequence, this energy function E(x) does not include
any unary terms, which model the cost of assigning labels
to each random variable independently. The cost function
can be extended to incorporate unary potentials, similar to
those in [21, 28].

2.2. Similarity constraints
To assign similar tracks to the same clusters, we use po-

tential φ1(xi, xj) which takes the form of a standard Potts
model [4, 7], i.e.,

φ1(xi, xj) =
{

0 if xi = xj ,
1 otherwise. (2)

The intuition for including φ1(·) is that two tracks with sim-
ilar motion and close locations are more likely to belong to
the same object, and thus should be assigned the same la-
bel. This “attraction” force is modulated by αij which mea-
sures the similarity between two tracks, and ensures that
only similar tracks are constrained to take the same label.
The values αij are computed using the distance between
the time-corresponding spatial coordinates of track points
ai,aj , as well as the distance between time-corresponding

velocity values in both tracks vi,vj as follows:1

αij = exp

(
− (1 + ||ai − aj ||2)2||vi − vj ||22

2lijσ2
s

)
, (3)

where lij is the length of the temporal overlap (in frames)
between the tracks i and j, and σs is a parameter. Note that
this track similarity measure is similar to the one used in [9].
Furthermore, the effect of using αij with φ1(·) is equivalent
to the contrast-sensitive Potts model [7].

We also use the potential φ2(·), which acts as a “re-
pelling” force for tracks that have low similarity values, i.e.
(1− αij) is high. This potential is defined as:

φ2(xi, xj) =
{

1 if xi = xj ,
0 otherwise. (4)

The potential φ2(·) ensures that dis-similar tracks take dif-
ferent labels. The repelling force of φ2(·) prevents the triv-
ial solution of all tracks being assigned to the same cluster.

The effect of using φ1(·) and φ2(·) potentials together
with the similarity measure αij is illustrated in Figure 2(c).
As can be seen, minimization of the energy defined in terms
of φ1(·), φ2(·) only separates the tracks of a moving person
from the rest of the tracks originating from the static scene.

2.3. Depth ordering constraints
Although results in Figure 2(c) are consistent with our

expectations, the obtained grouping of tracks is far from
being perfect since the method fails to separate different
objects sharing similar motion, for example, the static per-
son in the foreground and its background. We address this
problem by reasoning about occlusions and disocclusions.
We observe that tracks of object A are usually terminated
abruptly by the tracks of another object B if B occludes A
(we denote this by B → A). Moreover, C → B → A pro-
vides evidence that C and A most likely belong to different
depth layers, i.e. C → A, and therefore C and A should
be separated even if they share similar motion (or appear-
ance, or both). Indeed, the case in Figure 1(b) corresponds
to the real example in Figure 2, where the background (A)
is being occluded by the moving person (B), which in turn
is occluded by the sitting person in the front (C). In the
following we integrate the notion of occlusion within our
clustering framework to enable both improved clustering of
tracks and inference of the relative depth ordering between
track clusters.

We introduce the potential φ3(xi, xj) imposing the order
on the track labels as follows:

φ3(xi, xj) =
{

1 if xi ≥ xj ,
0 if xi < xj . (5)

1Note that a is composed of (x, y) coordinates of all points in a track.
When comparing two tracks i and j, we use only points from frames where
both tracks overlap in time. Similarly, vi,vj are composed of velocity val-
ues xt−xt−1 and yt − yt−1 for frames t and t− 1 for time-overlapping
segments of tracks i and j.

3371



(a) (b)

(c) (d)

Figure 2. Track clustering. (a)-(b): Illustration of original image sequence with a person passing behind another sitting person. On
the space-time slice (a), note the two sets of “T-junctions” generated by the motion boundaries between: (i) the walking person and the
background; and (ii) the walking person and the static person in the front. (c) Results of similarity-based track clustering using energy
function with potentials φ1 and φ2 only (see text). (d) Results of similarity and occlusion-based track clustering using the full energy
in (1). The introduction of the occlusion potential φ3 to (1) enables separation of the static person (green) from the static background (blue).
The correct relative depth ordering of track labels (from back to front: 1 < 2 < 3) is resolved by occlusion reasoning: 1 – background
(blue); 2 – moving person (red); 3 – static person in the front (green). Note that a subset of the original tracks is shown to make the figure
readable. A single cluster is obtained for the walking person (red) as there are other tracks which connect the two seemingly different
components, i.e. a partial occlusion. (Best viewed in color)

This potential is modulated by γij in (1) which takes a
high value for a pair of tracks (i, j), if j occludes i, i.e.
j → i. To measure γij from the data, we consider a pair-
wise asymmetric cost between end-points of track i and all
tracks j, close to i. As can be seen from the x-t slice of the
video in Figure 2, occlusions often result in “T-junctions”
and tracks are terminated by other near-by tracks with dif-
ferent motion. Hence, we define score of γij in terms of
the difference in velocity vi − vj and the difference in po-
sition D (see Figure 3) between tracks (i, j) at the moment
of termination (or start) of a track i as follows:

γij = 1− exp

(
−d||vi − vj ||22

σ2
o

)
, (6)

where σo is a parameter and d is a damping coefficient de-
creasing the occlusion score with the increasing distance D
between tracks (i, j): d = exp(−D2/σ2

d) for some param-
eter value σd. Figure 4 illustrates the computed values of
γi· for each end-point of track i maximized over all other
tracks j.

We next plug-in the potential φ3(xi, xj) and the occlu-
sion score γij into (1) and optimize the full energy. The re-
sulting clustering of the tracks is illustrated in Figure 2(d).
In contrast to result in Figure 2(c), we observe the tracks of
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Figure 3. Illustration of measurements involved in the computation
of occlusion/disocclusion score γij in (6). The velocity vector V1

at the end-point of the occluded track (blue) is compared to ve-
locity vector V2 of a near-by track (red). D is the image distance
between two tracks.

Figure 4. The values of occlusion scores γi· are illustrated for end-
points of all tracks extracted on the example video in Figure 2.
Large size crosses correspond to large values of γi· and illustrate
good prediction of track occlusion in this example.

the sitting person (green) have now been separated from the
background (blue). Moreover, the relative depth ordering of
the labels has been correctly recovered as green → red →
blue. More results for the track clustering as well as for its
application to the dense video segmentation are shown in
Section 4.

Optimizing the energy function. The most probable or
Maximum a Posteriori (MAP) labelling x∗ of the energy
function in (1) is defined as: x∗ = arg minx∈L E(x). Note
that our energy function does not satisfy the submodularity
condition [18] even for the two-label case. Many methods
have been proposed to solve such non-submodular energy
functions [6, 17, 19]. We use the sequential tree-reweighted
message passing (TRW-S) algorithm [17] because of its effi-
ciency and accuracy for our clustering problem. The labels
thus obtained for the tracks are then used to define long-
range motion cues for video segmentation.

3. Graph-based video segmentation with long-
range motion cues

In this section we describe our spatio-temporal video
segmentation algorithm, which incorporates long-range

(a) (b)
Figure 5. (a) Extending the graph-based image segmenter of
Felzenszwalb and Huttenlocher [14] to video. Edges following
densely estimated motion field connect pixel graphs of neighbor-
ing frames, illustrated here for frames i−1, i and i+1. (b) Adding
long-range motion constraints: (i) temporal edges connected by
point tracks (shown as curves here) receive low cost and hence are
merged first; (ii) edges connecting pixels, containing tracks be-
longing to different groups (shown by two different colors) receive
high cost and are not considered for merging.

motion cues in the form of clusters of point tracks obtained
as described in Section 2. Inspired by the graph-based sin-
gle image segmentation approach of Felzenszwalb and Hut-
tenlocher [14] and its hierarchical extension to video [16],
we present an efficient way to incorporate long-range mo-
tion cues as additional merging constraints.

Review of the graph-based segmentation [14]. An im-
age is represented by a graph G = (U,E) with vertices
ui ∈ U and edges (ui, uj) ∈ E. The elements of U are
pixels and the elements of E are the edges linking neigh-
boring pixels. Each edge is assigned a weight, which is a
measure of the color dissimilarity between the two pixels
linked by that edge. Edges are then ordered by their weight
in a non-decreasing order. The ordered list of edges is tra-
versed one by one, deciding if two pixel regions C1 and C2

connected by the edge considered are merged according to a
score measuring the difference between C1 and C2, relative
to the internal similarity within C1 and C2. Both the region
difference and internal similarity are computed from the ex-
isting (pre-computed) edges in the graph and no additional
measurements in the image are necessary. The algorithm
is efficient as its complexity is O(nlogn), where n is the
number of edges in the graph.

Extensions to video [16]. The image graph in [14] can be
extended to a three-dimensional graph involving all pixels
in a video. We follow [16] and add an edge to each pair of
neighboring pixels in space and time. For a pixel (x, y, t)>

we add edges to its 8-connected spatial neighbors as well
as to a temporal neighbor (x + vx, y + vy, t + 1)>, where
(vx, vy)> is the velocity vector estimated by optical flow
at (x, y, t)> (see Figure 5(a)). The weight of an edge be-
tween two pixels is set to the Euclidean distance between
their color and velocity descriptor vectors (r, g, b, vx, vy)>.

Grundmann et al. [16] extend the above pixel graph to
a region graph within an iterative hierarchical segmenta-
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tion framework. At each iteration j the graph is rebuilt by
connecting neighboring regions from the previous iteration
j−1. Edges of the graph have weights corresponding to χ2-
distance between region histogram descriptors of color and
motion. We have compared pixel graphs with region graphs
and found the latter ones to work better. We therefore build
on the the hierarchical segmentation of [16] and extend it as
described below.

Incorporating long-range motion cues. Ideally we wish
to have a video segmentation where each object is supported
by a single spatio-temporal region – an elongated volumet-
ric segment – whose spatial support in each frame, where
the object appears, should be the same as the object spatial
support. However, segmenting all objects in the video from
only low-level cues might be unrealistic without additional
top-level supervision [23]. Hence, we aim at producing an
over-segmentation, where object’s “footprint” in the video
is formed from a small set of spatio-temporal regions, which
do not cross object boundaries. Preventing the merging of
pixels that belong to different objects can be difficult or even
impossible to resolve based on only local image and tempo-
ral information. In contrast, we introduce long-range infor-
mation in the form of point-tracks, whose shapes provide,
over longer time, additional information for disambiguat-
ing pixels with similar local appearance and motion. This
is implemented in the following way. First we encourage
the created spatio-temporal segments to have a long support
in time by building them around point-tracks. Second, we
impose constraints on the resulting segmentation based on
global track clusters obtained in Section 2.

Encouraging long-range temporal connections. We ini-
tialize the hierarchical segmentation by building a three-
dimensional pixel graph and add edges that follow point
tracks. By giving these edges weight 0, we enforce the
merge of all pixels along the track to one region. The tracks
then act as “seeds” for the segmentation, which are then
“grown” by adding additional pixels based on local similar-
ity in motion and color.

Segmentation with motion constraints. Here we incor-
porate the track clustering obtained, as described in Sec-
tion 2, into the segmentation framework. Recall, that tracks
are grouped according to their global motion similarity and
occlusion constraints into a set of c groups. The situation
is illustrated in Figure 5(b). The constraint is incorporated
into the segmentation by introducing an additional label for
each pixel (node) in the pixel graph. First, pixels along the
tracks are labeled according to the cluster to which the track
belongs to, a number between 1 and c. The rest of the pix-
els are labeled −1. Each time the algorithm is going to do
a merge, it checks that either the label of the two regions is

the same or one of them is −1 and it will only merge if any
of these is the case. In case there is a merge, the new region
will be labelled with the maximum label of the two regions
being merged. This way we make sure that the regions con-
taining tracks from different clusters will never be merged.
Note that introducing motion constraints in this form does
not affect the complexity of the algorithm.

While the depth ordering constraints are used to produce
the track grouping, they affect the segmentation only indi-
rectly in the form of constraints on the track clusters. How-
ever, we believe the depth ordering information will be use-
ful for further video understanding tasks, providing useful
constraints on object labels, i.e. the “wall” should appear
behind “a person”.

4. Results
Dataset. The dataset used for experiments consists of
short video clips taken from the Hollywood 2 dataset [22].
The Hollywood 2 dataset contains scenes from 69 Holly-
wood movies and provides a challenging set of videos for
automatic video interpretation. In order to focus on a man-
ageable but reasonably complex setting, we constrained the
video clip selection to scenes taking place in office envi-
ronments. From this first selection, we chose 10 clips with
significant motion as well as occlusions and disocclusions.
For each clip, object boundaries were annotated in three se-
lected frames, with a separation of 20 frames between each
other. Annotations were made using the LabelMe tool [24]
for object classes ‘person’, ‘desk’, ‘chair’, ‘lamp’, ‘cabinet’
and ‘painting’.

Evaluation method. We aim to have spatio-temporal re-
gions that support objects across all frames in videos. With
this intuition, we will measure how well the obtained re-
gions ‘follow’ the actual object support. For each video,
we have annotated three frames (with a gap of 20 frames)
with outlines of all considered objects. Then we take one of
the three annotated frames, and for each annotated object in
this frame, we take the spatio-temporal regions which have
a significant spatial overlap (measured by the standard inter-
section over union score) with the objects in that particular
frame. Then we measure how well these selected regions
propagate in time, by measuring the overlap of their union
with the ground truth object annotations in the two other
annotated frames.

Formally, for frame fi, we compute the following “prop-
agation score”:

si =
1

|O|
X

o∈(O)

„
MGT (o, fi) ∩MS(o, fi)

MGT (o, fi) ∪MS(o, fi)

«
, (7)

where O is the set of annotated objects in frame fi,
MGT (o, f) is a binary mask of the annotation of object o
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in frame f , MS(o, ·) is the union of volumetric segments
that significantly overlap (more than 50%) the annotation of
object o in the first frame f1, and MS(o, f) is a 2D binary
mask resulting from looking at MS(o, ·) in frame f .

Results. Figure 6 shows the average propagation scores
(7) obtained when propagating object regions in the 10
video clips over 20 and 40 frames. Each method produces
a hierarchy of segmentations with an increasing size of seg-
ments. Hence, we plot the propagation score against the ob-
ject coverage in the first frame measured by the area overlap
with the ground truth, given by (7) for i = 1. At low hierar-
chy levels, the (union of) small segments cover the object in
the first frame well (object coverage around 0.8), but have
low propagation score in time. For medium size segments
(medium hierarchy levels) the quality of the segmentation
in the first frame decreases (object coverage around 0.6) but
the propagation in time is the best. Finally, large segments
at high hierarchy levels have very low (< 0.5) object cover-
age and also their propagation score decreases as they often
leak to background and other objects. Results are shown for
the proposed video segmenter (Section 3) with tracks clus-
tered either with the method of Section 2 (Depth order track
clusters) or the track clustering method of [9] (BM [9] track
clusters). Performance is compared with the state-of-the-art
video segmentation method of Grundmann et al. [16].2

The best propagation performance is achieved by our re-
gion segmenter in combination with track clustering of [9],
outperforming the method of [16] across virtually all rea-
sonable (>0.5) object coverage levels. This demonstrates
the advantage of using clustered tracks for spatio-temporal
video segmentation. Using the same tracks in combination
with our segmentation method in Section 2 gives somewhat
worse results, but in contrast to [9], we do not do any post-
processing of track clusters, and address a harder clustering
task resolving depth ordering in the scene. Qualitative re-
sults of video segmentation, object region propagation and
track clustering with depth ordering are illustrated in Fig-
ures 7 and 8.3

Limitations and discussion. Currently the proposed
track clustering assumes the relative depth ordering remains
constant within the video clip. While, in general, this might
not be always true (think of two people circling each other),
we observe that this assumption is usually reasonable. Im-
perfections in tracking can also negatively affect the seg-
mentation results, for example, tracks on the boundary of
objects occasionally ‘leak’ to background and such errors
will get propagated to the segmentation. Note also that the

2We used the authors’ implementation available at: http://www.
cc.gatech.edu/cpl/projects/videosegmentation/

3Please see additional results and videos at:
http://www.di.ens.fr/willow/research/videoseg/
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Figure 6. Propagation score vs. the object coverage in the initial
frame for the proposed segmentation with long range motion cues
(using depth order track clusters or BM [9] track clusters) com-
pared to the segmentation of [16].

Figure 7. First row: Frames 0, 20 and 40 of the original sequence,
respectively. Second row: Tracked points overlaid over the video
color-coded according to the obtained clusters. The automatically
inferred label ordering (front to back): green, red, magenta, and
blue. Note that tracks on the sitting person (green) were correctly
separated from background (blue) with the correct depth order-
ing, despite the fact that the person is not moving. Third row:
obtained spatio-temporal over-segmentation of the video frames.
Fourth row: the ground truth object regions (left) automatically
propagated to the other frames (middle, right).

relative track ordering is not defined if the tracks do not in-
teract directly or indirectly.

5. Conclusions
We have developed an efficient spatio-temporal segmen-

tation algorithm incorporating long-range motion cues in
the form of groups of point-tracks. Towards this goal, we
have devised a new track clustering cost function that in-
cludes occlusion reasoning in the form of depth ordering
constraints. We are now in a position to build on this repre-
sentation with the goal of category-level segmentation [21]
in video.
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Figure 8. First row: Frames 0, 20 and 40 of the original sequence,
respectively. Second row: the ground truth object regions (middle)
automatically propagated to the other frames (left, right). Third
row: Row 185 (the height of the lamp) of the video shown as a x-t
slice (left). The propagated ground truth shown in a x-t slice of the
video corresponding to our segmentation with (middle) and with-
out (right) long-range cues. The tracks help to improve the propa-
gation of spatio-temporal regions extended over many frames.
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