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1. INTRODUCTION

In computer graphics, producing high-quality realistic images in
a reasonable amount of time is still a major challenge. The goal
of a global illumination algorithm is to estimate the light distribu-
tion in a scene. The color of each pixel in the image results from
the superposition of light rays transported by an infinite number
of paths that lead to it, either directly from light sources or indi-
rectly after bouncing in the scene. The light distribution in a scene
can be obtained as a solution of the rendering equation, an integral
equation that models the radiance equilibrium as a light transport
in a scene [Kajiya 1986]. Solving this equation for real scenes is an
intractable problem. Approximate solutions are usually obtained by
Monte Carlo numerical integration techniques where image pixels
are formed by averaging the contribution of stochastic rays cast from
the camera through the scene. The main limitation of Monte Carlo
rendering is that the variance of the estimator decreases linearly
with the number of stochastic samples. Thus the root mean squared
error of the estimated image decreases as the square root of the num-
ber of primary rays cast from the camera (which we call samples
from now on). While variance reduction techniques such as impor-
tance sampling, Russian roulette, or Markov Chain Monte Carlo
methods can be used to accelerate convergence, still several hours
or even days may be necessary to produce noiseless photorealistic
images.

To reduce the time required by Monte Carlo rendering to produce
good-quality images, two main strategies have been proposed, that
may be called adaptive rendering and rendering postprocessing.
In the first strategy, the idea is to act during the rendering process
by locally adapting the number of rays cast per pixel, depend-
ing on the complexity of certain zones. Postprocessing is applied
once rendering has been completed, and mainly consists of filter-
ing or interpolating either samples or pixels. Both strategies can be
combined.
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Fig. 1. Monte Carlo rendering can be boosted by detecting similar pixels
and letting them share their rays. Similar pixels can be detected by com-
paring their empirical ray color distributions using an adequate histogram
distance. In the shown example the two pixels have different colors, but their
histograms are strikingly similar and can be fused. This filter increased the
PSNR of this Monte Carlo image by +11.6 decibels. To get an equal PSNR

with pure Monte Carlo, 15× more samples would have been needed.

It is worth noting that the target quality of the images may
vary depending on the application. The quality required for
previsualization, where important time constraints have to be met,
is clearly not as high as for applications where photorealistically
rendered scenes are an objective by themselves. In previsualization
scenarios, computational time reduction is obtained by using the
renderer to produce only a very small number of samples (say, 2
to 8 samples per pixel). In order to produce images of high enough
quality from such a sparse and noisy data, it is necessary to fil-
ter or resynthesize samples using as much information as possi-
ble. Indeed, for each sample the rendering system keeps track of
relevant information associated to the ray path: geometric, color,
and texture features, object and material properties, Monte Carlo
random parameters, etc. Using these fat samples, state-of-the-art
methods such as the ones proposed by Sen and Darabi [2012] or by
Lehtinen et al. [2012] manage to significantly improve the quality of
the input sampling. However, the quality of the results obtained by
this approach remains scene dependent, being potentially affected
by the strong undersampling of high-dimensional data. The larger
the number of effects that are simultaneously present, the higher the
risks of this undersampling. Proper up-sampling or interpolation of
the sample space is therefore only possible under strong regularity
conditions on the fat samples distribution. This explains why the
best performances are observed for highly diffusive scenes (where
impressive results are obtained from only one sample per pixel). As
pointed out by Lehtinen et al. [2012], poor performance is instead
expected when the scene contains high-frequency illumination ef-
fects, incompatible with a low sampling rate.

In short, the generation of high-quality images, especially
when simulating complex effects such as anti-aliasing, indirect

illumination, depth-of-field, and motion, requires a large number
of rendered paths to correctly sample the path space. The required
number of fat samples is certainly too large, not only because of
the computational time that would be required to process them but,
most fundamentally, because its memory storage would exceed any
reasonable capacity limit (more than 100 bytes per fat sample [Sen
and Darabi 2012; Lehtinen et al. 2012]). The natural alternative is to
give up using fat samples, and to store only part of their information.
In the limit, the information can be reduced to color samples, that
is, the final color transported by each ray when hitting the screen.
In this case, we say that the method works on the screen space, as
opposed to the previous methods which work in the space of paths.
Working on the screen space allows one to avoid memory saturation,
while keeping a number of samples which may be large enough to
capture the sample space variability. The works by Rousselle et al.
[2011], Dammertz et al. [2010], and Overbeck et al. [2009] are
among the most representative ones of this kind of approach.

Other similar approaches were concurrently reported during the
reviewing process of our work. Rousselle et al. [2012] introduced
the classical nonlocal means denoising algorithm in an adaptive
rendering framework. Given a current distribution of Monte Carlo
samples, their algorithm denoises the noisy image by using the
nonlocal means filter. An important output of the filtering stage is
an estimate of the residual per-pixel error that guides the sample
distribution in the next iteration. This work shows that the use of
the classical nonlocal means denoising algorithm produces better
results than previous filtering methods [Rousselle et al. 2011].

Kalantari and Sen [2013] are among the first authors to raise
and address the important question of the lack of noise model in
synthetic images, which is a drastic difference with classic image
processing. This article therefore proposes a hybrid method, where
in a first stage an adaptive sampling permits to equalize the noise
variance throughout the image; then an adaptive classic denoiser is
applied, using the noise variance information previously estimated
at each pixel, to tune the denoiser.

In the present article we propose and study a new, intermediate
filtering approach that works on the screen space but keeps and uses
the color samples at each pixel. Thus, it can be coupled with any
Monte Carlo renderer keeping a record of the samples’ color. The
cornerstone of the proposed method is to measure the similarity
between any two pixels as the statistical distance between the his-
tograms of rays color that hit them. If the comparison is positive,
the ray color histograms of the similar pixels can be fused. The final
color of a pixel is then obtained as the average of all ray colors of all
similar pixels. This fusion is made still more reliable by comparing
patches instead of pixels, and by allowing long-range interaction
by a multiscale procedure. The ray color histogram characterizes
much better the physical and geometric properties of a pixel than
just its color or the color of its neighbors.The proposed approach is
related to bilateral filters, which were first applied to denoise Monte
Carlo rendered scenes by Xu and Pattanaik [2005]. The idea of
comparing patches instead of individual pixels goes back to Buades
et al.’s NonLocal Means [2005]. Our approach still presents a fun-
damental difference with NonLocal Means or any classic variation
of bilateral filters proposed in image processing or computer graph-
ics: instead of defining similarity by computing distances between
pixels’ color, we compute distances between color distributions and
fuse them when the distance is small enough. For this reason, we will
call this method Ray Histogram Fusion (RHF). Distances based on
distributions are of course much more informative than comparing
just their averages, as bilateral filters do.

RHF is simple, easy to implement, and therefore fully repro-
ducible. It is independent of the sample generation process. It can
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be easily coupled with any renderer and even with any other accel-
eration method. Most importantly, the method does not make any
particular assumption on the scene. As will be demonstrated by our
experiments, it therefore copes with a wide range of scenes and
multiple simultaneous effects. Finally, its time and memory com-
plexities grow linearly with the image size and are independent of
the number of input samples.

The limitations of RHF are also clear. Its performance depends
on the degree of self-similarity of the scene, which fortunately
is usually high [Lebrun et al. 2012], and the price to pay for its
generality is the requirement of a relatively large number of input
samples.

The plan of the article is as follows. In Section 2 we review rel-
evant previous work. Section 3 defines a pixel similarity measure
based on the corresponding cast rays’ color, and discusses its sta-
tistical interpretation. Section 4 describes the RHF algorithm, and
shows how it successfully makes use of the whole ray color his-
togram information. Section 5 reports quantitative and qualitative
results on the algorithm performance. We close with Section 6, dis-
cussing limitations of our approach and outlining future work and
conclude in Section 7.

2. PREVIOUS WORK

A thorough analysis of Monte Carlo rendering is far beyond the
scope of the present work. The interested reader may consult the
introductory book by Dutré et al. [2006] and the one by Pharr and
Humphreys [2010]. However, for what follows it is enough to note
that there are mainly two approaches to reduce the time required by
Monte Carlo rendering to obtain good-quality images.

One of these approaches is adaptive sampling. This class of
algorithms locally adapt the number of rays cast per pixel. The
idea is to increase the number of samples in complex parts of the
scene while maintaining a reduced number in simple parts, such
as flat regions. Complex textures or defocused zones are typical
elements that require large amounts of rays to be properly rendered.
Hachisuka et al. [2008] (MDAS) proposed to adaptively distribute
a set of samples in the full, multidimensional sampling domain
where the rendering equation is computed. However, as more Monte
Carlo effects are considered (e.g., depth-of-field, motion blur, area
lighting, etc.) the dimension of this space will be larger and thus will
suffer from the curse of dimensionality. One of the most significant
adaptive sampling algorithms is certainly the Adaptive Wavelet
Rendering (AWR) by Overbeck et al. [2009]. This method adaptively
distributes Monte Carlo samples in the screen space to reduce the
variance of a wavelet basis scale coefficients. Then, the image is
reconstructed from these nonuniformly distributed samples by using
a suitable wavelet approximation.

Soler et al. [2009] proposed to analyze the depth-of-field effect
in the Fourier domain. By properly predicting the local bandwidth
their algorithm adaptively samples the multidimensional domain.
In a similar fashion, Egan et al. [2009, 2011a, 2011b] addressed
motion blur, soft shadows, and directional occlusions respectively,
by adaptively sampling the multidimensional domain followed by
a sheared reconstruction. This allowed reusing samples between
pixels in specific effects.

The reconstruction scheme proposed by Rousselle et al. [2011]
attempts to minimize the mean squared error. The idea is that, given
the current distribution of samples in the screen space, the algorithm
chooses the best reconstruction filter (among a set of predefined
filters—e.g., Gaussian filters) at each pixel to minimize some error
criterion. Next, given the current filter selection, new samples are
distributed to minimize the error. Thus, this algorithm is both an

adaptive sampling and reconstruction filtering. This state-of-the-art
algorithm will be used in the experimental section for comparison.

The other approach is denoising or adaptive filtering. In this fam-
ily of algorithms, the existing set of samples is combined to produce
a better estimator of the pixel color using sample information in a
pixel and in its neighbors. Adaptive filtering may take place at sam-
ple level (i.e., primarily filtering samples) or at pixel level (i.e.,
primarily filtering pixel values). The majority of these methods can
actually be written as generalized bilateral filters [Paris et al. 2007]
applying a weighted average of the samples (respectively, of the
pixels) in a neighborhood. The complexity of the method depends
on whether it is applied at a pixel or sample level and how deep the
method digs into the rendering information (e.g., information about
each sample history: color, normal, object of the last impact; infor-
mation about the random parameters used to calculate the sample)
in order to compute the weights of the samples. In order to show how
the conception of the proposed filter appears as the natural evolution
of the previous work, we briefly present significant contributions,
from an historical perspective. We will see that the general trend in
this evolution is to rely more strongly in the auxiliary information
available from the rendering system.

The simplest adaptive filters act at pixel level, like any filter used
in classical image processing. Lee and Redner [1990] presented
a seminal work defining an alpha trimmed filter (a generalization
of the median/mean). Jensen and Christensen [1995] proposed to
apply Gaussian or median filters with 3 × 3 pixels support to light
having been reflected diffusely at least twice. The trilateral filter of
Choudhury and Tumblin [2003] involves an adaptive neighborhood
function and the image gradient. Again a classic image bilateral
filter was proposed by Xu and Pattanaik [2005]. Notice that unlike
the work by Lee and Redner [1990], classical bilateral filters cannot
remove outliers. To overcome this limitation, the weights of the
bilateral filter by Xu and Pattanaik are computed based on a denoised
version of the original image.

More complex filters make use of sample information available
from the renderer in order to filter still at a pixel level. Rushmeier
and Ward [1994] proposed to spread out noisy pixels (e.g., pixels
whose variance is larger than a threshold after a fixed number of
iterations) into a region of influence. A noisy pixel will contribute to
several output denoised pixels, and since the filter is normalized no
energy will be leaked. McCool [1999] proposed another classical
filter that uses pixels’ geometric information. It is an anisotropic dif-
fusion (of the Perona-Malik type) removing noise from Monte Carlo
rendering. The conductance function that models the strength of the
diffusion scheme in a pixel is estimated from a coherence map using
depth and normal information gathered during rendering (contained
in the G-buffer) along with a color coherence map./. More recently
Dammertz et al. [2010] presented a fast wavelet filtering scheme
designed for ray-traced Monte Carlo global illumination images.
For that purpose the filter uses RT-buffer information about direct
or indirect illumination, and the buffer information on normals and
position. The bilateral filter is also invoked by Xu et al. [2011] to
denoise images created with complex light paths in smoke or fog.
In this work, additional bilateral weights based on the path gradient
direction are used to better guide the denoising scheme.

The last class of filters use the additional sample information to
adaptively filter the sample values. Shirley et al. [2011] addressed
the question of noise in defocused or motion blurred regions. The
image filter is adapted to the a priori knowledge of the kind of blur
in a given image region. This is a very natural and successful ad
hoc strategy for these regions. Probably the most impressive re-
sults are those recently reported by Sen and Darabi [2012]. This
method uses the whole information of the rendering process and the
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whole information on each numerical photon to denoise by bilateral
filtering. The bilateral filter takes simultaneously into account the
sample position and spatial neighborhood in the image, the ran-
dom synthesis parameters, the scene features (normal, world space
position, texture values), and finally the sample color. It computes
as a mutual information the statistical dependence on the random
generation parameters of the pixels sharing the same features and
colors. Although the results are outstanding at very low sample
rate per pixel, the complexity of the method makes it not scalable to
generate high-quality images from a large number of input samples.

Lehtinen et al. [2011] described a reconstruction technique that
allows rendering a combination of motion blur, depth-of-field, and
soft shadows by exploiting the anisotropy in the temporal light
field. The effective sampling rate is increased by a large factor by
efficiently reusing samples between pixels. Recently Lehtinen et al.
[2012] generalized these ideas to deal with indirect illumination.
By contemplating the properties of diffuse surfaces, their algorithm
permits to interpolate the light field to produce results similar to
those that would have been obtained by rendering a much larger
number of samples. For instance, from an input image of 8 samples
per pixel, they synthesize images of 256 samples per pixel, whose
quality is similar to 512 samples per pixel generated by standard
path tracing. While the quality increase is impressive, the noise level
in these images is still too strong for applications requiring high-
quality images. Our algorithm is complementary to this approach.
Indeed, it can be used to boost the performance of a pure Monte
Carlo renderer or any other set of samples like the ones generated
by Lehtinen et al. [2012], and can perfectly deal with a number of
samples in this order of magnitude.

The aforesaid bibliographical analysis has shown that most
Monte Carlo denoising methods are generalizations of the bilat-
eral filter (or sigma-filter [Jong-Sen and Lee 1983]). The general
principle behind the bilateral filter is that similar pixels must be
denoised jointly, being different samples of the same model. This is
also implicitly used by the sigma-filter and by the NL-means algo-
rithm [Buades et al. 2005]. In computer graphics, ray information
permits to identify still more rigorously than in classic image pro-
cessing the pixels sharing the same model. Indeed, all ray samples
hitting a given pixel and its neighbors can be used for that purpose.

3. PROPOSED APPROACH

3.1 Rationale

In contrast to classical photography where only the energy arriving
at the sensor plane can be measured, in a rendering scenario much
more information about the pixel formation is available. In particu-
lar, the light contribution and the screen position of each path can be
stored, as well as the associated geometrical and scene information
about the objects encountered along the ray path.

As pointed out by Veach [1997], the light transport problem can
be stated in the space of paths, and the global illumination can be
estimated by computing a transport measure over each individual
path. Under this path integral formulation, each pixel color u(x) =
(uR(x), uG(x), uB (x)) is given by the integral over all possible light
paths

u(x) =
∫

�x

f (p)dμ(p),

where �x is the space of paths originated at pixel x, p is a path of
any length, and dμ(p) is a measure in the path space. The function
f (p) describes the energy contribution through a path p and is
the product of several scene factors due to the interaction of light
within the path plus initial self-emitted radiance and importance

distributions. Thanks to this formulation, the image color at pixel x
can be estimated from nx random paths p1

x, . . . , p
nx
x , generated by

an appropriate Monte Carlo sampling procedure. If cj
x denotes the

color transported by random path pj
x (for instance, in path tracing

cj
x = f (pj

x )), the Monte Carlo approximation of u(x) is computed as

ũ(x) = 1

nx

nx∑
j=1

cj
x . (1)

Consider now the Monte Carlo approximation error n(x), given by

n(x) = ũ(x) − u(x). (2)

The Monte Carlo approximation is asymptotically unbiased, but
the mean squared error E[n2(x)] decays linearly with the number
of samples nx. Consequently, unless the rendering system spends
several hours or even days producing samples, the resulting images
will be contaminated by white noise. This is a consequence of the
fact that the Monte Carlo samples are independent and therefore
the random process {n(x), x image pixels} is white.

One possibility to reduce the approximation error while keep-
ing the rendering time reasonable is to render fewer samples, and
to filter the pixel values afterwards. Filtering will always result
in a significant variance reduction, however, it may also severely
increase the approximation bias. The only filtering processes that
do not introduce bias are those that combine pixels of the same
“nature”, that is pixels x having the same ideal value u(x). While
identifying two similar pixels x and y based on the unknown pixel
values u(x) and u(y) is of course impossible, it is reasonable to
expect that their samples color {c1

x, . . . , c
nx
x } and {c1

y, . . . , c
ny
y } will

follow similar distributions. Moreover, if N pixels share the same
sample color distribution, the union of the samples can be seen as
an N times larger superset following the underlying distribution.
By simply averaging them the variance reduction is increased by a
factor of N .

The cornerstone of the proposed approach is to find similar pixels
to each given pixel by comparing their underlying sample color
distributions. This is the object of the next section.

3.2 Distribution-Driven Pixel Similarity

Consider the empirical distribution of the samples color at a given
pixel. Figure 2 depicts this distribution for five different pixels on
two different scenes, for samples generated by a Monte Carlo path-
tracing algorithm. In the first example (top row) the three pixels
were selected because their colors are extremely close. A quick
visual inspection shows that the samples of the two edge pixels
follow roughly the same color distribution, and that this distribution
is considerably different from the one of the background pixel. This
example illustrates to what extent the information provided by the
sample color distribution can help discriminate pixels of different
nature, even when their pixel colors are similar.

In the following, we denote by Cx = {c1
x, . . . , c

nx
x } the set of the

color of samples cast from pixel x, and by h(x) the corresponding
empirical color distribution. To measure pixel similarity we propose
to use the binned empirical distributions as pixel descriptors. Since
in general we deal with tri-stimulus color images, we can choose
to build this descriptor either as a single histogram in the three-
dimensional color space, or as three one-dimensional histograms
(one per color channel).

Given the samples color Cx and Cy at pixels x and y, and
their corresponding nb-binned distributions (represented as nb-
dimensional vectors) h(x) = (h1(x), h2(x), . . . , hnb

(x)) and h(y) =
(h1(y), h2(y), . . . , hnb

(y)), we consider the following metric, based
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Fig. 2. The top row singles out three pixels in the Cornell Box scene and their sample color distributions. (The samples with color values falling out of the
[0, 1]3−box are by convention colored in red.) The first pixel, situated on the brown wall, has a unimodal sample color distribution. The other two pixels belong
to an occlusion boundary showing a bimodal green-brown distribution. This feature is shared by many pixels on the same boundary, which can therefore share
their samples. The bottom row shows two pixels of the toasters scene with different colors. Their sample color distributions are nevertheless very similar
and will therefore be merged as well.

on the Chi-Square distance:

dχ2 (Cx, Cy) = 1

k(x, y)

nb∑
i=1

(√
ny
nx

hi(x) −
√

nx
ny

hi(y)

)2

hi(x) + hi(y)
, (3)

where nx = ∑
i hi(x) and ny = ∑

i hi(y) are the total number of
samples in each set, and k(x, y) is the number of nonempty bins
in h(x) + h(y). This normalization by k(x, y) is necessary since
only the bins carrying information should be considered in the
comparison.

In order to take into account spatial coherence, the previous pixel-
wise distance can be extended to patches of half-size w centered at
x and y as follows,

dχ2 (Px, Py) =
∑
|t|≤w

dχ2 (Cx+t, Cy+t). (4)

Comparing patches instead of pixels has two advantages. First,
it reduces matching errors by enforcing the spatial coherence of
matches. Second, the denoising will proceed by averaging similar
patches. Each pixel belonging to several patches will therefore re-
ceive several distinct estimates. Averaging them again, an operation
usually called aggregation of estimates, improves the denoising per-
formance still further. The patches being small, in practice 3 × 3,
and thanks to the self-similarity and redundancy properties of im-
ages, many similar patches are generally found and averaged for
any reference patch in the image.

Since the order in which the samples are calculated is ir-
relevant, the sample color distribution appears as a natural and
complete descriptor of the compared sets. There are different
ways of measuring the similarity between two distributions de-
pending on the data type. In the case of continuous data, the

Cramer-von Mises [Anderson 1962; Anderson and Darling 1952],
the Kolmogorov-Smirnov [Stephens 1970; Press et al. 2007], or the
Kantorovich-Mallows-Monge-Wasserstein distances (also known
as the Earth Mover’s Distance [Rubner et al. 1998]) are all accepted
ways to compare distributions. These three similarity measures are
computed as Lp distances between the two cumulative distributions
(L∞, L2 and L1 respectively). For categorical data, the most popu-
lar measure to compare distributions is the χ 2 distance previously
defined in (3).

By discretizing the data in a fixed number of histogram bins,
the computational complexity of measuring the similarity between
two datasets can be kept bounded and independent of the number of
samples. This is important since this similarity measure is evaluated
a large number of times. Thus, the color space will be divided into
fixed bins, and the χ 2 distance fits well to this form for the data.
However, if an image is rendered with very few samples, one of the
other two metrics would be preferable.

Note that other distances based on discretized, fixed number of
bins could be used. For instance, any Lp distance between the
histograms or their cumulative counterparts could be used in order to
keep the computational complexity bounded, independently of the
number of samples. In Section 5, Table IV, we present a comparison
of these different discrete metrics that shows that the χ 2 distance
slightly outperforms the others.

Remark: Comparing Pixel Values versus Comparing Dis-
tributions. State-of-the-art image denoising algorithms measure
pixel similarity by comparing pixel colors. Indeed, the bilateral fil-
ter and NL-means replace each noisy pixel by a weighted average of
the most similar ones. In the case of NL-means, the pixel compari-
son is performed with patches centered around each pixel. For a very
recent review on patch-based denoising methods, we refer to Lebrun
et al. [2012] and for a fast implementation to Adams et al. [2009].
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Nevertheless, image denoising algorithms must know or measure
the noise variance to evaluate properly the similarity of noisy sam-
ples. Fortunately, Monte Carlo rendering is an almost ideal situation
where mean and variance values of the rays cast from each pixel
can be directly estimated from their observed distributions.

The main disadvantage of this formulation is that it cannot distin-
guish noise from intrinsic pixel variability. As a first example, sup-
pose that a pixel is situated on an edge. In that case the sample color
distribution will be at least bimodal. Thus, it will probably have a
large variance. This variance will result in a large tolerance to differ-
ences in the means, and consequently different pixel types may be
wrongly mixed up. A case of this type is shown in Figure 2 (top row).

On the other hand, by directly comparing distributions, pixels
lit from several sources can be better clustered. In the case of the
histogram comparison, we will need no implicit nor explicit noise
model assumption.

The bottom row of Figure 2 shows two pixels with very different
pixel values. This is the consequence of the presence of a single
very bright ray sample in one of the distributions. By comparing the
ray color distributions, it is nevertheless possible to conclude that
both pixels are from the same “nature”, while this conclusion could
not be reached by comparing the averages.

3.3 Distribution-Driven Average

For each pixel x, we define Nκ (x) as the set of pixels y whose
centered patches Py are such that dχ2 (Px, Py) ≤ κ . Then, if κ is
such that these pixels are of the same nature as x, the maximum
likelihood estimator of the noiseless pixel color is simply their
arithmetic mean

ū(x) = 1

|Nκ (x)|
∑

y∈Nκ (x)

ũ(y).

Unlike the previous estimator, where only the center of the patch
is averaged, we can proceed to denoise the whole patch, and to
denoise the image patch-wise. This is a very classic procedure in
patch-based image denoising [Buades et al. 2005; Dabov et al. 2007;
Rousselle et al. 2012]. In a first step, given a noisy patch Px centered
at pixel x we compute its denoised version Vx by averaging all the
patches which are at a Chi-Square distance smaller than κ

Vx = 1

|Nκ (x)|
∑

y∈Nκ (x)

ũ(Py),

where we use the convention that ũ(Py) is the evaluation of u on
each pixel in patch Py.

But in this way, we have denoised all patches, not just all pixels.
Since each patch contains (2w+1)2 pixels, each pixel is conversely
contained in (2w + 1)2 patches and we therefore obtain a large
number of estimates for its color. These estimates can be finally
aggregated at each pixel location in order to build the final denoised
image.

ũ(x) = 1

(2w + 1)2

∑
|y−x|≤w

Vy(y − x)

Taking a simple mean as done in the preceding formula is the sim-
plest possible aggregation method as proposed in other denoising
algorithms [Buades et al. 2005; Dabov et al. 2007]. This patch-wise
implementation is the one considered in this article.

3.4 Removing Low-Frequency Noise

As already mentioned, in a pure Monte Carlo scenario the approxi-
mation error is a white random noise. This means that all frequencies

Fig. 3. The multiscale approach eliminates low-frequency noise, as can
be seen in the second and third row, and in the profile for a particular line
shown in the bottom row.

are equally contaminated by noise. The proposed filtering procedure
described so far filters noise at patch scale. Long wavelength noise
cannot be eliminated by this procedure, because long wavelength
structures cannot be captured by small patches. Removing noise at
lower frequencies requires a (straightforward) multiscale extension
of the method. Let us define two useful operators, the s× Gaussian
downsampling Dsu(x) := (G2s σ ∗ u)(2sx) and Us the s× bicubic
interpolator.

Now, for each scale s, the corresponding histograms hs(x) have
to be computed. Since each pixel at scale s results from the fusion
of a set of neighboring pixels in the original finer scale, the new
histograms are obtained by fusing the color histograms of all pixels
in the same neighborhood. To obtain hs(x), the same downsampling
operator Ds can be applied to the original color distribution h(x).
Then, at each scale, the resulting histograms are renormalized so
that the sum of their areas is preserved across scales (thus preserving
the original total number of samples in the finer scale).

Given a noisy image input ũ and its respective pixel color distri-
bution h(x) the multiscale histogram fusion proceeds as follows.

(1) Generate the Gaussian multiscale sequence: ũ0 = ũ, ũs = Dsũ,
s = 1, . . . , N , and their respective sample color distributions.

(2) Apply the denoising algorithm separately to each scale to re-
cover ū0, ū1, . . . , ūN .

(3) Compute the final image ū = û0 by the recursion

ûi = ūi − U1D1ūi + U1ûi+1

initialized with ûN = ūN for i = N .

Figure 3 shows the importance of dealing with noise at multiple
scales. When filtering only at a single fine scale, conspicuous low-
frequency noise remains. This noise is almost completely eliminated
by the multiscale procedure with three scales.
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4. IMPLEMENTATION DETAILS

As previously stated, our approach builds on two basic blocks:
the estimation of the sample color distribution at each pixel, and
a nonlocal multiscale filtering based on averaging pixels sharing
similar sample color distributions. This requires two kinds of data
from the rendering system: the noisy Monte Carlo image ũ(x) and
the associated sample color histograms h(x).

A fundamental aspect of the method is that sample color his-
tograms can be computed on-the-fly, in parallel with the Monte
Carlo rendering process. This is extremely important, since it makes
the memory requirements independent from the number of rendered
samples. The memory complexity bounds are fixed by the number
of pixels, and therefore, as pointed out in the Introduction, the in-
put Monte Carlo images may consist of a large enough number of
samples to produce high-quality images.

This section gives the implementation details to estimate the
sample color distribution and to perform the nonlocal multiscale
filtering.

4.1 Computing the Color Distribution of Samples

To approximate a distribution using a histogram, one has to divide
the range of possible values into discrete bins and count the number
of samples within each bin. Smoother estimates can be obtained
using kernel density estimation, by interpolating the contribution
of each sample using a kernel. In this work, we used a triangular
kernel to linearly interpolate the contribution of each sample color
value to its adjacent bins.

Despite the fact that the saturation value for pixels (perfect white)
is one, the rays’ brightness may largely exceed that value. This does
not mean that the pixel value would be saturated: indeed, we recall
that pixel values are obtained by averaging sample color values. In
order to take into account the fact that high-energy (bright) samples
are less frequent than low-energy ones, the bins are designed so that
their sizes increase with the sample value, following an exponential
law of exponent 2.2. The range covered by the histograms is set to
[0, 7.5], and all samples exceeding this range are assigned to the last
bin. It is worth mentioning that although histogram comparison is
not particularly sensitive to these parameters, they must be chosen
to cover the dynamic range adequately.

In general, sample values have a tri-stimulus color representation.
Therefore we can either compute one 3D distribution where bins are
boxes in the full 3D color space, or compute three one-dimensional
distributions, one for each color. Although distributions in the 3D
color space can capture inter-color correlations, a much larger num-
ber of bins are required to keep the same quantization step, and
consequently a larger number of samples. In Section 5 we present
a comparison of both strategies. This comparison shows that there
is no advantage in using the full 3D color space.

4.2 Filtering

The implementation of the RHF filter is straightforward. In addition
to the parameters needed to compute the histogram, four parameters
are involved in the algorithm: the number of scales ns , half the patch
size w, half the search window size b, and the χ 2 distance threshold.

The search of similar patches is restricted to a window of size
(2b+1)× (2b+1). This is reasonable since the probability that two
patches are similar will be smaller if one is distant from the other.
A threshold κ (the user parameter) is directly set on the normalized
Chi-Square distance. The pseudocode of both the filtering at each
scale and the multiscale generalization is presented in Algorithms 1

ALGORITHM 1: Single-Scale Ray Histogram Fusion

Input: MC image ũ, corresponding histograms h, patch size w,
search window size b, distance threshold κ

Output: Filtered image ū

1: ū ← 0
2: n ← 0 //auxiliary counter at each pixel in the image

3: for every pixel i do
4: Pi ← patch centered at pixel i

5: Wi ← search window with size b for pixel i

6: c ← 0 and V ← 0
7: for every j ∈ Wi do
8: Qj ← patch centered at pixel j

9: d ← ChiSquareDistance(h(Pi), h(Qj ))
10: if d < κ then
11: V ← V + ũ(Qj )
12: c ← c + 1
13: end if
14: end for
15: V ← V/c

16: n(Pi) ← n(Pi) + 1 // +1 for each pixel in Pi

17: ū(Pi) ← ū(Pi) + (
V − ū(Pi)

)
./n(Pi)

18: end for

Notation convention: ũ(Pi ) is the evaluation of ũ on each pixel in patch
Pi (the same applies for ū, n, h). The operator ./ (line 17) represents
element-wise division.

and 2, respectively. In Algorithm 1, the denoised version of patch Pi

is obtained by averaging all patches Qj such that d2
χ (Pi, Qj ) < κ .

Note that the only user parameter is κ . This parameter controls
the amount of noise that is removed, or in other words the trade-off
between image smoothness and noise. Its optimal choice depends
mostly on the sample generation process (the considered renderer).
The dependence on the rendered scene is actually very weak, as will
be demonstrated by experiments in Section 5. A simple intuitive
explanation for the dependence of the optimal κ on the rendering
method comes from the observation that the value of κ is related
to the confidence associated to the color samples. If the samples’
values are computed with low confidence, the distance threshold

ALGORITHM 2: Ray Histogram Fusion

Input: MC image ũ, corresponding histograms h, patch size w,
search window size b, distance threshold κ , number of
scales ns .

Output: Filtered image ū = ū0

1: s ← ns − 1
2: nT ← ∑

x,k hk(x) // total number of samples

3: while s ≥ 0 do
4: us ← Ds(ũ)
5: hs ← Ds(h), ns

T ← ∑
x,k hs

k(x), hs ← nT

ns
T
hs

6: ūs ← RHF (us, hs, w, b, κ)
7: if s < ns − 1 then
8: ūs ← ūs − U1D1ūs + U1ūold

9: end if
10: ūold ← ūs

11: s ← s − 1
12: end while
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should be less restrictive. For instance, in pure Monte Carlo path
tracing, each sample carries the energy of a single light path, while
in volumetric ray tracing each sample value is computed as the
average of several light paths. Therefore, the samples generated
with pure path tracing have lower confidence, and this explains why
the threshold should be less restrictive.

The practical implication of this fact is that, once a rendering
method has been chosen, the value of κ can be safely fixed once for
all. Moreover this tuning is not time consuming: indeed, since the
distance between patches (the heaviest computational task) is inde-
pendent of the parameter, its computation can be first performed and
then several values of the parameter can be tested with practically
no additional cost.

The multiscale implementation in Algorithm 2, as detailed in
Section 3.4, sequentially decomposes the input noisy image at each
scale, filters each scale using Algorithm 1, and reconstructs the
multiscaled filtered image.

4.3 Time Complexity and Memory Consumption

The complexity of the filtering at each scale is O(N · w · b · nb)
where N is the number of pixels. Note that the computational cost
is independent of the number of samples.

In the case that two scales are used the computational cost in-
creases by about 25%, the low-frequency noise filtering being done
on a four times smaller image. The computational cost is upper
bounded by 133% of the filtering time at the finest resolution, inde-
pendently of the number of scales being used.

The memory consumption of the RHF filter is determined by the
number of pixels in the image and the color histogram representation
of each pixel. In all the examples shown in this article, the color
distributions were encoded using 3 histograms of 20 bins, that is,
60 additional counters per pixel. If each counter is represented by
a floating-point number, the additional memory consumption of
the filter for a 1280 × 720 image would be approximately 0.2GB,
regardless of the number of samples per pixel.

5. EXPERIMENTAL SETUP AND RESULTS

Different types of scenes containing complex geometries, indirect
illumination, depth-of-field, and other effects were rendered using
the software PBRT-V2 [Pharr and Humphreys 2010]. The color distri-
bution estimation stage was implemented on top of PBRT, so the color
histograms were produced online as the samples were computed.
The filtering/reconstruction stage was implemented in a stand-alone
application which makes use of the sample color histogram of each
pixel and the noisy Monte Carlo image generated with a box filter.

We compared the proposed algorithm to three different methods,
both regarding image quality and execution time. The first one
is a pure Monte Carlo rendering (MC): this is the basic approach
to generate photorealistic images. This technique is asymptotically
unbiased but the variance shows slow (linear) decay with the number
of samples.

The second algorithm chosen for comparison is an adaptation
of the classic NL-means [Buades et al. 2005]. In image processing,
NL-means performs denoising by averaging similar patches. In the
rendering scenario, this method is obviously valid and can be im-
proved by considering the noise level at each pixel, estimated from
the variance of the samples that are cast from it. The main difference
is in the way similar patches are identified. The performance com-
parison with NL-means will show that the knowledge of the sample
color distribution adds a very significant amount of information, not
yet contained in the patch colors.

Table I. Summary of the Tested Scenes
Scene Effects Size Generation κ-RHF

cornell-box AI 256 × 256 path tracing 1.00
toasters AILD 512 × 512 path tracing 1.00

plants-dusk ALPD 1920 × 1080 ray tracing 0.37
sibenik AILD 1024 × 1024 path tracing 1.00
yeahright AI 800 × 800 path tracing 1.00

dragons AILDP 1024 × 1024
photon mapping

0.60+ final gathering

Considered effects: anti-aliasing (A); indirect illumination (I); area lights (L); depth-
of-field (D); participating media (P). The scenes cornell-box, plants-dusk and
sibenik are from Pharr and Humphreys [2010] while the scenes dragons and
toasters were taken from Rousselle et al. [2011].

Finally, we also consider comparison with the Adaptive Sampling
and Reconstruction technique ASR by Rousselle et al. [2011]. As
already discussed in Section 2, this Monte-Carlo-based method can
estimate the reconstruction error and control the number of samples
cast from each pixel to reduce it. This method is similar to RHF

in the sense that it does not rely on fat samples, and uses only the
final color of each rendered sample. As such, the method scales well
with the number of samples and can be used to produce high-quality
renderings of complex scenes. ASR is a state-of-the-art algorithm in
this class of methods. Comparison is made using the code provided
by the authors, and manually setting the parameters to produce the
highest possible image quality, while matching the execution time
of RHF (including both the samples’ rendering time and the filtering
stage).

The success criterion is to get an image that is very close to the
ground truth in a much shorter time. Image quality is assessed by
comparing results to reference images, generated by pure Monte
Carlo rendering with a very large number of samples per pixel. The
performance measure is the standard Peak-Signal-to-Noise Ratio
(PSNR) calculated as PSNR = 10 log 1

MSE where MSE is the mean
square error to the reference image. The PSNR is a reliable criterion
to characterize the quality of the reconstruction. It will nonetheless
be complemented by some close-ups of difficult image details. All
experiments were performed on a 2× Intel Xeon CPU X5450 @
3.00 GHz (4 cores) with 16GB of RAM.

All the algorithms were run on several scenes from the PBRT

software, simulating various effects with varying complexity levels.
In all cases three independent histograms were calculated, one

for each channel (R, G, B) with nbins=20. The search for similar
patches was limited to a 13 × 13 search window centered at the
filtered pixel. The patch size for the RHF filter is 3×3 (w = 1) for all
the results shown in this article. The κ threshold (the user parameter)
was manually set to produce a good balance between smoothness
and remaining noise. As previously explained, the optimal value for
this trade-off depends mostly on the rendering method. The values
of κ that were chosen in the experiments are shown in Table I. Note
that for all the renderings performed with a pure path tracing, we
set κ = 1, while for the scene rendered using volumetric ray tracing
(plants-dusk), κ = 0.37. This is consistent with the fact that the
color samples generated with volumetric ray tracing result from an
average of several light paths, and therefore are more precise than
in pure path tracing.

A summary indicating all the considered effects, rendering
method, and image size is shown in Table I.

3D versus 3× 1D Histograms. Table II illustrates the perfor-
mance of the method as a function of the number of bins of the
rays’ color histogram. The experiments do not support the use of
3D color space bins. Thus, independent histograms were generated
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Table II. Performance Comparison: Estimating the Histogram
3D 3 × 1D

33 43 53 3×5 3×10 3×15 3×20 3×25
cornell-box 40.2 41.0 41.7 39.8 41.6 42.5 43.0 43.3
toasters 30.5 31.3 31.7 30.4 32.2 32.8 33.1 33.3

plants-dusk 46.2 46.1 46.0 46.2 46.0 45.9 45.8 45.7
yeahright 36.0 36.2 36.2 36.3 36.1 36.0 36.0 36.0
sibenik 41.4 42.5 43.1 40.3 43.1 43.8 44.2 44.3

Average of the k = 15 closest neighbors, the performance metric is the PSNR with
respect to a ground-truth image. Two different ways of estimating the ray color his-
togram: bins in the 3D color space or three one-dimensional histograms one for each
color. In most cases, taking more bins increases the performance, but also the compu-
tational cost of the algorithm. Estimating three independent histograms one for each
color gives better results than estimating the histogram in the original 3D color space.

Table III. Oracle Performance Comparison
NL-means RHF

1×1 3×3 5×5 1×1 3×3 5×5
cornell-box 33.4 40.7 44.4 40.1 48.1 49.9
toasters 24.0 30.6 34.7 29.8 37.9 40.5

plants-dusk 49.0 54.4 55.3 51.4 55.4 55.8
yeahright 36.3 43.2 46.0 39.7 46.6 48.2
sibenik 34.9 41.5 45.4 40.4 48.6 50.8

For each pixel the ideal number of closest patches to minimize the error with respect
to the ground-truth image has been computed and fixed. The table compares NL-means
and RHF for different patch sizes. It shows that RHF permits to reduce significantly the
patch size.

Table IV. Performance Comparison of Different
Histogram Metrics

χ2 L1 L2 L∞ L0.7 AL1 AL2 AL∞ AL0.7

cornell-box 43.1 43.2 43.4 42.7 42.9 41.2 41.7 42.4 40.9
toasters 33.4 31.2 30.3 29.0 31.7 29.5 29.3 30.3 29.6

plants-dusk 46.6 46.1 46.4 45.8 45.8 46.2 46.6 46.0 45.9
yeahright 35.9 36.1 36.1 35.1 35.8 36.7 36.8 35.9 36.5
sibenik 44.3 43.3 42.8 42.2 43.3 41.6 41.7 42.5 41.4

global performance 1.03 1.01 1.01 0.98 1.01 0.99 0.99 1.00 0.98

To illustrate the influence of the metric selection, for each patch in the noisy input
image, we computed the average of the 15 closest patches according to the correspond-
ing histogram distance: χ2 and Lp distances between histograms, as well as their
cumulative counterparts (denoted by ALp). The global performance for the whole test
set was computed by normalizing each of the PSNR by the mean performance on that
particular image, and then averaging all the normalized PSNR. The χ2 distance slightly
outperforms the others.

for the R, G, B channels. The number of bins must be large enough
to capture the histogram structure, but not too large to grant a robust
histogram comparison.

Robustness: Comparing Means versus Comparing Distri-
butions. Suppose that an external Oracle tells us the exact number
of closest patches that should be averaged in each pixel to minimize
the MSE. By computing the resulting PSNRs, we can compare the
maximum theoretical performance that can be obtained using color
distributions versus pixel colors. A comparison for different patch
sizes is given in Table III. The results show that using histogram in-
formation to compare patches permits to better discriminate similar
and nonsimilar patches, thus yielding a better PSNR.

Comparisons for Several Scenes. RHF systematically outper-
forms ASR, as shown in Figure 4. Even if in some scenes both
algorithms reach similar PSNRs, the proposed algorithm does not
introduce artifacts while ASR often fails to capture the geometry and

causes spots. The PSNR gain by RHF filtering is significantly larger
than the one that would be obtained by generating more Monte
Carlo samples using the same time span. Indeed, a 3db PSNR gain
by a pure MC algorithm requires to double the number of samples.
Instead, the filtering increases the PSNR by 15 to 20 decibels. This
amounts to decreasing the overall sampling time by a factor ranging
from 15 to 40.

In the case of the yeahright image in Figure 5 the ASR algo-
rithm produces a slightly better PSNR. This scene is best suited for
this algorithm, because several regions are flat and ASR can distribute
most of the samples in the problematic parts. Nevertheless, in the
shadows RHF produces a more natural smooth result. As previously
commented, the NL-means-based-approach cannot distinguish be-
tween a large histogram variance due to pixel complexity and a
variance due to MC noise. This fact is well illustrated in the metal
edge of Figure 5, which is removed by NL-means, while it is well
preserved by RHF.

The plants-dusk scene with participating media, in Figure 6, is
a very challenging one. Here, the principal problem is the complex
geometry of the vegetation. The proposed algorithm tends to blur
and to slightly flatten some texture details. Nevertheless, contrarily
to ASR, no artifacts are introduced.

The proposed RHF filter works with motion and defocus blur
exactly as for the other effects. Figure 7 shows how defocus blur is
correctly filtered, while noiseless textures remain sharp (see caption
for details). Figure 8 illustrates the same denoising effect in blurry
parts on the dragons scene simulating a depth-of-field effect and
strong motion blur.

To illustrate the fact that the proposed denoising method is in-
dependent from the rendering system, in Figure 9 we present a
filtering experiment that runs on an image generated by photon
mapping and final gathering. This scene comes from Rousselle et al.
[2011]. The noise has been properly removed, and no artifacts are
observed.

Finally, Figure 10 shows a comparison of ASR and the proposed
method on the very realistic san miguel courtyard scene. This
image presents objects with very fine geometry and complex cor-
ridors where it is very difficult to capture all the details with few
samples. Nonetheless, the proposed algorithm produces an image
with acceptable quality and PSNR.

Extension to Animated Sequences. The ideas behind this ap-
proach can be immediately extended to video sequences where pix-
els on neighboring frames can be included in the search box. The
supplementary video shows the result of denoising an animated se-
quence, by implementing this simple generalization. Similar patches
are searched within a temporal search window of size 3 (namely in
the previous, actual, and next frame). Although no explicit temporal
correlation is enforced, the filtered sequence does not show signifi-
cant flicker. This is a consequence of the stabilization provided by
the multiscale procedure.

6. DISCUSSION, LIMITATIONS AND
FUTURE WORK

The maximum distance authorized between two patches plays an
important role in the bias-variance trade-off of the method. If the
threshold is set in a conservative way then very few pixels will
be averaged. Thus, the filtering stage will not introduce bias, but the
variance reduction will be low. On the other hand, if set too large
then many pixels of different nature would be considered similar,
and averaged by error. Then the resulting image would be smooth
but also biased (see Figure 11).
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Fig. 4. Results in a variety of scenes, with close-ups on difficult parts. In all cases, the PSNR values are given for the whole image. In general ASR tends to
create artifacts near edges. NL-means destroys complex edges such as the one on the bottom left box of the Cornell image. RHF produces the best PSNR, with no
visible artifacts. The reference images were generated with 65536 samples per pixel. For NL-means and RHF the indicated time follows the format total time
(filtering time).
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Fig. 5. Fine geometry details, glossy surfaces, and indirect illumination presented in the yeahright scene are rendered with the PBRT-V2 path-tracing
algorithm. The comparison is done in such a way that the ASR computational time matches the Monte Carlo samples generation + RHF filtering time. NL-means
loses fine structures such as the thin metallic edge (first line). In this particular scene, ASR performs well, but creates artifacts in the shadow (second line). RHF

produces a similar PSNR with no artifacts. The reference image was generated with 65536 samples per pixel. For NL-means and RHF the indicated time follows
the format total time (filtering time).

Fig. 6. Comparison of Monte Carlo rendering, ASR and the proposed methods on the plants-dusk scene. The original Monte Carlo image was rendered with
32 spp. The PSNR values are given for the whole image. This image presents a very complex fine geometry which is very difficult to capture with few samples.
Nonetheless, the proposed algorithm produce acceptable quality and PSNR. The reference image was generated with 4096 samples per pixel. For NL-means and
RHF, the indicated time follows the format total time (filtering time).

If we accept that the selection of the most similar pixels for
each noisy input pixel is independent of the number of samples,
then the gain in PSNR when casting more samples is only due to
the averaging of less noisy pixels. By the randomness of the MC
rendering, the noise of the input pixels is reduced by +3db/octave,
thus the ideal (best) slope should be +3db/octave. This is the ideal,
because it assumes that there is no error in the selection of similar
pixels. Therefore, we can consider the difference in slope to the ideal
+3db/octave as a measure of experimental bias (introduced error).
While the proposed algorithm RHF has an experimental bias of 0.2db,
the NL-means bias is three times larger. More important, the relative

bias to the MC gain is 0.2/3 ≈ 0.07, which demonstrates that the
proposed algorithm makes very few wrong ray color attributions.

Moreover, the proposed algorithm is consistent up to the dis-
cretization of the color distribution. As the number of samples in-
creases, more evidence is required to average two pixels. In the
limit two pixels will be averaged only if their color histograms are
the same. Therefore, in practice, as the number of samples grows
the method converges to the expected solution, as illustrated by the
experiment in Figure 12.

The sharing of radiance estimates across pixels may tend to
smooth and slightly flatten textures that are not highly contrasted.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 8, Publication date: January 2014.



8:12 • M. Delbracio et al.

Fig. 7. Texture with noise characteristics rendered simulating a very shal-
low depth-of-field effect at 8 samples per pixel (spp). The texture in the
in-focus plane presents white noise characteristic so classical image denois-
ing filters will remove the textured detail. The same texture in an out-of
focus plane presents Monte Carlo noise due to the random sampling of the
aperture point. The RHF filter only smoothes those regions that are out-of-
focus since the others do not introduce Monte Carlo noise. The reference
image was generated with 2048 samples per pixel.

Fig. 8. Depth-of-field (red) and motion blur effects (blue). Noise is re-
moved while details in noiseless parts are preserved. The reference images
were generated with 8192 samples per pixel.

This results from the averaging nature of the filter and the difficulty
to differentiate pixels with similar color histograms. Nevertheless,
as we have illustrated in Figure 4, the introduced smoothing is

Fig. 9. Light interaction with participating media rendered through a pho-
ton mapping algorithm shows the generality of the proposed filtering. The
comparison is done in such a way that the ASR computational time matches
the Monte Carlo samples generation + RHF filtering time.

moderate, and lower than the smoothing caused by a classic self-
similarity filter such as NL-means.

The acceleration factor with respect to pure Monte Carlo ren-
dering depends on the degree of self-similarity of the scene, which
fortunately is usually high [Lebrun et al. 2012]. Besides, in order
to capture details, pixels need a large enough number of color sam-
ples to be well characterized. This is actually a design decision:
we wanted our method to produce unbiased high-quality images for
any kind of scenes and complex effects, and this naturally requires a
proper sampling of the light field. If this requirement is not met, the
algorithm may not properly cluster similar pixels and details may
be removed due to overblur, as happens with some details in the
plants image. In the case of very low sample numbers, if the path
space is regular enough to be well described by sparse sampling,
methods based on strong scene hypothesis that use fat samples [Sen
and Darabi 2012; Lehtinen et al. 2012] are certainly much more
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Fig. 10. Comparison of ASR and the proposed method for the san miguel

scene. The original 1357 × 986 Monte Carlo image was rendered with 256
spp. The PSNR values are given for the whole image. This image presents a
very complex fine geometry and complex corridors where it is very diffi-
cult to capture all the details with few samples. Nonetheless, the proposed
algorithm produces acceptable quality and PSNR. The reference image was
generated with 65536 samples per pixel. For RHF, the indicated time is the
the total time rendering + filtering.

adapted. This will be more clear from the comparison to Sen and
Darabi [2012] that follows.

Comparison to RPF [Sen and Darabi 2012]. In RPF “fat
samples,” namely a Monte Carlo sample with its geometric fea-
tures, texture, color, and random generation parameters, are being
considered as input while RHF uses only “color samples”, namely
the color of each final sample. The fat samples in a given pixel per-
mit to establish a (rough) statistics for each sample feature (mean
and variance). These will be used to define the set of similar sam-

Fig. 11. Changing the distance threshold κ: it fixes the maximum dis-
tance by which two color distributions can differ: (a) A small detail in the
toasters image filtered with the RHF algorithm with growing κ values. The
MSE presents a minimum for κ = 0.7 − 1.0; (b): if κ is too small the test
on the similarity is excessively conservative, and the noise is not reduced
(high variance). If κ is large, too many pixels are averaged and the image
is blurred (high bias). The results were calculated on the toasters scene
generated with 256 spp and the reference image with 65536 spp.

ples in a spatial neighborhood to the fat samples of the pixel. In
other terms, in RPF individual samples are compared individually
to the sample distribution inside a pixel. This is the set of sam-
ples whose color will be averaged to define the new color of the
original sample. In RHF, the histograms of any two pixels’ sam-
ple’ color (below some maximal distance) are compared by the χ 2

distance. Thus the distance is between two pixels and not an asym-
metric distance between a sample and a group of samples in the
pixel.

In RPF the average of “similar” fat samples will be weighted to
take into account the similarities of samples and their dependency
on the generation parameters. To do so a mutual-information-based
coefficient is computed between sample features and generation
parameters; this permits to fix the weights in the final color aver-
aging procedure. However, in RHF, the distance between two color
histograms of two pixels fixes, by a binary decision, if a pixel will
share its samples with another or not. In case where the decision
is to fuse these pixels, both pixels share their rays. The method is
made more selective by comparing not pixels, but patches of 3 × 3

ACM Transactions on Graphics, Vol. 33, No. 1, Article 8, Publication date: January 2014.
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Fig. 12. Left: A comparison of the PSNR for RHF, NL-means, and the pure MC path-tracing algorithm on the toasters scene. As the number of samples per
pixel increases the PSNR increases. In a pure MC scenario the square error decreases linearly with the number of samples (which is a trivial consequence of
averaging independent samples). Thus, duplicating the number of samples produces a 3db gain. Although for the proposed algorithm the slope gain is a little
smaller (2.8db/octave), RHF reduces the error significantly in comparison to MC. +15.5dB is a huge difference; it permits to reach the same image quality with
35× fewer samples. On the right we show a close-up, generated with a varying number of samples through pure MC (top) and filtered with RHF (bottom).

pixels. In addition, RHF is multiscale, to ensure that low-frequency
noise is also removed.

Hence, note that while both methods propose to share similar
samples between pixels, the decisions that are taken and the infor-
mation that is used to reach this goal are, according to the preceding
comparison, significantly different. In short, both methods group
samples, but they do not use the same information to group them.
We can now explain why RHF needs more samples per pixel than
RPF: since we are only comparing colors, obviously very similar
pixels may have very different color histograms when only very
few samples are available. Thus, RHF might become efficient at low
sample rate by using, as RPF, more sample features acting like weak
classifiers to discriminate the right similar pixels.

7. CONCLUSION

In this article we have introduced RHF, an adaptive filtering scheme
that accelerates Monte Carlo renderers. In the proposed approach,
each pixel in the image is characterized by the collection of rays that
reach its surface. The proposed filter uses a distance based on the
sample color distribution of each pixel, to decide whether two pixels
can share their samples. This permits to boost the performance
of a Monte Carlo render by reusing samples without introducing
significant bias.

We have presented several experiments showing that RHF achieves
artifact-free high-quality noise reduction on a variety of scenes, and
is able to cope with multiple simultaneous effects. The method
is not only capable of removing high-frequency noise: thanks to
its natural multiscale design, it can also successfully remove low-
frequency noise. The proposed method can be easily extended to
process animated sequences.

The method is independent of the rendering system and can be
applied to samples generated by different methods, such as pure
Monte Carlo path tracing or photon mapping with final gathering.
It could also be potentially applied to postprocess other methods
that resynthesize samples using information from the scene, like
the one recently proposed by Lehtinen et al. [2012]. An advantage
of the proposed filter is that its time and memory complexities do
not depend on the number of input samples, and scale linearly with
the image size.

Finally, since a direct output of our method is the number of
similar pixels for each given pixel, a decision on where to distribute
new samples can be adopted. This may lead to an adaptive rendering
version of the proposed filtering approach.
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constructing the indirect light field for global illumination. ACM Trans.
Graph. 31, 4, 51:1–51:10.

Michael D. McCool. 1999. Anisotropic diffusion for monte carlo noise
reduction. ACM Trans. Graph. 18, 171–194.

Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive
wavelet rendering. ACM Trans. Graph. 28, 140:1–140:12.

Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand. 2007.
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