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Abstract 

Image rectification is the process of applying a pair of 
2 dimensional projective transforms, or homographies, to a 
pair of images whose epipolar geometry is known so that 
epipolar lines in the original images map to horizontally 
aligned lines in the transformed images. We propose a 
novel technique for image rectification based on geometri- 
cally well deflned criteria such that image distortion due to 
rectification is minimized. This is achieved by decomposing 
each homography into a specialized projective transform, a 
similarity transform, followed by a shearing transform. The 
effect of image distortion at each stage is carefully consid- 
ered. 

1. Introduction 

Image rectification is an important component of stereo 
computer vision algorithms. We assume that a pair of 2D 
images of a 3D object or environment are taken from two 
distinct viewpoints and their epipolar geometry has been de- 
termined. Corresponding points between the two images 
must satisfy the so-called epipolar constraint. For a given 
point in one image, we have to search for its correspondence 
in the other image along an epipolar line. In general, epipo- 
lar lines are not aligned with coordinate axis and are not 
parallel. Such searches are time consuming since we must 
compare pixels on skew lines in image space. These types 
of algorithms can be simplified and made more efficient if 
epipolar lines are axis aligned and parallel. This can be real- 
ized by applying 2D projective transforms, or homographies, 
to each image. This process is known as image rectification. 

The pixels corresponding to point features from a rec- 
tified image pair will lie on the same horizontal scan-line 
and differ only in horizontal displacement. This horizontal 
displacement, or disparity between rectified feature points 
is related to the depth of the feature. This means that recti- 
fication can be used to recover 3D structure from an image 
pair without appealing to 3D geometry notions like cam- 
eras. Algorithms to find dense correspondences are based 
on correlating pixel colors along epipolar lines [I] .  Seitz 

has shown[4] that distinct views of a scene can be morphed 
by linear interpolation along rectified scan-lines to produce 
new geometrically correct views of the scene. 

1.1. Previous Work 

Some previous techniques for finding image rectification 
homographies involve 3D constructions[ 1 ,  41. These meth- 
ods find the 3D line of intersection between image planes and 
project the two images onto the a plane containing this line 
that is parallel to the line joining the optical centers. While 
this approach is easily stated as a 3D geometric construc- 
tion, its realization in practice is somewhat more involved 
and no consideration is given to other more optinzal choices. 
A strictly 2D approach that does attempt to optimize the 
distorting effects of image rectification can he found in [3]. 
Their distortion minimization criterion is based on a simple 
geometric heuristic which may not lead to optimal solutions. 

1.2. Overview 

Our approach to rectification involves decomposing each 
homography into a projective and affine component. We then 
find the projective component that minimizes a well defined 
projective distortion criterion. We further decompose the 
affine component of each homography into a pair of simpler 
transforms, one designed to satisfy the constraints for rec- 
tification, the other is used to further reduce the distortion 
introduced by the projective component. 

This paper is organized as follows. In Section 2 we 
present our notation and define epipolar geometry. In Sec- 
tion 3 we define rectification and present results needed for 
our homography computation. In Section 4 we give de- 
tails of our decomposition. In Sections 5-7 we compute the 
component transforms needed for rectification. Finally, we 
present an example of our technique and make concluding 
remarks. 

2. Background 

We work entirely in 2 dimensional projective space. 
Points and lines are represented by lower-case bold sym- 
bols, e.g. p and 1. The coordinates of points and lines are 

125 
0-7695-0149-4/99 $10.00 0 1999 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 14, 2008 at 05:02 from IEEE Xplore.  Restrictions apply.

mailto:cloop,zhang}@microsoft.com


M 

C 

Figure 1. Epipolar geometry between a pair of images. 

represented by 3 dimensional column vectors, e.g. p = 
[ p u  p ,  p,IT and 1 = [la l b  1, lT.  The individual coordi- 
nates are sometimes ordered U ,  v,  w for points, and a ,  b, c for 
lines. Transforms on points and lines are represented by 3 x 3 
matrices associated with bold upper case symbols, e.g. T. 
Unless identified to thecontrary, matrixentries are given sub- 
scripted upper-case symbols, e.g. T11,7’1~,. . . , T33. Pure 
scalar quantities are given lower-case Greek symbols. 

As projective quantities, points and lines are scale invari- 
ant, meaning p = a p  (a  # 0) represent the same point. 
Points with w-coordinate equal to zero are known as afine 
vectors, directions or points at 00. Points with a non-zero 
w-coordinate are known as afJine points when the scale has 
been fixed so that p = [ p u  p ,  1IT. The set of all affine 
points is known as the afJine plane. For our purposes, we 
consider the image plane to be an affine plane where points 
are uniquely identified by U and w, w is presumed to be equal 
to one. 

2.1. Epipolar Geometry 

We now formally define the epipolar geometry between a 
pair of images. Let C and C’ be a pair of pinhole cameras in 
3D space. Let m and m’ be the projections through cameras 
C and C’ of a 3D point hi in images Z and 2’ respectively. 
The geometry of these definitions is shown in Fig. 1 .  The 
epipolar constraint is defined 

mrTFm = 0, (1 )  

for all pairs of images correspondences m and m’, where F 
is the so-called fundanzental matrix [ I ] .  

The fundamental matrix F is a 3 x 3 rank-2 matrix that 
maps points in Z to lines in Z’, and points in Z’ to lines in 2. 
That is, if m is a point in Z then Fm = 1’ is an epipolar line 
in Z’ since from Eq. ( I ) ,  mrTl’ = 0. In fact, any point m‘ 
that corresponds with m must line on the epipolar line Fm. 

For a fundamental matrix F there exists a pair of unique 
points e E Z and e‘ E Z‘ such that 

Fe = 0 = FTe’ (2) 

where 0 = [ 0 0 0lT is the zero vector. The points e and e’ 
are known as the epipoles of images Z and Z’ respectively. 
The epipoles have the property that all epipolar lines in Z pass 
through e,  similarly all epipolar lines in Z’ pass through e’. 

In 3D space, e and e’ are the intersections of the line C C’ 
with the planes containing image Z and 2’. The set of planes 
containing the line C C‘ are called epipolarplanes. Any 3D 
point M not on line C C’ will define an epipolar plane, the 
intersection of this epipolar plane with the plane containing 
Z or Z’ will result in an epipolar line (see Figure 1). 

In this paper, we assume that F is known. An overview 
of techniques to find F can be found in [ 5 ] .  If the intrinsic 
parameters of a camera are known, we say the images are 
calibrated, and the fundamental matrix becomes the essen- 
tial matrix [ 11. Our method of rectification is suitable for 
calibrated or uncalibrated images pairs, provided that F is 
known between them. 

3. Rectification 

Image rectification can be view as the process of trans- 
forming the epipolar geometry of a pair of images into a 
canonical form. This is accomplished by applying a ho- 
mography to each image that maps the epipole to a prede- 
termined point. We follow the convention that this point be 
i = [ 1 0 0IT (a point at 00 ), and that the fundamental 
matrix for a rectified image pair be defined 

F = [ i ] ,  =‘[ 0 0  0 0 - 1 1 .  0 

0 1  0 

We use the notation [ x] to denote the antisymetric matrix 
representing the cross product with x. Under these con- 
ventions, i t  is easy to verify that rectified images have the 
following two properties: 

i. All epipolar lines are parallel to the u-coordinate axis, 

ii. Corresponding points have identical v-coordinates. 

These properties are useful in practice since rectification 
maps epipolar lines to image scan-lines. Other conventions 
for canonical epipolar geometry may be useful under special 
circumstances. 

Let H and H’ be the homographies to be applied to images 
Z and 2’ respectively, and let m E Z and m‘ E Z’ be a pair 
of points that satisfy Eq. (1). Consider rectified image points 
m and m’ defined 

m = Hm and m’ = H’m’. 

It follows from Eq. (1) that 
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by dividing out wc. We similarly divide out w: from H’. 
This will not lead to difficulties arising from the possibility 
that wc or w: be equal to zero since we assume the image 
coordinate system origin is near the image and our mini- 
mization procedure will tend to keep the lines w and w’ 
away from the images. 

We decompose H into 

H = H,H,, 

where H, is a projective transform and Ha is an affine trans- 
form. We define Figure 2. The lines v and v’, and w and w’ must be cor- 

responding epipolar lines that lie on common epipolar 
planes. 1 0 0  

(6) 
resulting in the factorization H p =  [ ia :b ] ’  

F = HtT[iIxH. (3) 

Note that the homographies H and H’ that satisfiy Eq. (3) 
are not unique. Our task is to find a pair of homographies H 
and H’ minimize image distortion. 

Let U, v ,  and w be lines equated to the rows of H such 
that 

UT 
H = [ vT ] = [ :I :: ] . (4) 

WT w a  ‘wb wc 

Similarly, let lines U’, v’, and w’ be equated to the rows of 
H’. By definition we have that 

H e  = [ uTe vTe wTe I T =  [ 1 0 0 3’. 
This means that the lines v and w must contain the epipole 
e. Similarly v’ and w’ must contain the other epipole e’. 
Furthermore, we show in AppendixA that lines v andv’, and 
lines w and w’ must be corresponding epipolar lines. This 
has a simple geometric interpretation illustrated in Figure 2 .  
This result establishes a linkage between the homographies 
H and H’. This linkage is important when minimizing dis- 
tortion caused by rectification. 

4. Decomposition of the Homographies 

We compute rectifying homographies H and H’ by de- 
composing them into simpler transforms. Each component 
transform is then computed to achieve a desired effect and 
satisfy some conditions. 

It is convenient to equate the scale invariant homography 
H with a scale variant counterpart 

u a  ub uc 
H = [  ‘ua Vb y ] ,  ( 5 )  

wa wb 

From Eqs. (5) and (6) it  follows that 

1 U, - UcWa ub-  Ucwb UC 

Vb-ucwb Vc . 
0 1 

0 -  P 

The definitions of HL and HI, are similar but with primed 
symbols. 

We further decompose Ha (similarly Hi) into 

Ha = H,H, 

where Hr is similarity transformation, and H, is a shearing 
transformation. The transform H, will have the form 

1 Vb - VcWb vcwa 0 
Vb - ucwb 21, . (7) 

0 1 

We define H, as 

Note that H, only effects the u-coordinate of a point, there- 
fore i t  will not effect the rectification of an image. 

We now consider how to compute each component trans- 
forms just defined. 

5. Projective Transform 

The transforms H, and Hb completely characterize the 
projective components of H and H’. These transforms map 
the epipoles e and e’ to points at CO (points with w-coordinate 
equal to zero). By definition, H, and Hk are determined by 
lines w and w’ respectively. 

The lines w and w’ are not independent. Given adirection 
z = [ X p 0IT in image 2, we find 

w = [ e ] , z  and w ’ = F z .  (8) 
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This result follows from the correspondence of w and w’ as 
epipolar lines (see Appendix A for details). Any such z will 
define a pair of corresponding epipolar lines; we are trying 
to find z that minimizes distortion, to be defined below. 

Let p, = [ P , , ~  P , , ~  1 I T  be a point in the original image. 
This point will be transformed by H, to point [ $ 1 I T  
with weight 

T 
‘W, = w p, 

Since w = [ e ]  z and w’ = Fz, we rewrite Eq. (IO) 
over both images to get 

A A’ 

or simply 

(1 1) 
zTAz zTA’z +- zTBz zTB’z’ 

where A, B, A‘, and B’ are 3 x 3 matrices that depend on 
the point sets p, and p:. Since the w-coordinate of z is equal 
to zero, only the upper-left 2 x 2 blocks of these matrices 
are important. In the remainder of this section, we denote 

We now consider the specific point set corresponding to 
a whole image. We assume that an image is a collection of 
pixel locations denoted 

If the weights assigned to points are identical then there is 

an affine transform. In order to map the epipole e from the 
affine (image) plane to a point at 00, H, cannot in general 
be affine. However, as the image is bounded we can attempt 
to make H, as affine as possible. This is the basis of our 
distortion minimization criterion. 

5.1. Distortion Minimization Criterion 

no projective distortion and the homography is necessarily 

z = [ A ,  p ] T .  

Although we cannot have identical weights in general 
(except when the epipole is already at a), we can try to 
minimize the variation of the weights assigned to acollection T 
of points over both images. We use all the pixels from both P ? , J = [ Z  j ‘ 1  ? - 
images as our collection, but some other subset of important 
image points could also be used if necessary. The variation 
is measured with respect to the weight associated with the 
image center. More formally, we compute 

where i = 0 , .  . . ~ w - 1 and j = 0, .  . . , h - 1, and ‘w and 
h are the width and height of image 2, The image center is 
the point 

2 g [ 3  I (9) 

where w, = wTpc, where pc = p, is the averuge 
of the points. This measure will be zero if  the weights for all 
the points are equal, occurring only if H, is an affine map, 
and the epipole is already at 00. By minimizing Eq. (9) we 
find H, and Hb that are as close to affine as possible over 
the point set pz. 

Over one image, Eq. (9) can be written as 

WT(Pt - Pc) 

or as a matrix equation 

W T P P T W  

WTPcPTW ’ (10) 

where P is the 3 x n matrix 

P1,u - Pc,u P2,u - Pc,u . ’ . Pn,u - Pc,u 
Pc,v P2,u - Pc,v ’ .  . 

0 0 . . .  

We similarly define p’, and P’ for the other image. 

We similarly define primed counter-parts for image 2’. Un- 
der these assumptions, the upper-left 2 x 2 block of PPT is 
reduced to the following simple form: 

and 

1 (w - 1 ) 2  

(w - l ) ( h  - 1) 
(.w - l ) ( h  - 1) 

( h  - 1)2 

Using these results, we compute the 2 x 2 matrices A, B, 
A‘, and B’ in Eq. (1 1). 

5.2. Solving the minimization problem 

Solving z by minimizing Eq. (1  1 )  is a nonlinear optimiza- 
tion probtem. z = [XpIT is defined up to a scalar factor. 
Without loss of generality, we can set p = 1. (If p is much 
smaller than A, we can set X = 1, but the following dis- 
cussion still holds.) Quantity (1  1 )  is minimized when the 
first derivative with respect to X is equal to 0. This gives us a 
polynomial of degree 7, because (1  1 )  is the sum of two ratio- 
nal functions, each the ratio of quadratic polynomials. The 
root can be found iteratively starting from an initial guess. 
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The initial guess is obtained as follows. We first mini- 
mize zTAz/zTBz and z ~ A ’ z / z ~ B ’ z  separately (see be- 
low), which gives us two different estimations of z, denoted 
by 2 1  and z2 .  Their average, (zI/l/z111 + z 2 / l I z 2 / / ) / 2 ,  is 
used as the initial guess of z. It turns out that this is very 
close to the optimal solution. 

Minimizing zTAz/zTBz is equivalent to maximizing 
zTBz/zTAz, denoted by f(z).  As A is symmetric and 
positive-definite, it can be decomposed as A = DTD. Let 
y = Dz. Then, f(z) becomes 

y T ~ - T ~ ~ - l y  

YTY 
f (Y)  = 

Since y is defiFed up to a scale factor, we can impose 
llyll = 1, and f(y) is maximized when y is equal to the 
eigenvector of D-TBD-’ associated with the largest eigen- 
value. Finally, the solution for z is given by z = D-ly.  
Exactly the same procedure can be applied to find z which 
minimizes Z T ~ ’ Z / ~ T ~ ’ Z .  

6. Similarity Transform 

In the previous section, the transforms H, and Hb were 
found that map the epipoles e and e’ to points at m. In this 
section we define a pair of similarity transforms H, and Hk 
that rofure these points at CO into alignment with the direction 
i = [ 1 0 0IT as required for rectification. Additionally, a 
translation in the v-direction on one of the images is found 
to exactly align the scan-lines in’ both images. 

At this stage, we assume that the lines w and w’ are 
known. We can therefore eliminate va and vb from Eq. (7) 
by making use of the following: 

Using the last row of this matrix equation, we determine that 

Note that there remains a translation term involving U: in 
Eqs. (17) and (16). This shows that translation in the v- 
direction is linked between the two images, and that an offset 
of F33 is needed to align horizontal scan-lines. We find U: 
so that the minimum w-coordinate of a pixel in either image 
is zero. 

As similarity transforms, H, and Hk can only rotate, 
translate, and uniformly scale the images Z and 1’. None of 
these operations introduce any additional distortion. 

The combined transforms H,H,, and HCHL are suffi- 
cient to rectify images Z and 1’. However, there remains 
additional freedom, corresponding to U and U’ of Eq. (4). 
These elements take the form of shearing transforms de- 
scribed below, that can be leveraged to reduce distortion and 
to map the images into a more practical pixel range. 

7. Shearing Transform 

In this section the freedom afforded by the independence 
of U and U’ is exploited to reduce the distortion introduced 
by the projective transforms H, and Hb. Due to this inde- 
pendence, we consider only one image, as the procedure is 
carried out identically on both images. 

We model the effect of U as a shearing transform 

s =  0 1 0  [:: i l : ]  
We set the translation components of S to zero since these 
terms add no useful freedom at this stage. 

Let a = [F 0 1IT, b = [w - 1 1IT, 
c = [q h - 1 1IT, and d = [ 0  1IT be points 
corresponding to the midpoints of the edges of Z. Further- 
more, let a = H,H,a, be a point in the affine plane by 
dividing through so that aw = 1; similarly define b, C, and 
d. 

In general, H, is a projective transform, so it  is not pos- 
sible to undistort Z completely using the affine transform S. 
Instead we attempt to preserve perpendicularity and aspect 
ratio of the lines bd and c%. Let 

x = b - d ,  
y = e - a ,  

As the difference of affine points, x and y are vectors in the 
euclidean image plane. Perpendicularity is preserved when 

and aspect ratio is preserved if 

(SX)T (SX) - w2 
(Sy)T(Sy) - 77’ 
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Eqs. ( 18) and (19) represent quadratic polynomials in a and 
b (the unknown elements of S) whose simultaneous satisfac- 
tion is required. Using the method outlined in [2] we find 
the real solution 

up to sign; the solution where a is positive is preferred. We 
define H, (and similarly Hi) to be S composed with a uni- 
form scaling and translation as discribed below. 

The combined transform H,H,H,, and similarly 
HiHhHL, rectify images Z and 2’ with minimal distortion. 
However these image may not the appropriate size, or in 
the most desirable coordinate system. Therefore, additional 
uniform scaling and translation may be applied. It is impor- 
tant that the same scale factor, and the same v-translation be 
applied to both images to preserve rectification. Translations 
in the u-direction have no effect on rectification. 

In our examples, we chose a uniform scale factor that 
preserves the sum of image areas. Other criteria may work 
equally well. We also compute translations in U so that 
the minimum pixel coordinate has a u-coordinate of zero. 
A similar translation is found for the v direction, but the 
minimum is taken over both images to preserve rectification. 

8. Conclusion 

We have presented a procedure for computing rectifica- 
tion homographies for a pair of images taken from distinct 
viewpoints ofa 3D scene. Figure 3 shows the results of each 
stage of our technique on one example. This new method 
i s  based entirely on quantifiable 2D image measures and 
requires no 3D constructions. Furthermore, these measure 
have intuitive geometric meaning. We have shown the tech- 
nique that minimizes distortion due to the projective compo- 
nent of rectification, and used additional degrees of freedom 
in the affine component to further reduce distortion to a well 
defined minimum. 

A Proof of Correspondence Properties 

In this appendix we demonstrate i) how corresponding 
epipolar lines are related by a direction in one image, and 
ii) that the second and third rows of a pair of rectifying ho- 
mographies correspond to a pairs of corresponding epipolar 
lines. We use the symbol 

Proposition 1. If1 - 1’ and x E Z is a direction (point at 
CO) such that 1 = [e] x then 

to indicate correspondence. 
Let 1 E Z and 1’ E Z’ be a pair of epipolar lines. 

1’ = Fx. 

Proo$ Let x be the intersection of lines 1 and k = [ 0 0 1 IT 
(the line at CO), found by x = [k] 1. Similarly, let x’ = 
[k] 1’. Clearly 1 = [e] , x, since [ e ]  [ k ]  , 1 = 1. 

Since 1 - 1’ it follows that xfTFx = 0. By defintion 
elT1’ = eITFx = 0 and ~ ’ ~ 1 ’  = x ’ ~ F x  = 0, which shows 
that lines 1‘ and Fx both contain points e’ and x’ and must 
be the same line. 0 

In the following, we denote the rows of H and H’ as in 
Eq. (4), and i = [ 1 0 0IT. 

Proposition 2. IfH and H‘ are homgraphies such that 

F = HZr[iIxH, (20) 

then v - v’ and w N w’. 

P roo$ Expanding HIT[i] , H shows that 

1 ‘UawL - ‘ULwa VbWL - VLWb VcWL - VLWc 

F = [ VaWI, - UI,Wa VbwL - VLWb VCWI, - UI,W, . 
VawL - VLWa VbwL - VLWb ‘UcWL - VLW, 

We observe that F does not depend on U or U’. Without loss 
of generality, we set U = k = U’, where k = [0  0 1IT is 
the line at CO. It is straightforward to show that, up to a scale 
factor 

H - l =  [ [v lxw [wlxu [ U I X V  1 .  
Since v and w are independent (follows from Eq. (20)) and 
both contain e, we conclude that [ v I x w  = e. Let y = 
[ v ] , k  and z = [ w],k .  From Eq. (20) we get 

H’T[i]x‘ = FH-’ 
[ k  v’ w’] [ i Ix  = F [ e  z - y ]  

[ 0 W’ -VI ] = [ 0 FZ -Fy 3 .  (21) 

We conclude that v‘ = Fy and w‘ = Fz. By Proposition I 
it follows that v - v‘ and w N w‘. 0 
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(a) Original image pair overlayed 
with several epipolar lines. 

(b) Image pair transformed by the 
specialized projective mapping H, 
and Hb. Note that the epipolar lines 
are now parallel to each other in each 
image. 

(c) Image pair transformed by the 
similarity H, and Hi. Note that 
the image pair is now rectified 
(the epipolar lines are horizontally 
aligned). 

(d) Final image rectification after 
shearing transform H, and Ht. 
Note that the image pairremains rec- 
tified, but the horizontal distortion is 
reduced. 

Figure 3. An example showing various stages of the proposed rectification algorithm. 
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