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Abstract

Non-local patch based methods were until recently state-
of-the-art for image denoising but are now outperformed
by CNNs. Yet they are still the state-of-the-art for video
denoising, as video redundancy is a key factor to attain
high denoising performance. The problem is that CNN ar-
chitectures are hardly compatible with the search for self-
similarities. In this work we propose a new and efficient
way to feed video self-similarities to a CNN. The non-
locality is incorporated into the network via a first non-
trainable layer which finds for each patch in the input image
its most similar patches in a search region. The central val-
ues of these patches are then gathered in a feature vector
which is assigned to each image pixel. This information is
presented to a CNN which is trained to predict the clean
image. We apply the proposed architecture to image and
video denoising. For the latter patches are searched for in
a 3D spatio-temporal volume. The proposed architecture
achieves state-of-the-art results. To the best of our knowl-
edge, this is the first successful application of a CNN to
video denoising.

1 Introduction

Advances in image sensor hardware have steadily improved
the acquisition quality of image and video cameras. How-
ever, a low signal-to-noise ratio is unavoidable in low light-
ing conditions if the exposure time is limited (for example
to avoid motion blur). This results in high levels of noise,
which negatively affects the visual quality of the video and
hinders its use for many applications. As a consequence,
denoising is a crucial component of any camera pipeline.
Furthermore, by interpreting denoising algorithms as proxi-
mal operators, several inverse problems in image processing
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can be solved by iteratively applying a denoising algorithm
[42]. Hence the need for video denoising algorithms with a
low running time.

Literature review on image denoising. Image denois-
ing has a vast literature where a variety of methods have
been applied: PDEs and variational methods (including
MRF models) [45, 11, 43], transform domain methods [18],
non-local (or patch-based) methods [7, 17], multiscale ap-
proaches [21], etc. See [30] for a review. In the last two or
three years, CNNs have taken over the state-of-the-art. In
addition to attaining better results, CNNs are amenable to
efficient parallelization on GPUs potentially enabling real-
time performance. We can distinguish two types of CNN
approaches: trainable inference networks and black box
networks.

In the first type, the architecture mimics the operations
performed by a few iterations of optimization algorithms
used for MAP inference with MRFs prior models. Some
approaches are based on the Field-of-Experts model [44],
such as [5, 48, 14]. The architecture of [52] is based on
EPLL [57], which models the a priori distribution of im-
age patches as a Gaussian mixture model. Trainable infer-
ence networks reflect the operations of an optimization al-
gorithm, which leads in some cases to unusual architectures,
and to some restrictions in the network design. For exam-
ple, in the trainable reaction diffusion network (TRDN) of
[14] even layers must be an image (i.e. have only one fea-
ture). As pointed out in [28] these architectures have strong
similarities with the residual networks of [23].

The black-box approaches treat denoising as a standard
regression problem. They do not use much of the domain
knowledge acquired during decades of research in denois-
ing. In spite of this, these techniques are currently topping
the list of state-of-the-art algorithms. The first denoising
approaches using neural networks were proposed in the mid
and late 2000s. Jain and Seung [26] proposed a five layer
CNN with 5×5 filters, with 24 features in the hidden layers
and sigmoid activation functions. Burger et al. [10] reported
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the first state-of-the-art results with a multilayer perceptron
trained to denoise 17 × 17 patches, but with a heavy archi-
tecture. More recently, DnCNN [55] obtained impressive
results with a far lighter 17 layer deep CNN with 3× 3 con-
volutions, ReLU activations and batch normalization [25].
This work also proposes a blind denoising network that can
denoise an image with an unknown noise level σ ∈ [0, 55],
and a multi-noise network trained to denoise blindly three
types of noise. A faster version of DnCNN, named FFD-
Net, was proposed in [56], which also allows handling noise
with spatially variant variance σ(x) by adding the noise
variance map as an additional input. The architectures of
DnCNN and FFDnet keep the same image size throughout
the network. Other architectures [36, 47, 12] use pooling or
strided convolutions to downscale the image, and then up-
convolutional layers to upscale it back. Skip connections
connect the layers before the pooling with the output of the
up-convolution to avoid loss of spatial resolution. Skip con-
nections are used extensively in [51].

Although these architectures produce very good results,
for textures formed by repetitive patterns, non-local patch-
based methods still perform better [55, 10]. Some works
have therefore attempted to incorporate the non-local patch
similarity into a CNN framework. Qiao et al. [41] proposed
inference networks derived from the non-local FoE MRF
model [50]. This can be seen as a non-local version of
the TRDN network of [14]. A different non-local TRDN
was introduced by [31]. BM3D-net [54] pre-computes for
each pixel a stack of similar patches which are fed into a
CNN, which reproduces the operations done by (the first
step of) the BM3D algorithm: a linear transformation of the
group of patches, a non-linear shrinkage function and a sec-
ond linear transform (the inverse of the first). The authors
train the linear transformations and the shrinkage function.
In [15] the authors propose an iterative approach that can
be used to reinforce non-locality to any denoiser. Each it-
eration consists of the application of the denoiser followed
by a non-local filtering step using a fixed image (denoised
with BM3D) for computing the non-local correspondences.
This approach obtains good results and can be applied to
any denoising network. An inconvenience is that the re-
sulting algorithm requires to iterate the denoising network.
Trainable non-local modules have been proposed recently
by using differentiable relaxations of the 1 nearest neigh-
bors [32] and k nearest neighbors [39] selection rules.

Literature review on video denoising. CNNs have been
successfully applied to several video processing tasks such
as deblurring [49], video frame synthesis [33] or super-
resolution [24, 46], but their application to video denois-
ing has been limited so far. In [13] a recurrent architecture
is proposed, but the results are below the state-of-the-art.
Some works have tackled the related problem of burst de-

noising. Recently [22, 38] focused on the related problem
of image burst denoising reporting very good results.

In terms of output quality the state-of-the-art is achieved
by patch-based methods [16, 35, 3, 19, 9, 53]. They ex-
ploit drastically the self-similarity of natural images and
videos, namely the fact that most patches have several sim-
ilar patches around them (spatially and temporally). Each
patch is denoised using these similar patches, which are
searched for in a region around it. The search region gen-
erally is a space-time cube, but more sophisticated search
strategies involving optical flow have also been used. Be-
cause of the use of such broad search neighborhoods these
methods are called non-local. While these video denoising
algorithms perform very well, they often are computation-
ally costly. Because of their complexity they are usually
unfit for high resolution video processing.

Patch-based methods usually follow three steps that can
be iterated: (1) search for similar patches, (2) denoise the
group of similar patches, (3) aggregate the denoised patches
to form the denoised frame. VBM3D [16] improves the
image denoising algorithm BM3D [17] by searching for
similar patches in neighboring frames using a “predictive
search” strategy which speeds up the search and gives some
temporal consistency. VBM4D [35] generalizes this idea to
3D patches. In VNLB [2] spatio-temporal patches that were
not motion compensated are used to improve the temporal
consistency. In [19] a generic search method extends every
patch-based denoising algorithm into a global video denois-
ing algorithm by extending the patch search to the entire
video. SPTWO [9] and DDVD [8] use optical flow to warp
the neighboring frames to each target frame. Each patch of
the target frame is then denoised using the similar patches
in this volume with a Bayesian strategy similar to [29]. Re-
cently, [53] proposed to learn an adaptive optimal transform
using batches of frames.

Patch-based approaches achieve also the state-of-the-art
among frame-recursive methods [20, 4]. These methods
compute the current frame using only the current noisy
frame and the previous denoised frame. They achieve lower
results than non-recursive methods, but have a lower mem-
ory footprint and (potentially) lower computational cost.

Contributions. In this work we propose a non-local ar-
chitecture for image and video denoising that does not suf-
fer from the restrictions of trainable inference networks.

The method first computes for each image patch the
n most similar neighbors in a rectangular spatio-temporal
search window and gathers the center pixel of each simi-
lar patch forming a feature vector which is assigned to each
image location. This results in an image with n channels,
which is fed to a CNN trained to predict the clean image
from this high dimensional vector. We trained our network
for grayscale and color video denoising. Practically training
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Figure 1: The architecture of the proposed method. The first module performs a patch-wise nearest neighbor search across
neighboring frames. Then, the current frame, and the feature vectors fnl of each pixel (the center pixels of the nearest
neighbors) are fed into the network. The first four layers of the network perform 1 × 1 convolutions with 32 feature maps.
The resulting feature maps are the input of a simplified DnCNN [55] network with 15 layers.

this architecture is made possible by a GPU implementation
of the patch search that allows computing the nearest neigh-
bors efficiently. The self-similarity present temporally in
videos enables strong denoising results with our proposal.

To summarize our contributions, in this paper we present
a new video denoising CNN method incorporating non-
local information in a simple way. To the best of our knowl-
edge, the present work is the first CNN-based video denois-
ing method to attain state-of-the-art results.

2 Proposed method

Let u be a video and u(x, t) denote its value at position x in
frame t. We observe v, a noisy version of u contaminated
by additive white Gaussian noise:

v = u+ r,

where r(x, t) ∼ N (0, σ2).
Our video denoising network processes the video frame

by frame. Before it is fed to the network, each frame is
processed by a non-local patch search module which com-
putes a non-local feature vector at each image position. A
diagram of the proposed network is shown in Figure 1.

2.1 Non-local features

Let Px,tv be a patch centered at pixel x in frame t. The
patch search module computes the distances between the
patch Px,tv and the patches in a 3D rectangular search re-
gionRx,t centered at (x, t) of size ws×ws×wt, where ws

and wt are the spatial and temporal sizes. The positions of
these n similar patches are (xi, ti) (ordered according to a
criterion specified later). Note that (x1, t1) = (x, t).

The pixel values at those positions are gathered as an n-
dimensional non-local feature vector

f nl(x, t) = [v(x1, t1), ..., v(xn, tn)].

The image of non-local features f nl is considered as a 3D
tensor with n channels. This is the input to the network.
Note that the first channel of the feature images corresponds
to the noisy image v.

2.2 Network architecture
Our network can be divided in two stages: a non-local stage
and a local stage. The non-local stage consists of four 1× 1
convolution layers with 32 kernels. The rationale for these
layers is to allow the network to compute pixel-wise fea-
tures out of the raw non-local features fnl at the input.

The second stage receives the features computed by the
first stage. It consists of 14 layers with 64 3 × 3 convo-
lution kernels, followed by batch normalization and ReLU
activations. The output layer is a 3 × 3 convolution. Its ar-
chitecture is similar to the DnCNN network introduced in
[55], although with 15 layers instead of 17 (as in [56]). As
for DnCNN, the network outputs a residual image, which
has to be subtracted to the noisy image to get the denoised
one. The training loss is the averaged mean square error be-
tween the residual and the noise. For RGB videos, we use
the same number of layers, but triple the number of features
for each layer.

3 Training and dataset

3.1 Datasets
For the training and validation sets we used a database
of short segments of 16 frames extracted from YouTube
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videos. Only HD videos with Creative Commons license
were used. From each video we extracted several segments,
separated by at least 10s. In total the database consists of
16950 segments extracted from 1068 videos, organized in
64 categories (such as antelope, cars, factory, etc.). The seg-
ments were downscaled to have 540 lines and, when train-
ing the grayscale networks, converted to grayscale. An an-
tialising filter was applied before downscaling. To avoid
dataset biases, we randomized the filter width. We sepa-
rated 6% of the videos of the database for the validation
(one video for each category).

For training we ignored the first and last frames of each
segment for which the 3D patch search window did not fit
in the video. For grayscale networks the images were con-
verted to grayscale, before the synthetic Gaussian noise was
added.

During validation we only considered the central frame
of each sequence. The resulting validation score is thus
computed on 503 sequences (1 frame each). 1

For testing we used two datasets. One of them is a
set of seven sequences from the Derf’s Test Media col-
lection2 used in [1]. This set used exactly the processing
pipeline used in [1]: The original videos are RGB of size
1920 × 1080, and sequences of 100 frames were extracted
and down-sampled by a factor two (the resolution is thus
960× 540). The grayscale versions were obtained by aver-
aging the channels. The second dataset is the test-dev
split of the DAVIS video segmentation challenge [40]. It
consists of 30 videos having between 25 and 90 frames. The
videos are stored as sequences of JPEG images. There are
two versions of the dataset: the full resolution (ranging be-
tween HD and 4K) and 480p. We used the full resolution
set and applied our own downscaling to 540 rows. In this
way we reduced the compression artifacts.

3.2 Epochs

At each training epoch a new realization of the noise is
added to generate the noisy samples. To speed the train-
ing up, we pre-compute the non-local patch search on every
video (after noise generation). A random set of (spatio-
temporal) patches is drawn from the dataset to generate
the mini-batches. We only consider patches such that the
ws×ws×wt search window fits in the video (for instance,
we exclude the first and last wt/2 frames). At testing time,
we simply extended the video by mirroring it at the start
and the end of the sequence. An epoch comprised 14000
batches of size 128, composed of image patches of size
44 × 44. We trained for 20 epochs with Adam [27] and
reduced the learning rate at epochs 12 and 17 (from 1e−3

1The code to reproduce our results and the database can be found at
https://github.com/axeldavy/vnlnet.

2https://media.xiph.org/video/derf

to 1e−4 and 1e−6 respectively). Training a network took 16
hours on an NVIDIA TITAN V for grayscale videos, and
72 hours for color videos.

4 Experimental results

We will first show some experiments to highlight relevant
aspects of the proposed approach. Then we compare with
the state-of-the-art.

Method No patch Without oracle With oracle
PSNR 31.24 31.28 31.85

Table 1: PSNR on the CBSD68 dataset (noise standard de-
viation of 25) for the proposed method on still images. Two
variants of our method and a baseline (“No patch”) are com-
pared. “No patch” corresponds to the baseline CNN with no
nearest neighbor information. The other two versions col-
lect 9 neighbors by comparing 9× 9 patches. But while the
former searches them on the noisy image, the latter deter-
mines the patch position on the noise-free image (oracle).
In both cases the pixel values for the non-local features are
taken from the noisy image.

The untapped potential of non-locality. Although the
focus of this work is in video denoising, it is still inter-
esting to study the performance of the proposed non-local
CNN on images. Figure 2 shows a comparison of a baseline
CNN (a 15 layer version of DnCNN [55], as in our network)
and a version of our method trained for still image denois-
ing (it collects 9 neighbors by comparing 9 × 9 patches).
The results with and without non-local information are very
similar, this is confirmed on Table 1. The only difference
is visible on very self-similar parts like the blinds that are
shown in the detail of Figure 2. The average PSNR on the
CBSD68 dataset [37, 55] (noise with σ = 25) obtained for
the baseline CNN is of 31.24dB. The non-local CNN only
leads to a 0.04dB improvement (31.28dB). The figure and
table also show the result of an oracular method: the near-
est neighbor search is performed on the noise-free image,
though the pixel values are taken from the noisy image. The
oracular results show that non-locality has a great potential
to improve the results of CNNs. The oracular method ob-
tains an average PSNR of 31.85dB, 0.6dB over the baseline.
However, this improvement is hindered by the difficulty of
finding accurate matches in the presence of noise. A way
to reduce the matching errors is to use larger patches. But
on images, larger patches have fewer similar patches. In
contrast, as we will see below, the temporal redundancy of
videos allows using very large patches.
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Input Noisy Baseline CNN (No patch) Ours Ours + Oracle

Figure 2: Results on a color image (noise standard deviation of 25). The compared methods are the ones introduced in
Table 1.

4.1 Parameter tuning
Non-local search has three main parameters: The patch size,
the number of retained matches and the number of frames
in the search region. We expect the best matches to be past
or future versions of the current patch, so we set the number
of matches as the number of frames on which we search.

Patch size no patch 9×9 15×15 21×21 31×31 41×41
PSNR 33.75 35.62 36.40 36.84 37.11 37.22

Table 2: Impact of the patch size on the PSNR computed
on the validation set (noise standard deviation of 20). The
tested sizes are 9×9, 15×15, 21×21, 31×31 and 41×41.
No patch corresponds to the baseline simplified DnCNN.

# search frames no patch 3 7 11 15
PSNR 33.75 35.35 36.50 36.97 37.22

Table 3: Impact of the number of frames considered in the
3D search window, on the PSNR computed on the valida-
tion set for a noise standard deviation of 20. (respectively
no patch search, 3, 7, 11 and 15)

In Table 2, we explore the impact of the patch size used
for the matching. Figure 3 shows visual results correspond-
ing to each parameter. Surprisingly, we obtain better and
better results by increasing the size of the patches. The main
reason for this is that the match precision is improved, as the
impact of noise on the patch distance shrinks. The bottom
row of Figure 3 shows an area of the ground only affected by
slight camera motion and on the top row an area with com-
plex motion (a person moving his feet). We can see that the

Patch search no restriction one neighbor per frame
PSNR 37.22 37.46

Table 4: Impact of allowing patches to be selected anywhere
on the 3D search region, or having exactly one neighbor per
frame. The PSNR is computed on the validation set (noise
standard deviation of 20), with a patch size 41 × 41 and a
search region of 15 frames.

former is clearly better denoised using large patches, while
the latter remains unaffected around the motion area. This
indicates that the network is able to determine when the pro-
vided non-local information is not accurate and to fall back
to a result similar to DnCNN in this case (single image de-
noising), which can be noticed on the last row of Figure 6.
Further increasing the patch size would result in more areas
being processed as single images. As a result, we see that
the performance gain from 31×31 to 41×41 is rather small.
With such large patches, only matches of the same objects
from different frames are likely to be taken as neighbors.
Thus we go a step further by enforcing matches to come
from different frames, which improves slightly the perfor-
mance. This is shown on Figure 5 and Table 4. Note the
network is retrained as the patch distribution is impacted.
Indeed when no restriction are imposed, the neighbors are
sorted by increasing distance. While, in this variant, neigh-
bors are sorted by frame index.

In Table 3 and Figure 4, we see the impact of the number
of frames used in the search window (and thus the number
of nearest neighbors). One can see that the more frames, the
better. Increasing the number of frames beyond 15 (7 past,
current, and 7 future) does not justify the small increase
of performance. Foreground moving objects are unlikely
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Input Noisy No patch Patch width 9 Patch width 15 Patch width 21 Patch width 31 Patch width 41

Figure 3: Example of denoised results with our method when changing the patch size, respectively no patch search, 9 × 9,
15× 15, 21× 21, 31× 31 and 41× 41 patches. The 3D search window has 15 frames for these experiments.

Input Noisy No Patch 3 Neighbors 7 Neighbors 11 Neighbors 15 Neighbors

Figure 4: Example of denoised results with our method when changing the number of frames considered in the 3D search
window (respectively no patch search, 3, 7, 11 and 15). 41× 41 patches were used for these experiments.

Input Noisy No restriction One patch per frame

Figure 5: Example of denoised results with our method
when allowing patches to be selected anywhere on the 3D
search region, or when having exactly one patch neighbor
per frame. 41×41 patches and a search region of 15 frames
were used for these experiments.

to get good neighbors for the selected patch size, unlike
background objects, thus it comes to no surprise that the
visual quality of the background improves with the number
of patches, while foreground moving objects (for example
the legs on Figure 4) do not improve much.

In the following experiments, we shall use 41 × 41
patches and 15 frames. Another parameter for non-local
search is the spatial width of the search window, which we
set to 41 pixels (the center pixel of the tested patches must
reside inside this region). We trained grayscale and color
networks for AGWN of σ 10, 20 and 40. To highlight the
fact that a CNN method can adapt to many noise types, un-
like traditional methods, we also trained a grayscale net-
work for Gaussian noise correlated by a 3 × 3 box kernel
such that the final standard deviation is σ = 20, and 25%
uniform Salt and Pepper noise (removed pixels are replaced
by random uniform noise).
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σ Method crowd park joy pedestrians station sunflower touchdown tractor average
10 SPTWO 36.57 / .9651 35.87 / .9570 41.02 / .9725 41.24 / .9697 42.84 / .9824 40.45 / .9557 38.92 / .9701 39.56 / .9675

VBM3D 35.76 / .9589 35.00 / .9469 40.90 / .9674 39.14 / .9651 40.13 / .9770 39.25 / .9466 37.51 / .9575 38.24 / .9599
VBM4D 36.05 / .9535 35.31 / .9354 40.61 / .9712 40.85 / .9466 41.88 / .9696 39.79 / .9440 37.73 / .9533 38.88 / .9534
VNLB 37.24 / .9702 36.48 / .9622 42.23 / .9782 42.14 / .9771 43.70 / .9850 41.23 / .9615 40.20 / .9773 40.57 / .9731
DnCNN 34.39 / .9455 33.82 / .9329 39.46 / .9641 37.89 / .9412 40.20 / .9702 38.28 / .9269 36.91 / .9568 37.28 / .9482
VNLnet 37.00 / .9727 36.39 / .9665 41.96 / .9779 42.44 / .9766 43.76 / .9861 41.05 / .9609 38.89 / .9718 40.21 / .9732

20 SPTWO 32.94 / .9319 32.35 / .9161 37.01 / .9391 38.09 / .9461 38.83 / .9593 37.55 / .9287 35.15 / .9363 35.99 / .9368
VBM3D 32.34 / .9093 31.50 / .8731 37.06 / .9423 35.91 / .9007 36.25 / .9393 36.17 / .9065 33.53 / .8991 34.68 / .9100
VBM4D 32.40 / .9126 31.60 / .8832 36.72 / .9344 36.84 / .9224 37.78 / .9517 36.44 / .9034 33.95 / .9104 35.10 / .9169
VNLB 33.49 / .9335 32.80 / .9154 38.61 / .9583 38.78 / .9470 39.82 / .9698 37.47 / .9220 36.67 / .9536 36.81 / .9428
DnCNN 30.47 / .8890 30.03 / .8625 35.81 / .9302 34.37 / .8832 36.19 / .9361 35.35 / .8782 32.99 / .9019 33.60 / .8973
VNLnet 33.40 / .9415 32.84 / .9271 38.32 / .9565 38.49 / .9454 39.88 / .9700 37.11 / .9102 35.23 / .9390 36.47 / .9414

40 SPTWO 29.02 / .8095 28.79 / .8022 31.32 / .7705 32.37 / .7922 32.61 / .7974 31.80 / .7364 30.61 / .8223 30.93 / .7901
VBM3D 28.73 / .8295 27.93 / .7663 33.00 / .8828 32.57 / .8239 32.39 / .8831 33.38 / .8624 29.80 / .8039 31.11 / .8360
VBM4D 28.72 / .8339 27.99 / .7751 32.62 / .8683 32.93 / .8441 33.66 / .8999 33.68 / .8603 30.20 / .8205 31.40 / .8432
VNLB 29.88 / .8682 29.28 / .8309 34.68 / .9167 34.65 / .8871 35.44 / .9329 34.18 / .8712 32.58 / .8921 32.95 / .8856
DnCNN 26.85 / .7979 26.65 / .7525 32.01 / .8660 30.96 / .7899 32.13 / .8705 32.78 / .8346 29.25 / .7976 30.09 / .8156
VNLnet 29.69 / .8727 29.29 / .8397 34.21 / .9089 33.96 / .8686 35.12 / .9224 33.88 / .8495 31.41 / .8647 32.51 / .8752

Table 5: Quantitative denoising results (PSNR and SSIM) for seven grayscale test sequences of size 960 × 540 from the
Derf’s Test Media collection on several state-of-the-art video denoising algorithms versus DnCNN and our method. Three
noise standard deviations σ are tested (10, 20 and 40). Compared methods are SPTWO [9], VBM3D [16], VBM4D [34],
VNLB [2], DnCNN [55] and VNLnet (ours). We highlighted the best performance in black and the second best in brown.

σ Method crowd park joy pedestrians station sunflower touchdown tractor average
10 VBM3D 36.03 / .9625 35.01 / .9451 41.19 / .9738 38.53 / .9463 39.58 / .9599 39.91 / .9486 37.10 / .9555 38.19 / .9560

VNLB 38.33 / .9773 37.09 / .9708 42.77 / .9800 42.83 / .9784 43.23 / .9820 42.16 / .9677 40.07 / .9760 40.93 / .9760
DnCNN 35.41 / .9576 34.37 / .9454 40.26 / .9701 38.73 / .9536 40.10 / .9675 39.77 / .9485 37.37 / .9600 38.00 / .9575
VNLnet 37.74 / .9758 36.63 / .9690 42.56 / .9805 42.22 / .9765 43.12 / .9819 42.26 / .9705 38.90 / .9699 40.49 / .9749

20 VBM3D 32.54 / .9284 31.58 / .8930 37.73 / .9505 35.28 / .8962 36.01 / .9250 36.89 / .9091 33.56 / .9131 34.80 / .9165
VNLB 34.78 / .9529 33.53 / .9365 39.63 / .9640 39.67 / .9565 39.84 / .9667 38.80 / .9353 37.08 / .9575 37.62 / .9528
DnCNN 31.49 / .9144 30.62 / .8875 36.92 / .9459 35.44 / .9094 36.24 / .9373 36.70 / .9064 33.65 / .9190 34.44 / .9171
VNLnet 34.45 / .9556 33.40 / .9407 39.63 / .9670 39.57 / .9592 40.06 / .9695 39.30 / .9465 35.78 / .9456 37.46 / .9549

40 VBM3D 29.23 / .8688 28.43 / .8152 34.11 / .9056 32.45 / .8255 32.82 / .8792 34.17 / .8604 30.30 / .8431 31.65 / .8568
VNLB 31.24 / .9052 30.23 / .8730 35.97 / .9291 35.88 / .9074 35.77 / .9285 35.19 / .8719 33.47 / .9140 33.97 / .9042
DnCNN 27.99 / .8429 27.50 / .7998 33.50 / .9001 32.29 / .8350 32.58 / .8845 33.94 / .8566 30.17 / .8454 31.14 / .8520
VNLnet 31.13 / .9144 30.23 / .8848 36.19 / .9390 36.12 / .9172 36.36 / .9411 35.64 / .8872 32.44 / .8985 34.02 / .9117

Table 6: Quantitative denoising results (PSNR and SSIM) for seven color test sequences of size 960 × 540 from the Derf’s
Test Media collection on several state-of-the-art video denoising algorithms versus DnCNN and our method. Three noise
standard deviations σ are tested (10, 20 and 40). Compared methods are VBM3D [16], VNLB [2], DnCNN [55] and VNLnet
(ours). We highlighted the best performance in black and the second best in brown.

Method Corr. Gaussian noise Uniform S&P 25%
VNLB 25.39 / .5922 23.49 / .7264
VNLnet 30.94 / .9452 48.12 / .9951

Table 7: Performance (PSNR and SSIM) of VNLB and
VNLnet (our method) on the grayscale DERF dataset (Ta-
ble 5) for non-standard noises.

4.2 Comparison with state-of-the-art

On tables 5 and 6, we show a comparison of DnCNN
(applied frame-by-frame) and the proposed method Video
Non-Local Network (VNLnet) with other state-of-the-art
video denoising methods [1] for the DERF dataset. The
state-of-the-art methods include SPTWO [9], VBM3D [16],
VBM4D [34] and VNLB [2]. Figures 6, 9 and 8 show re-
sults for some of the most relevant methods.

DnCNN, VBM3D and VNLB were also compared on
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Input Noisy Non-Local Pixel Mean DnCNN VNLB VNLnet (Ours)

Figure 6: Example of denoised result for several algorithms (noise standard deviation of 20). The two crops highlight the
results on a non-moving and a moving part of the video. Non-Local Pixel Mean corresponds to the average of the output of
the non-local search layer.

Input Noisy VBM3DDnCNN VNLB VNLnet (Ours)

Figure 7: Example of denoised result for several algorithms (noise standard deviation of 20) on a sequence of the color
DAVIS dataset [40]. The crops highlight the results on non-moving and moving parts of the video.

the DAVIS test-dev dataset [40]. Results are shown
in Tables 8, 9 and Figure 7. VNLnet is the best perform-
ing method in the DAVIS dataset, but it is outperformed
by VNLB (Video Non-Local Bayes) on the DERF dataset.
This could be explained by the fact that the DERF dataset is
blurrier compared to DAVIS and to VNLnet’s training set.

This blur is caused by a wider antialiasing filter used when
downscaling the original videos in [1]. We notice DnCNN
also underperforms on this dataset compared to the sharper
DAVIS dataset.

A comparison of tables 8 and 9 reveals that CNN based
methods are better in exploiting the correlations between
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Method σ = 10 σ = 20 σ = 40

VBM3D 37.43 / .9425 33.75 / .8870 30.12 / .8068
VNLB 38.84 / .9634 35.26 / .9240 31.88 / .8622
DnCNN 36.80 / .9451 32.94 / .8878 28.69 / .7940
VNLnet 39.07 / .9663 35.46 / .9299 31.90 / .8659

Table 8: Performance (PSNR and SSIM) of DnCNN,
VBM3D and VNLnet (our method) on the grayscale DAVIS
dataset [40] for several noise levels σ (10, 20 and 40).

Method σ = 10 σ = 20 σ = 40

VBM3D 38.43 / .9591 34.74 / .9157 31.38 / .8473
VNLB 40.31 / .9725 36.79 / .9420 33.34 / .8896
DnCNN 38.91 / .9655 35.24 / .9278 31.81 / .8637
VNLnet 40.71 / .9760 37.39 / .9534 33.96 / .9091

Table 9: Performance (PSNR and SSIM) of DnCNN,
VBM3D and VNLnet (our method) on the color DAVIS
dataset [40] for several noise levels σ (10, 20 and 40).

Input Noisy VNLnet (Ours)VNLB

Figure 8: Examples of background details more properly
recovered by VNLnet compared to VNLB (enhanced con-
trast).

color channels: while for grayscale, VBM3D was signif-
icantly outperforming DnCNN in PSNR on the DAVIS
dataset, the reverse occurs for color. In addition, the gap be-
tween VNLnet and VNLB is widened in color. This should
not come as a surprise, since the way in which VBM3D and
VNLB treat color is rather heuristic: an orthogonal color
transformed is applied to the video which is supposed to
decorrelate color information. Based on this, the process-
ing of each color channel of a group of patches in done in-
dependently. These results make VNLnet the state-of-the-
art method for video denoising and the first so of the neural
kind.

In order to better compare qualitative aspects of the re-
sults we show some details in Figures 6, 9 and 8. Figure 6
shows some results on an video of DERF. The two bottom
rows show details on two different types of areas (back-
ground and moving object). We include as reference the
Non-Local Pixel Mean, which is just the result of the av-

VBM3D DnCNN VBM4D VNLB SPTWO
1.3s 13s 52s 140s 210s

Table 10: Running time per frame on a 960× 540 video for
VBM3D, DnCNN, VBM4D, VNLB and SPTWO on single
CPU core.

eraging of the matches presented to the network. As noise
remains, one can thus see that the network does more than
averaging the data on static areas (last two rows). On back-
ground objects, the denoising performance is significantly
improved compared to DnCNN and is similar to VNLB
(middle row). For some scenes, VNLnet recovers signifi-
cantly more details in the background, as shown on Figure 8
and Figure 9. On moving foreground objects - thus with bad
matches - our method performs similar to DnCNN, as can
be observed on the last row of Figure 6. In general, we
observe VNLnet has better background reconstruction than
VNLB. Both methods achieve high temporal consistency,
which is an important quality requirement for video denois-
ing.

One of the benefits of CNNs over traditional model-
based approaches is that they can be easily retargeted to
handle other noise models. To illustrate this we compare the
classical best performing method VNLB and our method on
non-standard noises on Table 7. As expected, VNLnet sig-
nificantly beats VNLB for these non-Gaussian noise distri-
butions.

Non-local search Rest of the network DnCNN
850 ms 80 ms 95 ms

Table 11: Running time per frame on a 960 × 540 video
on a NVIDIA TITAN V (41× 41 patches at every position,
41× 41× 15 3D windows, the default parameters).

A note on running times. On Table 10, we compare the
CPU running time of VBM3D, DnCNN and VNLB when
denoising a video frame. While we do not a have a CPU
implementation of the patch search layer, the GPU runtimes
of Table 11 point out that on CPU our method should be 10
times slower than DnCNN. The non-local search is partic-
ularly costly because we search matches on 15 frames for
patches centered in every pixel of our image. The patch
search could be made significantly faster by reducing the
size of the 3D window using tricks explored in other papers.
VBM3D for example centers the search on each frame on
small windows around the best matches found in the previ-
ous frame. A related acceleration is to use a search strategy
based on PatchMatch [6].
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Figure 9: Examples of areas where the level of restored detail of the methods differs significantly (noise standard deviation
of 20) on crowd, park and station. 10



5 Implementation details
The patch search requires the computation of the distance
between each patch in the image and the patches in the
search region. If implemented naı̈vely, this operation can
be prohibitive. Patch-based methods require a patch search
step. To reduce the computational cost, a common approach
is to search the nearest neighbors only for the patches in a
subgrid of the image. For example BM3D processes 1/9th
of the patches with default parameters. Since the processed
patches overlap, the aggregation of the denoised patches
covers the whole image.

Our proposed method does not have any aggregation.
We compute the neighbors for all image patches, which is
costly. In the case of video, best results are obtained with
large patches and a large search region (both temporally and
spatially). Therefore we need a highly efficient patch search
algorithm.

Our implementation uses an optimized GPU kernel
which searches for the locations in parallel. For each patch,
the best distances with respect to all other patches in the
search volume are maintained in a table. We split the com-
putation of the distances is two steps: first compute the sum
of squares across columns:

Dcol(x′, y′, t′) =

s/2∑
h=−s/2

(v(x, y+h, t)− v(x′, y′+h, t′)2.

Then the distances can be obtained by applying a horizontal
box filter of size s on the volume Dcol composed by the
neighboring GPU threads. The resulting implementation
has linear complexity in the size of the search region and
the patch width.

To optimize the speed of the algorithm we use the GPU
shared memory as cache for the memory accesses thus re-
ducing bandwidth limitations. In addition, for sorting the
distances the ordered table is stored into GPU registers, and
written to memory only at the end of the computation. The
computation of the L2 distances and the maintenance of
the ordered table have about the same order of computation
cost. More details about the implementation can be found
in Appendix A.

6 Conclusions
We described a simple yet effective way of incorporating
non-local information into a CNN for video denoising. The
proposed method computes for each image patch the nmost
similar neighbors on a spatio-temporal window and gathers
the value of the central pixel of each similar patch to form
a non-local feature vector which is given to a CNN. Our
method yields a significant gain compared to using the sin-
gle frame baseline CNN on each video frame. Compared to

other video denoising algorithms, it achieves state-of-the-
art performance and attaining the highest PSNR on a down-
scaled version of the DAVIS dataset.

Our contribution places neural networks among the best
video denoising methods and opens the way for new works
in this area.

We have seen the importance of having reliable matches:
On the validation set, the best performing method used
patches of size 41 × 41 for the patch search. We have also
noticed that on regions with non-reliable matches (complex
motion), the network reverts to a result similar to single im-
age denoising. Thus we believe future works should fo-
cus on improving this area, by possibly adapting the size of
the patch and passing information about the quality of the
matches to the network.

A More implementation details on
the non-local search

In this section we describe in more details our GPU imple-
mentation of the non-local search.

As mentioned in the main paper, a naı̈ve implementation
of the patch search can be very inefficient.

The patch search algorithm can be divided conceptu-
ally into two parts: First, computing for all positions in the
search window the L2 distance between the reference patch
and the target patch, both of size K ×K. Second, retaining
the best N distances and positions. Both parts need to be
implemented efficiently.

Algorithm 1: Keeping an ordered table of distances
and positions

Input: New position p and distance d
Input: Tables Positions and Distances of length N .
if d < Distances[N-1] then

for i from N-1 to 1 do
insert← Distances[i-1] ≤ d
Positions[i]← p if insert else Positions[i-1]
Distances[i]← d if insert else Distances[i-1]
quit function if insert

end
Positions[0]← p
Distances[0]← d

end

Of the two parts, the most critical one is the mainte-
nance of the table of the best N distances and positions.
Our implementation maintains the distances and positions
in an ordered table stored into the GPU registers. Indeed
GPUs have many available registers: a maximum of 128 on
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Intel, and 256 on AMD and NVIDIA for the current genera-
tion, although consuming fewer registers helps reducing the
latency. Thus if N is small enough, both tables (distances
and positions) can be stored in the register table. The tables
need to be accessed very frequently, so not using registers
leads to a much slower code. Our algorithm is summarized
on Algorithm 1.

Algorithm 2: Summary of our patch search imple-
mentation

On CPU: Divide the image into regions of
overlapping row segments of length 128. The
overlap should be of length patch width - 1.

On GPU:
Assign one thread to each element of an horizontal

segment.
for each offset (dz, dy, dx) in the 3D search window
do

Compute squared L2 distance between reference
and target center columns

Write result into GPU shared memory
Sum results of neighboring threads
Maintain table of best distances and positions

end
Only save valid results (border threads can’t
compute the full distance)

Then comes the computation of the L2 distances be-
tween patches. A naı̈ve algorithm would, for every patch
pair, read the reference patch, read the target patch, and
compare them pixel-wise, without reusing any computation
or memory access. Our optimized algorithm uses the fact
that the L2 distances computation share a lot of common
elements with the same computations after a translation of
the positions of the reference and the target patches. This
avoids both computation and memory accesses. We orga-
nize GPU threads into groups treating an horizontal seg-
ment each. Each thread will compute the distance between
the reference and the target patch for the center column
only, and shared GPU memory will be used to read the re-
sults of neighboring threads and compute the full distance.
Since we only need to compare a column of the patches,
that column can be stored into GPU registers, thus avoiding
to reload the reference patch data every iteration. Threads
at the border of the segments can’t compute the full distance
as some results are missing, thus some overlap between the
segments are required. We found a length of 128 to be a
good compromise for the length of these segments. For
increased speed, we cache our memory accesses with the
GPU shared memory between the computing threads. The
process is summarized in Algorithm 2.

Both our implementation and the naı̈ve implementation
have a linear complexity in the size of the 3D search win-

dow, but our algorithm has a linear complexity with respect
to the width of the patches, while it is quadratic for the naı̈ve
algorithm. One should know, if not familiar with patch
search, that the 3D search window defines the search region
for all patches whose center lie inside the 3D search win-
dow, thus the patches do not have to fit completely inside
the region. For the default VNLnet parameters, our imple-
mentation is 25 times faster (on a NVIDIA TITAN V) than
the naı̈ve implementation (both using Algorithm 1 for the
tables of distances and positions).
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