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The mathematical theory of a contrario detection formalizes the non-accidentalness prin-
ciple [2] and attempts to predict ideal perception thresholds. Thus, it is natural to recon-
sider from a computational perspective, classic and new psychophysical experiments
evaluating the human perception performance. To this aim, we chose the psychophysical
experiments by Wagemans et al. [3] where subjects are presented with Gabor-rendered
outlines of real world objects. In these experiments, orientation jitter was added to the
elements with the aim of determining its effect on human object detection performance.
Using the a contrario theory, the human detection thresholds can be compared rationally
to the algorithmic ones. To allow a broader experimentation, we built an online web facil-
ity where users can perform object detection experiments, and compare their detection
curves to the ones predicted analytically by the computational model.

Background
Contours detection

Contour of a bell [3] Straight contour (our experiment)

From Wagemans et al’s experiment [3], we kept the Gabor-rendering of shapes and their masking by adding orien-
tation jitter on contours. In this first attempt to predict detection thresholds with a contrario theory, we focused on
straight contours for their simplicity.

A contrario model
The non-accidentalness principle states that, among a set of potential structures, only the configurations that would
rarely appear by chance are perceptually relevant. The ”a contrario” model translates such a principle in a mathe-
matical language, as follows: a configuration is perceptually meaningful when its expectation in noise is less than 1.
This means that in average, only one false dectection would be made in a noise image.
We define an upper bound of this expectation of an event in noise, and call it ”Number of False Alarms”, or NFA.

Noise An unlikely event in noise

• N = 2002 = 10000 pixels, each of colour black or white with probability p = 1
2

• The number Nsquares of squares of all possible sizes fitting in the image, is approximately N 3/2

• Given a n = q × q pixels square, the probability to have at least k pixels of same color within this square is

Pk,n = B(k, n, p) =

n∑
i=k

(
n

i

)
pi(1− p)n−i (1)

and its NFA, an overestimation of the expected number of such events in the image, is defined as :

NFA = Nsquares × Pk,n (2)

The expected number of n = 10 × 10 = 100 black pixels squares, such as the one in the above right hand image, is
upper bounded by its NFA, whose value is: NFA = 2003 × 0, 5100<< 1.
This NFA becomes (much) greater than 1 for n = 4 × 4 = 16. Indeed, colour squares smaller than 4 × 4 pixels do
occur by chance and are not conspicuous.

Human detection
Protocole
This experiment is accessible on the web at http://bit.ly/aligned_gabors.
During a session of the experiment the subject sees 35 images. More precisely :

• 5 training stimuli (the first 5 images)

• 30 images are randomly sampled from the database according to the following probabilities: 25 % for nega-
tive stimuli (all elements have random orientations), 75 % for positive stimuli (some elements have constrained
orientation).

• A Yes/No question for each stimulus: the subject has to answer whether he sees or not a straight line ; his
response time is measured but no time limitation is imposed.

Stimuli Database
The database is large enough to avoid repetitions (more than 14 000 images), and was generated with GERT (v1.1)
[1]. Each image contains N = 200 Gabor elements, not too close from each other.

Noise (negative stimulus) length 6, no jitter length 7, no jitter

length 8, jitter 15˚ length 9, jitter 22.5˚ length 10, jitter 22.5˚

The positive stimuli (containing a straight line) vary according to :

• the straight line’s length : from 3 to 10 aligned elements

• noise levels : the added orientation jitter belongs to an interval [−θ, θ]
where θ ∈ {0˚, 15˚, 22.5˚, 30˚, 45˚, 60˚, 67.5˚, 75˚, 90˚}
• the position of the segment’s center : 25 positions covering the image’s area

• the slope of the segment, defined by the angle α ∈ {−60˚,−45˚,−30˚, 0˚, 30˚, 45˚, 60˚, 90˚} with the hori-
zontal axis.

Machine detection
Grouping laws
Orientation similarity and width constancy
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3 out of 4 Gabor elements sharing orientation (ab) with precision p ∈ [0, 1].
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Width constancy: d1 ≈ d2 ≈ d3 ≈ dab
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Given a pair {a, b} of Gabor elements, we define n as the expected
number of elements in the stripe of length ab and width 6 pixels,
knowing that the average distance between two neighbours is davg ;
thus n ≈ dab

davg
+ 1.
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k(p) = 4

Then, for a precision p ∈ [0, 1], k(p) is the actual number of
elements that are in the green stripe and whose orientation is parallel
to (ab) with precision p.
On the left hand illustrations, the one in the middle shows a “full”
stripe in which one element is not parallel to (ab) with precision p ;
in the third one, only 3 elements are in the stripe, all with same
orientation under precision p.
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k(p) = 3

The binomial tail B(k(p), n, p) =
∑n

i=k(p)

(
n
i

)
pi(1 − p)n−i can be computed for each pair and any precision p. In the

algorithm, each pair is tested with 5 precisions : p1 = 1
3, p2 = 1

4, p3 = 1
6, p4 = 1

8, p5 = 1
10.

For an image containing N Gabor elements, the total number of tests is

Ntests = number of pairs × number of tested precisions = N(N−1)
2 × 5

and for a given pair {a, b}, the significance of the corresponding straight line is given by its NFA

NFA({a, b}) = Ntests × min
i∈{1,...,5}

B(k(pi), n, pi) (3)

The algorithm detects the structure having the lowest NFA if it is less than 1.

Results and discussion
Examples of machine detection

input: length 6 jitter 15˚ lowest NFA = 0.36 detection input: only noise lowest NFA = 99.5 no detection

input: length 10, no jitter lowest NFA = 10−5 detection input: length 9, jitter 60˚ lowest NFA = 0.995 “false” detection

Human detection vs. NFA

• 277 started experiments, 229 completed :
7137 trials (5305 positives)

• The log10(NFA) line is divided into 60
bins. Every stimulus is assigned its low-
est NFA. When a positive stimulus is
observed during an experiment, it con-
tributes to the detection rate and response
time of the corrsponding NFA bin.

• Every measured response time is normalized in [0, 1], 0 and 1 corresponding respectively to the user’s minimum
and maximum response times.

According to the above results, the NFA seems to provide a sensible measure of the stimuli difficulty for human
detection. By predicting how likely an alignment of Gabor elements is to be detected by humans, it is an acceptable
model for non-accidentalness in our experiment.

However, this work is mainly a starting point for a more thorough investigation of the potential of a contrario
formalism in detection modeling.

Future works will consist in (for example) : 1) improving our detection algorithm, especially as far as the width
constancy modelization is concerned ; 2) running this experiment with different parameters (number of elements per
image, size of the image...) to assess how general our framework can be ; 3) setting up new experiments, such as
pre-attentive ones, or with other kinds of stimuli, and run them in a more controlled context (not only on line).
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