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Discussions of the foundations of perceptual inference have often centered on 2 governing principles, the
likelihood principle and the simplicity principle. Historically, these principles have usually been seen as
opposed, but contemporary statistical (e.g., Bayesian) theory tends to see them as consistent, because for
a variety of reasons simpler models (i.e., those with fewer dimensions or free parameters) make better
predictors than more complex ones. In perception, many interpretation spaces are naturally hierarchical,
meaning that they consist of a set of mutually embedded model classes of various levels of complexity,
including simpler (lower dimensional) classes that are special cases of more complex ones. This article
shows how such spaces can be regarded as algebraic structures, for example, as partial orders or lattices,
with interpretations ordered in terms of dimensionality. The natural inference rule in such a space is a
kind of simplicity rule: Among all interpretations qualitatively consistent with the image, draw the one
that is lowest in the partial order, called the maximum-depth interpretation. This interpretation also
maximizes the Bayesian posterior under certain simplifying assumptions, consistent with a unification of
simplicity and likelihood principles. Moreover, the algebraic approach brings out the compositional
structure inherent in such spaces, showing how perceptual interpretations are composed from a lexicon
of primitive perceptual descriptors.
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Simplicity Versus Likelihood Principles in Perception

A recurrent theme in the study of human visual perception is the
idea that the visual system selects the simplest interpretation
consistent with the visual image—sometimes referred to as the
simplicity principle, sometimes by the gestalt term Prägnanz, and
sometimes as the minimum principle. The principle has taken
many forms, from a relatively vague preference for the maximi-
zation of “regularity” (Kanizsa, 1979), to more concrete systems in
which the image is described in some fixed coding language, and
the interpretation whose code is of minimal length is selected
(Buffart, Leeuwenberg, & Restle, 1981; Hochberg & McAlister,
1953; Leeuwenberg, 1971; Van der Helm & Leeuwenberg, 1996).
Many phenomena of visual perception seem to rest in whole or in
part by a preference for simple interpretations (Chater, 2005;
Chater & Vitányi, 2003; Pomerantz & Kubovy, 1986). Yet at the
same time many authors have been troubled over the motivation or
justification of the principle (Hatfield & Epstein, 1985), paralleling
an analogous debate about the rationale of Occam’s razor in the
selection of scientific theories (Quine, 1965; Sober, 1975).

Another well-known principle of perceptual inference, some-
times held up in opposition to the simplicity principle, is the
likelihood principle: Choose the interpretation most likely to be
true. The rationale behind this idea seems relatively self-evident, in
that it is clearly desirable (say, from an evolutionary point of view) for
an organism to achieve veridical percepts of the world (see Geisler
& Diehl, 2002). Yet the mere statement of the principle begs the
question of how the visual system actually determines the relative
likelihood of various candidate interpretations, and hence it has not
been clear exactly how the likelihood principle might translate into
concrete computational procedures.

Historically, the minimum principle and the likelihood principle
have usually been regarded as competitors, or at least as roughly
incompatible (Hatfield & Epstein, 1985; Leeuwenberg & Boselie,
1988; Perkins, 1976; Van der Helm, 2000). More recently how-
ever, Chater (1996), using mathematical arguments paralleling
those from minimum description length theory (Li & Vitányi,
1997; Rissanen, 1989), has shown that the two principles can be
regarded as equivalent. Under very general assumptions, the visual
interpretation whose description is of minimum length is, in fact,
the one that is most likely to be correct in an objective sense. This
remarkable demonstration combines the most appealing aspects of
both principles, giving the minimum principle a clear rationale
(namely, veridicality) while suggesting a criterion by which the
most likely interpretation can be identified (namely, minimum
description length). More broadly, Bayesian theory has come to be
generally understood to involve a built-in bias toward simpler
(e.g., lower dimensional) models, sometimes referred to as the
Bayesian Occam factor (e.g., see Duda, Hart, & Stork, 2001;
MacKay, 2003, and discussion below).
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Nevertheless, the relationship between complexity and Bayesian
optimality is less than completely satisfying because it is essentially
asymptotic in nature, reflecting the behavior of ideal perceptual codes
in the limit. The universality of the connection stems from the notion
of Kolmogorov complexity (the length of the shortest computer pro-
gram that could generate a given string). The beauty of the mathe-
matics surrounding Kolmogorov complexity is that it does not depend
on details of the coding language used; all so-called universal codes
give approximately the same complexity value. But the flip side of
this same universality is that while one can make general statements
about the Kolmogorov complexity of a given string, one never knows
its specific value—the length of the actual shortest program is un-
computable in general (see Schöning & Pruim, 1998, for an elegant
proof). The agreement between the probability of an interpretation
and its complexity (like all statements about Kolmogorov complexity)
is necessarily asymptotic: They tend to match in the limit as the
number of stimulus elements grows infinitely large. But for any given
stimulus and any given coding language, the disagreement can be
arbitrarily large, and thus can potentially overshadow the agreement.1

The exact discrepancy for realistic stimuli depends on the coding
language, meaning that different coding languages may in practice
achieve the most veridical conclusion with extremely different de-
grees of success.

Hence Chater’s (1996) argument, while persuasive in an abstract
sense, leaves open the narrower (but crucial) question of the nature of
the actual coding language used by the visual system, and thus the
exact form of the associated minimization rule. The current article
seeks to demonstrate a stronger and more specific connection between
a certain type of minimization rule and Bayesian theory, in a way that
also makes more explicit the nature and meaning of the associated
coding language. The maximum-depth or lattice minimum rule has
been developed previously (Feldman, 1997b, 1997c, 1999, 2003a),
but in nonprobabilistic terms, and its intimate connection to Bayesian
theory has not previously been developed. The conditions invoked in
this rule are less general than in Chater’s formulation but are impor-
tant in a wide variety of perceptual situations, especially those involv-
ing perceptual organization, grouping, and the inference of three-
dimensionality. Hence while consistent with Chater’s general
conclusion, the connection between the minimum principles and
Bayesian inference described below sheds new light on why percep-
tually realistic simplicity minimization tends to identify the state of
the world correctly.

Bayesian Formulation

Bayesian theory is a particularly attractive formulation of the
likelihood principle in perception (see Bülthoff & Yuille, 1991;
Kersten, Mamassian, & Yuille, 2004; Knill & Richards, 1996), in
that it provides provably optimal inferences under conditions of
uncertainty (see Jaynes, 2003). Thus Bayes provides optimal so-
lutions to the ambiguities inherent in perception. In Bayesian
theory, the subjective belief in a particular hypothesis given particular
data is associated with the posterior probability, that is, the condi-
tional probability of the hypothesis given the data. In the context of
visual perception, the data are the visual image I and the hypoth-
eses are the various scene interpretations among which the ob-
server will choose. In what follows I will assume an image I
chosen from an image space I, and a set S ! {S1, S2 . . .} of distinct
scene models, that is, categories of distal scenes. Each interpreta-

tion Si has an associated likelihood function p"I!Si# indicating how
likely a given possible image is under that hypothesis, and each
scene occurs with a certain scalar prior probability p(Si). The priors
must sum to unity ("i p"Si# ! 1), and each likelihood function
integrates to unity over I "#I p"I!Si#dI!1).2

By Bayes’ rule, given image I, the posterior probability of
interpretation Si is

p"Si!I# !
p"Si#p"I!Si#"j p"Sj#p"I!Sj#

. (1)

Because the denominator is the same for all interpretations, the
winning interpretation will be the one that maximizes the numer-
ator p(Si)p(I!Si), the product of the prior and the likelihood. The
central principle of Bayesian theory is that the observer’s degree of
belief should be proportional to the posterior, and thus to this
product. Another idea important in what follows is the support
$(Si) of an interpretation Si, defined as the region of I where Si’s
likelihood is nonzero,

$"Si# ! %I & I!p"I!Si# " 0. (2)

(Note that if we chose to be less strict we could set the criterion to
some ' ( 0 instead of 0.) The support of a scene model Si is the
set of images that it could have produced, that is, the set of images
that are qualitatively consistent with it.

Hierarchies of Candidate Interpretations

Bayesian theory has often been criticized for requiring the
calculation of the posterior for a large (and indeed potentially
infinite) number of distinct hypotheses, and thus a great deal of
computation. Much of the Bayesian literature is devoted to finding
well-motivated approximations to the optimal Bayesian solution,
but even so many approaches require computations that may seem
unrealistic for biological computation.

In some perceptual situations, though, preexisting formal rela-
tions among the Si may make such an elaborate computation
unnecessary. Many perceptual interpretation spaces are hierarchi-
cal, meaning that certain interpretations are special cases of others.
An example comes from the well-known recognition-by-
components (RBC) theory of Biederman (1987) in which many of
the basic part types, called geons, are special cases of each other
(see Kurbat, 1994). For example, straight bricks are special cases
of curved bricks (in which curvature is zero) and also of tapered
bricks (in which taper is zero), a relation that may even be reflected
in neurophysiological tuning curves for volumetric primitives (De
Baene, Ons, Wagemans, & Vogels, 2008; De Baene, Premereur, &
Vogels, 2007). Figure 1 diagrams a partial set of geons in terms of

1 Technically, the agreement between two complexity measures is
bounded by a constant that does not depend on the stimulus. But the size
of the constant depends on the amount of information needed to specify the
design of a complete Turing machine, enabling one universal Turing
machine to simulate another. Because Turing machines, or Turing-
equivalent computing systems such as human brains, can be arbitrarily
complex, the constant difference between coding lengths for two machines
can be arbitrarily large.

2 Note though that the likelihood function generally does not sum to
unity over models S.
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the subset relations among the types. In the diagram, nodes lower
in the figure represent subsets of nodes higher in the figure. Each
step down the diagram removes one parameter or degree of free-
dom from the model class, and each step up adds one parameter.
The classes thus form a set of intersecting spaces or manifolds of
various dimensions, each corresponding to a family of scene
models (illustrated schematically at the right in the figure).

Another important example of a hierarchical interpretation
space in the perceptual organization literature is the set of nonac-
cidental relations (Lowe, 1987; Witkin & Tenenbaum, 1983; see
Freeman, 1994). Nonaccidental relations are geometric relations
between image elements that are unlikely to occur by accident, and
which consequently are perceptually salient (Feldman, 2007; Kuk-
konen, Foster, Wood, Wagemans, & van Gool, 1996; Wagemans,
1992; Wagemans, van Gool, Lamote, & Foster, 2000). Examples
include parallelism, collinearity (Caelli & Umansky, 1976; Clae-
ssens & Wagemans, 2005; Feldman, 1997a; Feldman & Singh,
2005; Smits & Vos, 1986), and skew symmetry (Kanade, 1981;
Wagemans, 1993). A lattice of nonaccidental relations is shown in
Figure 2. As with the geon lattice, cases lower on the lattice are
special cases of, and hence embedded in, cases higher on the
lattice: For example the set of line segment pairs that are parallel
is a subset of the set of all line segment pairs.

The relation depicted in these diagrams is a partial order, a
relation in which some (but not necessarily all) of the elements are
ranked. Partial orders can have a variety of different structures,
several of which are illustrated in Figure 3. If S2 precedes (or is
equal to) S1 in the partial order (notated S2 ! S1) then S2 is
adescendant of (or is equal to) S1, that is, hangs somewhere down
the chain from S1 in the diagram (or they may be equal). If S2 is
the immediate child of S1 then we write S2 3 S1; these arrows
correspond directly to the arrows depicted in the diagram. Notice
that some model classes are not special cases of each other:
Neither is the other’s descendant in the diagram, like tapered
bricks and curved bricks in Figure 1. This particular partial order

is also a lattice, a partial order in which every two nodes S1 and S2

have both a greatest common child (called their meet and denoted
S1 ∧ S2) and a least common ancestor (called their join and de-
noted S1 ∨ S2). (See Davey & Priestley, 1990, for an introduction
to orders and lattices.) The main goal of the current article is to
explore how these algebraic structures and relations relate to
Bayesian inference.

G

brick

curved brick

tapered brick

curved, tapered brick

cube

Figure 1. A set of geons (Biederman, 1987), depicted (left) as a hierarchical interpretation space (lattice) G
(note isomorphism to Figure 3b), and (right) as a set of intersecting manifolds in 3-space. Curved, tapered bricks
form a three-parameter volume, in which curved bricks and tapered bricks are each two-parameter submanifolds.
Their intersection (bricks) is a one-parameter curve (the dimension being the brick’s length). Cubes are a point
on this curve. A color version of this figure is available on the Web at http://dx.doi.org/10.1037/a0017144.supp.

Collinear
Coterminating

Parallel

General position

Collinear & coterminating

Figure 2. An example of a hierarchical interpretation space from the
perceptual grouping literature: spatial relations between two line segments.
See Feldman (2007) for discussion.
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Model classes that are subsets of other model classes pose a
special problem for any theory of inference, because the larger
model always fits better than (or at least as well as) the smaller.
This means that in the absence of any mitigating factor, the
broadest model will always be chosen. This is undesirable, because
it leads to poor generalization (sometimes called overfitting; see
Hastie, Tibshirani, & Friedman, 2001, for extensive discussion),
and is clearly a poor model for what the perceptual system actually
does. A common solution is to penalize each model as a function
of how many fittable parameters it contains, for example, by the
Akaike information criterion (AIC; Akaike, 1974), which imposes
a penalty proportional to the number of parameters, or the Bayes-
ian information criterion (BIC), which imposes a somewhat larger
penalty.

The AIC (and by extension, the BIC, which shares critical
properties) has been criticized for both its motivation, which some
feel is ad hoc, and its performance, which is inconsistent (Dowe,
Gardner, & Oppy, 2007). And indeed Bayesians have argued that
Bayesian theory by itself handles variations in the dimension of
model families in a more natural way. Tenenbaum and colleagues
have extensively explored the link between Bayesian inference,
Occam’s razor, and the size of a model’s extension, in the context
of more cognitive tasks related to inductive generalization (Tenen-
baum & Griffiths, 2001; Tenenbaum, Griffiths, & Kemp, 2006).
MacKay (2003) has argued that Bayesian theory automatically
favors models with fewer parameters over those with more (such
as those in which they are embedded as special cases) because the
latter necessarily spread their probability mass over a larger region
of data space. MacKay’s central example of two model families,
one embedded in the other, is essentially the same as our S1 and S2

with S23 S1 (see Figure 3a). The main aim here is to extrapolate
this point beyond a pair of models, one embedded in the other, to
an entire hierarchical family of mutually embedded models with a
more complex set of relationships. Such hierarchical families are
naturally understood as algebraic structures, with logic-like oper-
ators and inference rules detailed below. The goal is to connect this
algebraic approach—with its attractive combinatoric structures
and compositional semantics—to Bayesian inference (similar to

the approach in the rational rules model of Goodman, Tenenbaum,
Feldman, & Griffiths, 2008).

As is often remarked, while Bayesian theory provides an opti-
mal method for selecting among hypotheses it does not provide the
hypothesis space itself, which must be chosen based on substantive
considerations drawn from the domain in question. In perception,
the choice of hypothesis space reflects the perceiver’s (i.e., the
brain’s) tacit assumptions about what classes of events (scene
models, hypotheses) tend to occur in the world—geons, spatial
relations, object classes, colors, sounds, and so forth. So Bayesian
accounts of perception can be tailored to the peculiar qualities of
the model spaces that arise in a perceptual context.

Perception also has several peculiar demands that distinguish it
from other inference problems. One is the need for very rapid and
possibly pared-down computational procedures conducive to real-
time updating. Another is the need for a single unitary result, the
percept. As was first noted by the Gestalt psychologists (often in
connection with bistability), perception usually converges on a
single final conclusion that corresponds to the current estimate of
reality (see Kanizsa, 1979, for discussion of this point). Bayesian
procedures do not in general yield a single conclusion, but rather
yield a full posterior distribution which assigns a degree of belief
to every hypothesis in the space. When a single conclusion is
required, the maximum a posteriori (MAP) interpretation is often
used, though Bayesians tend to regard this as a poor substitute for
the full posterior distribution.

These characteristic aims of perception—the need for rapid
simplified computation, and the desire to achieve a single, unified
percept—suggest the need for a simple computational procedure
that might take more direct advantage of the structure inherent in
hierarchical perceptual hypotheses.

The Qualitative Stance

A simple way to simultaneously satisfy these aims comes from
treating the situation qualitatively. A qualitative interpretation of
the evidence is one that ignores quantitative details of both the
prior and the likelihood and instead assigns them categorically,

S1

S2

S1

S2 S3

S4

S5

S1

S2 S3

S4

Figure 3. Examples of hierarchical interpretation space diagrams. (a) S23 S1; (b) S23 S1, S33 S1, S43 S2,
S43 S3; (c) S23 S1, S33 S1, S43 S2, S43 S3, S53 S4. Note isomorphism between Panel (c) and the lattice
in Figure 1. Adjacent to each interpretation is its likelihood ratio (see Equation 17 and surrounding text).
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leading to a qualitative selection of winning model. In the now-
extensive Bayesian perception literature, most analysis is oriented
toward quantitative estimation of scene parameters. But an enor-
mous literature in perceptual organization points toward the pri-
macy of qualitative models: categorically distinct ways of orga-
nizing the image into contours (e.g., Kubovy, 1994; Kubovy,
Holcombe, & Wagemans, 1998; Kubovy & Wagemans, 1995),
surfaces (e.g., Gilchrist & Jacobsen, 1989), objects (e.g., Feldman,
2003b), and so forth. Thinking qualitatively, we ask which models
are consistent with the image, rather than how well each model
(quantitatively) fits the image, usually a more ambitious compu-
tation. This is actually more or less how we speak informally about
certain image properties, for example, nonaccidental relations (see
Kukkonen et al., 1996; Wagemans et al., 2000). When we consider
the perceptual significance of observing, say, parallel lines, we are
really asking what it would mean if we knew only that the lines
were parallel, but did not know (or did not care about) the precise
value of the angle between them. Without knowing this angle, we
cannot evaluate the quantitative likelihood of any particular model,
but we can make a qualitative inference about the likelihood of
models that do and do not predict parallel lines (namely, that this
observation supports the models that do). This is the “qualitative
stance” (cf. Jepson & Mann, 1999).

Likelihood

For the likelihood, this means assigning likelihood based only
on which interpretations’ support I lies within—that is, which
models it satisfies, ignoring exactly how well it satisfies them. In
general, we define qualitative likelihood as follows. Assume an
image I that falls within some region A of image space, and assume
that is all we know (or care) about it. The total likelihood of S on
this data (I & A) is simply the integral of the likelihood p"I!S# over
the whole of A, that is,

p"I & A!S# ! #
A

p"I!S#dI, (3)

which I will refer to as the qualitative likelihood of S. (Note that
is really just the ordinary likelihood of S under data I & A; it is only
“qualitative” in the sense that we are treating the data I categori-
cally by classifying it as “in A” and disregarding further quantita-
tive distinctions.) More specifically, say we observe an image I
that falls within the support of a particular interpretation Si. This
qualitative event (I & $(Si)) has a probability under each possible
interpretation Sj, which allows us to evaluate each of these inter-
pretations in light of the (qualitative) observation. Substituting
$(Si) in for A, the qualitative likelihood of the model Sj is

p"I & $"Si#!Sj# ! #
$"Si#

p"I!Sj#dI, (4)

that is, the integrated probability of all images consistent with Si if
Sj is really true. If Si and Sj are the same (i ! j) then this is simply
unity,

p"I & $"Si#!Si# ! #
A

p"I!Si#dI ! 1, (5)

meaning simply that if Si is the true state of the world, then the
image will be consistent with Si with probability 1. If Si and Sj are
inconsistent (have disjoint support; $"Si# ! $"Sj# ! 0$), then this
likelihood will be zero, meaning simply that if Si is true then Sj

cannot happen.
The more interesting case is when I is consistent with both Si

and Sj. In a hierarchical interpretation space where some interpre-
tations are special cases of others, this happens often, because any
interpretation that is consistent with one interpretation is also
consistent with those above it in the diagram. For example, a shape
in the class brick is also in the class curved brick, though its
curvature happens to be zero.

Assume two interpretations S1 and S2 with S2 3 S1 (recall this
means that S2 is S1’s immediate child in the partial order). The
qualitative likelihood of S2 conditional on S1 is simply the integral
of S1’s likelihood over the support of S2, which (continuing in the
spirit of qualitativeness) we assume has some standard value ε,

ε ! p"I & $"S2#!S1#. (6)

Thus ε is our standard value for the probability of a “coincidence”
or “accidental” configuration: that a curved brick will be straight
enough “by accident” to be classified as regular brick, or that two
line segments generated at random orientations will happen to be
approximately parallel. ε represents the probability of stepping one
step down the partial order, that is, one step toward a more special
case. If we further assume that successive steps down the partial
order are independent (another common simplifying assumption;
see Landy, Maloney, Johnston, & Young, 1995) then the εs mul-
tiply, so the probability of d such steps will be εd. The number d
is called the depth of interpretation Sj relative to Si. Note that this
does not mean that we assume that special image configurations
generally occur independently; it means that when they occur by
accident, the accidents are independent. When they occur as a
normal or generic consequence of the true scene model (like the
straight axis and parallel sides of a brick geon, which are generic
in that model), the regularities are obviously highly nonindepen-
dent.

The exact value ε will depend on how strictly we have set the
criterion for satisfaction of a special case. If say the threshold for
parallelness is set to 1°, then ε will be smaller than if the criterion
is set to 5°. But the exact value does not affect the logic governing
how interpretations are assigned.

In summary, with several simple assumptions, the qualitative
likelihood of an image I being consistent with interpretation Si if
interpretation Sj is correct is just

p"I & $"Si#!Sj# ! εd, (7)

where d is depth of Si relative to Sj, that is, the number of steps
down the diagram from Sj to Si. As a special case, when Si ! Sj,
then d ! 0 and the likelihood is 1. Again, this means simply that
each model S generically produces images that are consistent with
it, whereas models above it in the partial order do so only with
probability that is ε or some higher power of ε.

Prior

For the prior, a simple qualitative assumption is to set all priors
equal, p(Si) ! p(Sj) for all i, j. In the perceptual literature a great
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deal of emphasis has been put on the idea of “neutral” prior
probabilities, that is, assumptions that entail the least possible
commitment on the part of the perceiver. In the Bayesian literature
such priors are often referred to as uninformative, meaning that
they tend to “stay quiet” while allowing the data to speak for
themselves (via the likelihood). Setting all priors equal is a very
simple way of achieving quiet priors, because when all priors are
equal they cancel out of all comparisons and only the likelihood
matters.

Still, as Bayesians emphasize, all inference requires assump-
tions, and with a hierarchical interpretation space an assumption of
equal priors is by no means trivial nor without substantive conse-
quence. Bayesian sometimes argue (e.g., see Robert, 2007) that the
prior probability of any continuous parameter being exactly zero
(or any other particular value) is always zero, or at least tends
toward zero as our measurement resolution improves. But special
cases in a hierarchical interpretation space by definition involve
some parameter taking a value of zero that is not zero in the more
generic (nonspecial) case above it in the partial order—like cur-
vature in the case of straight bricks versus curved bricks. Hence if
S23 S1, assuming p(S1) ! p(S2) means assuming that the param-
eter being zero is just as likely as its being nonzero. This means in
effect that we are “squeezing” an equal amount of probability mass
into each interpretation, regardless of its intrinsic size in the
underlying image space or its relation to other interpretations. In
the case of nonaccidental properties, it squeezes an equal amount
of probability mass into an some areas that are infinitely smaller
than others—or, as we have assumed above, are ε the size of
others. This results in a highly nonuniform distribution of proba-
bility mass over the image space.

This makes sense only if we assume that the special cases to
which we assign equal priors are all stable, recurring classes in the
environment. Elevating a set of models for this kind of special
treatment thus really amounts to adopting a basic “alphabet” of
event classes in the world under observation. This point is critical
and is developed further below.

Bayes Yields a Minimum Rule

Given the several qualitative assumptions above, Bayes’ rule
turns out to be equivalent to a simple algebraic rule defined over
the partial order. Assume two models S1 and S2, with S23 S1 (i.e.,
S2 is a special case of S1). Qualitatively, there are two possible
observations: I & $"S2# and I " $"S2#.

If I & $"S2#, then the qualitative likelihood of S1 is ε,

p"I & $"S2#!S1# ! ε, (8)

while the likelihood of S2 is unity

p"I & $"S2#!S2# ! 1. (9)

Assuming equal priors, the posteriors for S1 and S2 are, respec-
tively, ε/(1 ) ε) and 1/(1 ) ε). So Bayes’ rule says to pick the
special case (S2). In fact, this preference is robust against substan-
tial deviation from equal priors, because the posterior preference
for S2 will be maintained as long as the prior ratio p(S1)/p(S2) is
less than 1/ε.

With the other possible observation, I " $"S2#, the qualitative
likelihoods are

p"I " $"S2#!S1# ! 1 # ε (10)

and

p"I " $"S2#!S2# ! 0, (11)

in the latter case meaning that the observation I " $"S2# is incon-
sistent with S2. The posteriors for S1 and S2 are now, respectively,
1 and 0, so Bayes’ rule favors the nonspecial (upper) case (S1)—
regardless of the priors.

Thus the Bayesian decision in the case S2 3 S1, given the
qualitative stance as outlined above, has an extremely simple form:

If S2 is consistent with the image, choose S2;

otherwise, choose S1. (12)

In other words, if the specialized configuration S2 holds in the
image, draw the more restrictive interpretation, because that would
explain the image (the image would be 100% likely under that
“story”), whereas under the less restrictive interpretation, the im-
age would be a mere coincidence, and thus unexplained (cf.
Griffiths & Tenenbaum, 2007). This is the basic logic of nonac-
cidental properties, and of Rock’s (1983) coincidence explanation
principle, rendered in Bayesian language.

What about interpretation spaces with more than just two inter-
pretations? It is easy to generalize the inference rule by using the
structure of the partial order. Notice that the preference for chil-
dren over their parents is transitive, so grandchildren (etc.) are
even more favored. If S2 3 S1 and S3 3 S2, then if the image is
consistent with S3, it is also consistent with S2 and S1, but the
likelihood (and posterior) for S3 are the highest. (Posteriors for S1,
S2, and S3 are, respectively, ε2/(1 ) ε ) ε2), ε/(1 ) ε ) ε2), and
1/(1 ) ε ) ε2), with the last (S3’s) being the highest. So generally
lower nodes trump higher nodes; if S2 ! S1 then S2 wins. Con-
versely, if the image I is consistent with two interpretations S1 and
S2 but neither S1 ! S2 nor S2 ! S1, then their meet S1 ∧ S2 will
exist; and because S1 ∧ S2 ! S1 (and also S1 ∧ S2 ! S2), the meet
S1 ∧ S2 wins. (If the meet does not exist then I cannot be consistent
with both interpretations.) From there it is straightforward that the
overall winner will be the interpretation that is the meet of all the
interpretations consistent with I. In other words, the general rule is
as follows:

Choose the lowest interpretation in the partial order

consistent with I. (13)

That is, among all interpretations that could have produced the
image, choose the one that is most restrictive. In more formal
notation, the interpretation rule is as follows. Given image I, define
the set SI " S as the set of interpretations that are consistent with
I, that is, for which I & $"S#. Then the interpretation rule is

Choose interpretation % SI. (14)

Because the meet operator ∧ defines a formal minimization,
Rule 14 is a kind of “minimum rule,” and indeed several earlier
articles (Feldman, 1997b, 2003a, 2003b) have developed it as such
(using nonprobabilistic arguments). The theory developing the
necessary partial orders and their diagrams is called minimal
model theory, and the minimum rule (Equation 14) is referred to as
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the maximum-depth rule (or the lattice-minimum rule; see Feld-
man, 1997c; Jepson & Richards, 1991), with the chosen interpre-
tation referred to as the maximum-depth interpretation, minimal
model, or minimal interpretation. As mentioned above, the term
depth in the phrase maximum depth refers to the number of steps
down the partial order, here from the top (i.e., the row number;
sometimes called the codimension); this is what we are maximiz-
ing by choosing the lowest interpretation. This number plays an
important role in the theory, explained below.

The notion of simplicity captured by the maximum-depth rule is
somewhat different in concept from the traditional notion of a
minimum-length description in the tradition of “coding theory”
(Hochberg & McAlister, 1953) and its more recent variants (Buf-
fart et al., 1981; Leeuwenberg, 1971; see Wagemans, 1999, for a
critique). In coding theory (as in the notions of complexity used by
Chater, 1996, beginning with the approach initiated by Kolmog-
orov), one minimizes the length of the description as expressed in
some fixed language. But in minimal model theory one seeks an
extremal interpretation in a connected, ranked series of interpre-
tations—or, what turns out to be equivalent, finds the minimum in
certain well-defined algebras (see Feldman, 1997b). The emphasis
in the minimal model approach is thus on the structural relations
among the interpretations, and specifically on their inclusion rela-
tions, rather than on the length of the description or any other
numeric quantity. But in effect there is a quantity minimized in
minimal model theory, and it can easily be thought of as the length
of a description in a certain language. Specifically, one is mini-
mizing the number of steps on the lattice up from the bottom. This
number measures the number of transformations required to gen-
erate the observed configuration from some structureless reference
object corresponding to the bottom rung (Feldman, 1997c; Leyton,
1992, and see below for discussion). Thus applying the maximum-
depth rule means selecting the simplest way of generating the
qualitative case observed—that is, the way that requires the min-
imum number of generative operations. So the maximum-depth
rule yields the interpretation that is both the simplest (requires the
fewest generative operations) and the most likely to be correct (has
maximum posterior).

The Weight of Evidence for the Winning Interpretation

We can extend the argument a bit more to quantify the strength
of the qualitative evidence in favor of each interpretation. A
conventional measure of the probabilistic strength of an interpre-
tation Si, probably first suggested by Jeffreys (1939/1961), is the
ratio between its likelihood and that of an empty or “null” hypoth-
esis, denoted Li:

Li !
p"I!Si#

p"I!S0#
. (15)

This ratio (or its logarithm, sometimes referred as the weight of
evidence) quantifies the compellingness of the interpretation rela-
tive to a null baseline of “no pattern,” meaning the weakest or most
general hypothesis under consideration. Griffiths and Tenenbaum
(2007) showed how a similar likelihood-ratio measure captures
people’s explicit judgments about the strength of a coincidence in
a range of different cognitive contexts. In the minimal model
approach the “null” hypothesis S0 corresponds to Si’s highest

ancestor in the partial order, that is, the top node of the corre-
sponding diagram. In the case of our two-interpretation space
{S1, S2}, the likelihood ratio of the more restrictive interpretation
S2 is just

L2 !
p"I!S2#

p"I!S1#
, (16)

which equals 1/ε, since the likelihoods are, respectively, 1 and ε.
If we assume independence of accidents as discussed above, then
the εs multiply as we move down the diagram (or add if we take
logs). Specifically each node at depth d has likelihood ratio εd

relative to the top (most generic) node,

LS &
1
εd ! ε*d, (17)

or, equivalently, weight of evidence #d logε. (Note that logε is
always negative because ε + 1, so #d logε is always positive.)
Figure 3 illustrates several partial order diagrams with the likeli-
hood ratios associated with each node.

Given the simplifying assumptions we have made, the strength
of each interpretation depends only on where it sits in the partial
order. As we move down the diagram to increasingly complex
“coincidences” (i.e., as d increases), the likelihood ratio in favor of
the inference that the configuration is not a coincidence increases
exponentially. For example, with ε ! 0.05 (the conventional value
for the probability of a “coincidence” in psychology) and d ! 2
(the depth of collinearity in the diagram in Figure 2), L ! 0.05–2 !
400, meaning that the inference of collinearity given a pair of
collinear segments is 400 times stronger than the default interpre-
tation of no structure. As interpretations get further down the
diagram, they rapidly increase in probabilistic compellingness, in
an explicitly Bayesian sense. Similarly the weight of evidence
(log-likelihood ratio) increases linearly with the depth. Feldman
(2007) found experimental evidence that perceptual groups be-
come progressively stronger (more tightly bound into “objects”) in
direct proportion to the depth d of the group, exactly as theory
would predict.

Of course, Equation 17 is approximate because it is only a
convenient simplification to assume that each step down the dia-
gram will occur by chance with the same probability ε. But it
captures the intuition that successively more restrictive interpreta-
tions—being progressively less likely to occur by coincidence—
are thus progressively more impressive and compelling when they
do occur.

A Richer Example

A more complicated, but essentially similar, example concerns
configurations of multiple oriented elements, such as line segments
or Gabor patches. Here the interpretations—qualitative descrip-
tions of the spatial arrangement of the elements—are not simply
qualitative predicates such as “collinear” or “parallel,” but more
complex, possibly hierarchical combinations of such relations
among various combinations of elements. For simplicity, consider
four elements at a time, with only collinearity recognized as a
possible relation. Following the assumption of qualitativeness, we
classify each pair of elements as collinear or not on the basis of
some simple angular threshold (e.g., 30° deviation from perfect
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collinearity; the exact criterion does not matter for the example).
From a more thorough probabilistic point of view, this threshold
acts as a decision boundary separating turning angles , that were
likely to have been generated by a collinear-centered distribution
(e.g., , - N(0°, $2); see Feldman, 2001) from those that were
likely not. From a qualitative point of view, they are simply
“collinear” or “not collinear.” Considering each element pair (cho-
sen from the set of four elements) this way gives a set of five
possible interpretations, each a tree with leaves corresponding to
individual elements, and other nodes the collinearity classification
of the spatial relations among the children (see Feldman, 1997b,
2003a, for further discussion of trees like these). The five inter-
pretations (trees) form a partial order of interpretation strength (see
Figure 4), in this case exactly isomorphic to Figure 3b). Interpre-
tations lower on the diagram are stronger, in the sense that they
dominate when more than one interpretation applies. Thus for an
arbitrary configuration, we select the lowest interpretation that
applies. Intuitively, the illustrated configurations (Gabor fields)
form stronger or more “prägnant” patterns as one moves down the

lattice. The totally generic (top) interpretation treats each of these
angles as random events; the totally curvilinear (bottom) interpre-
tation treats the entire configuration as a single chain. Each step
down the lattice amounts to one additional collinearity expected
under the model and thus explained by the model. The chain
interpretation is stronger than the null interpretation by an amount
that is proportional to the number of coincidences it explains—its
depth. More specifically, if we assume equal priors, the log-
likelihood ratio increases linearly as we move down the lattice,
following the epsilon powers in Figure 3b. This is the simplicity
principle and the likelihood principle.

It is instructive to compare this qualitative analysis with a more
full-blown Bayesian analysis of this situation, in which we eval-
uate the quantitative likelihoods of each configuration under each
hypothesis, instead of considering the configurations only qualita-
tively. Consider a chain of n oriented elements, corresponding to a
sequence of turning angles {,1, ,2, . . ., ,n – 1} (corresponding to
the lowest interpretation in the diagram in Figure 4, where n ! 4).
This is the crucial case of the integration of an elongated contour,
extensively studied by many authors (e.g., Field, Hayes, & Hess,
1993). Along such a contour, we assume the angles ,i are
generated independently and identically from a collinear-
centered Gaussian3 N(0°, $2), which means that the likelihood
will be given by

p"%,i.!smooth chain# ! '
i

n*1 1

$(2/
e)*

,i
2

2$2* , (18)

the product of n – 1 independent Gaussian deviates. By contrast,
the generic or null interpretation (the topmost node in the lattice)
treats these same angles {,i} as a series of independent accidents,
each with probability ε, and thus has likelihood

p"%,i.!null # ! εn*1. (19)

As suggested above, the strength of the chain interpretation rela-
tive to the null is given by the ratio of its likelihood to that of the
null interpretation,

Lsmooth chain ! log) likelihood of smooth chain
likelihood of null * , (20)

or the logarithm of this ratio. Dividing Equation 18 by Equation 19
and taking the log yields

log Lsmooth chain !

smoothness term

È

#
1
2"

i

n*1),

$* 2

$

depth term

È

"n # 1#log) 1

ε$(2/* .

(21)

This expression breaks down in an edifying way. The first term on
the right-hand side (the negative sum of the squared z scores of the
angles along the chain, labeled the smoothness term) gets more
negative as angles in the chain get larger, and thus the chain gets

3 Actually, for technical reasons it would be a von Mises density (see
Feldman & Singh, 2005; Swindale, 1998, for discussion); it makes virtually
no difference to the current discussion.

α

Figure 4. The lattice of interpretations (in this case, trees) of four ori-
ented elements, along with typical instances (Gabor fields). Each tree
describes a distinct scene qualitative interpretation; stronger interpretations
are lower on the lattice, weaker ones higher. The perceived interpretation
is the lowest one consistent with the image. Nodes in each tree represent
classifications of the angle ,. An angle is classified as (qualitatively)
collinear (denoted coll) if , is less than some threshold 0; otherwise it is
generic, indicated here by a dot ( ! ). Thus each configuration of Gabors is
assigned a tree on the basis of its qualitative pattern of component angles.
Notice how moving one rung down the lattice always involves “fixing” (in
this case setting to near collinear) one of the angles ,. This particular lattice
is isomorphic to that in Figure 3b, and its likelihood ratios follow those
given there, assuming ε ! p", % 0!generic#. A color version of this
figure is available on the Web at http://dx.doi.org/10.1037/a0017144.supp.
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less smooth. (Because it is a negative sum of squared numbers, it
is always negative; the smoother the angle chain, the higher, i.e.,
closer to zero, it is.) Thus the smoothness term reflects the degree
to which the observed angles have high likelihood under the
hypothesis of a smooth chain (see Claessens & Wagemans, 2008;
Feldman, 2001; Singh & Fulvio, 2005). The second term, labeled
the depth term, increases linearly with n – 1, with step size
log"1/ε$(2/#, which is positive as long as ε % "$(2/#*1. The
number n – 1—the number of angles in the chain—is just the depth
of the chain, that is, the row number on which this hypothesis
would sit in the lattice of interpretations; this is the number of
coincidences the chain hypothesis would explain. So this compo-
nent of the log-likelihood ratio increases linearly with the strength
of the hypothesis in question. The step size (the term multiplied by
n – 1) is the margin by which explaining each nearly collinear
angle is better than not explaining it. In essence the smoothness
term reflects how well the angles fit a curve-chain hypothesis—the
quantitative goodness of fit to the hypothesis—whereas the depth
term reflects the strength of the curve-chain hypothesis itself—the
qualitative strength of the hypothesis, which increases with its
depth. In the literature on contours, smoothness has usually been
emphasized (not generally formalized this way) because research
tends to focus on close cases with fixed qualitative geometry, and
the influence that slight changes in angle might have on them. But
when the ns among competing hypotheses are not equal—as when
one is deciding among different ways of qualitatively subdividing
a field of elements into chains of various lengths and geometries—
the depth term will dominate. (Remember that in this situation the
data still exert a strong influence on decisions via which angles are
classified as “approximately collinear” and which are not; we are
choosing only among hypotheses that qualitatively fit the data in
this sense.) Exactly as discussed above, if one evaluates all hy-
potheses quantitatively, an elaborate numerical maximization is
required. But if one chooses to ignore niceties of the likelihood
(i.e., to adopt the “qualitative stance”), then the depth term tells
you how strong the hypothesis is, and the maximum-depth rule
applies.

Creating a Vocabulary for Scene Description

Above, scene descriptions have been portrayed as “holistic” clas-
sifications of the entire image. But in most contexts they are more
usefully regarded as attributes of scenes, picking out those scenes that
satisfy a particular (possibly local) attribute. As such they can occur in
combination and compose to form complex scene descriptions. In this
sense, individual attributes that received elevated priors as discussed
above constitute a kind of alphabet or vocabulary of scene description.
Algebraic rules then govern the mechanisms of legal combination of
these attributes, whereas the associated Bayesian interpretation devel-
oped here means that each composite scene interpretation comes with
a well-motivated likelihood ratio. As in Goodman et al. (2008), this
approach shows how we can have a productive system of complex
scene descriptions coupled with a rational Bayesian inference proce-
dure—again, reconciling ideas that (in the guise of the traditional
simplicity and likelihood principles) once seemed like competing
approaches.

A simple but important example comes again from Biederman’s
RBC (geon) theory. As portrayed in Figure 1, geons form a
partially ordered set of inclusion classes, in this case a lattice G. (G

includes only a subset of all geons for purposes of discussion; a
more complete set would form a more complex partial order.) But
geons do not appear in isolation, but rather in the context of other
geons, with which they combine via a variety of spatial relations.
A representative sample might include collinear parts, coterminat-
ing parts with arbitrary joint angles, and T-junctions. These three
spatial relations form a lattice R of inclusion classes, illustrated
with straight bricks in Figure 5. As with the geon lattice, in this
lattice, relations lower in the order (e.g., collinear parts) are special
cases (measure-zero subsets) of relations higher in the lattice (e.g.,
coterminating parts). Just as the geons themselves form a vocab-
ulary of part types, the relations in the lattice form a vocabulary of
relation types. And as with the geons, relations lower in the lattice
have a Bayesian (likelihood ratio) advantage over those higher in
the lattice, meaning that the preference order in the lattice embod-
ies a rational relation classification procedure.

To build complete object representations, the classification of an
individual geon can be composed with those of another geon, and
with the spatial relation between them, forming a complex set of
object classifications (in this case, of two-part objects). The new set of
complex interpretations then forms a partial order composed from the
geon and relation lattices. Following standard rules for composing
partial orders (Davey & Priestley, 1990), the lattice for two-part
objects would then simply be the Cartesian product of the lattices,

G & R & G, (22)

with a partial order inherited from those on G and R, and defined by

"g1, r1, h1# ! "g2, r2, h2# if g1 ! g2, r1 ! r2, h1 ! h2

(23)

generic T

coterminating

collinearR

Figure 5. A simple lattice R of relations between two geons. Relations
are illustrated with simple “bricks,” but these are placeholders; each role
can be played by any geon class (e.g., those in Figure 1) to create a
multiplicative space of ordered object types.
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(with gi, hi & G, ri & R). This large lattice (not depicted as it would
contain 5 1 3 1 5 ! 75 nodes) gives a systematic enumeration of
the set of possible two-part objects that can be constructed from
these five part types and these three relation types (obviously a
small subset of those envisioned by RBC theory). If as above we
assume independent “accidents,” all the εs multiply and these
classes now come equipped with well-motivated Bayesian likeli-
hood ratios. This allows a rational classification of images into
object classes—a Bayesian realization of RBC.

An interesting wrinkle concerns how the nodes in these lattices are
“spelled.” Abstractly, any lattice can be regarded as having been
generated by a small subset of its elements coupled with the meet (∧)
and join (∨) operators. Most elements on the lattice can be expressed
as meets (or joins) of other elements. But a special subset are irre-
ducible, meaning that they cannot be expressed as combinations of
others. For example, immediate children of the top node are atomic in
terms of the meet operator, because they cannot be expressed in terms
of meets of others. Dually, immediate parents of the bottom node
cannot be expressed as joins of others. In addition, depending on the
structure of the lattice, certain other internal nodes may be irreducible
in terms of either meets or joins. The set of irreducible elements thus
forms a kind of atomic vocabulary for expressing the complete set of
elements, just as the prime numbers constitute the atoms for forming
unique representations of the natural numbers (via multiplication).
The entire lattice can be re-expressed either down from the top (using
meet-irreducible elements and the meet operator) or up from the
bottom (using join-irreducible elements and the join operator). Either
way, the lattice gives an explicit, generative compositional structure to
the space of interpretations.

But in a perceptual context, spelling from the bottom and spelling
from the top entail substantively different semantics. Meet-irreducible
elements (spelling from the top; see Figure 6, left) are regularities—
special configurations of the image, like nonaccidental properties.
Join-irreducible elements (spelling from the bottom; see Figure 6,

right) are operations, that is, transformations of one structure to yield
a family of transformed versions. Regularities fix a free parameter,
whereas operations set a fixed parameter free. The algebra thus makes
explicit the relationship between traditional feature-based representa-
tions of image structures, which describe the image in terms of its
properties, with “generative” approaches, which describe it in terms of
the operations that might have produced it (e.g., Feldman & Singh,
2006; Leyton, 1989, 1992). In Figure 6, the geon lattice is shown
spelled both ways, with semantic labels on the geon classes illustrat-
ing the two types of semantics. For example, the second node from the
bottom can be regarded as a brick with a straight axis and parallel
sides (left) or as a stretched cube (right). The first way, it is two
degrees down from (more regular than) the top; the second way, it is
one operation from (more general than) the bottom. Either way, the
node has depth d ! 2 and thus likelihood ratio 1/ε2. No matter how
it is spelled, the model has a strength that can be quantified in
Bayesian terms.

Again, adopting a particular set of geons, spatial relations, or
contour properties (etc.) means elevating these choices to a kind of
vocabulary of object construction. By adopting them we have in effect
elevated this vocabulary from the infinite space of possible alternative
vocabularies, giving them priors that are elevated relative to arbitrary
classes. After all, any spatial relation could, if we chose, be regarded
as a primitive type. But if all relations are regarded as types, then there
can be no generalization, no recognition of like kinds, and thus no
meaningful image description. The configurations we anoint as types
are the ones we think tend to occur, and whose combinations corre-
spond approximately to the cases prevailing in the environment.

Discussion

Summarizing, the above argument shows that the maximum-
depth rule instantiates a kind of qualitative Bayesian perceptual
inference. Many instances of visual inference can thus be regarded

generic

parallel sides straight axis

straight & parallel

equal sides

tapered & curved

curved tapered

stretched

cube

Figure 6. Two alternate ways of “spelling” the geon lattice G (see Figure 1) in terms of atomic elements: (a)
down from the top, in terms of meet-irreducible elements (regularities), or (b) up from the bottom, in terms of
join-irreducible elements (generative operations). Nodes marked by letters (a, b, c) are irreducible elements;
other nodes (a ∧ b, b ∨ c) are combinations (meets or joins). The hierarchical relations among the meet-
irreducible elements and the hierarchical relations among the join-irreducible elements are related by a famous
theorem of lattice theory, Birkhoff’s representation theorem (see Davey & Priestley, 1990).
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as rational, albeit approximate, attempts to infer the best explana-
tion for image data. Key aspects of this account have intriguing
parallels in the literature on Bayesian models of higher level
cognition, perhaps suggesting common principles at work across
domains. Chater (1996) had shown that perceptual simplicity prin-
ciples are at least asymptotically equivalent to Bayes; here we see
a perceptual simplicity principle that is exactly equivalent to Bayes
using assumptions and information that is qualitative in a well-
defined sense. The maximum-depth rule is literally a restatement
of Bayes’ rule under certain assumptions about the observer’s
knowledge and beliefs. More broadly, this argument demonstrates
the utility of bringing algebraic structures and concepts to bear in
a Bayesian context, allowing inference to be representationally
expressive and both probabilistically optimal.

Maximizing the depth of an interpretation is perhaps best
viewed as a realization of Rock’s (1983) coincidence explanation
principle. Each image satisfies some number of properties that are
unlikely to occur by accident (i.e., occur independently with prob-
ability ε). These properties are “explained” under any model in
which they are generic, that is, that assigns them high probability;
but they are left unexplained by more generic models, which
treated them as ε-probability coincidences. In this sense the
maximum-depth interpretation is simply the one that explains as
many image properties as possible. Indeed it may not be possible
to explain all the coincidences in the image, but the maximum-
depth interpretation is simply the one that explains as many as
possible (Jepson & Richards, 1991; Richards, Jepson, & Feldman,
1996). From a Bayesian point of view, it is also the maximum a
priori model from among those that can be expressed in the
description language we have chosen to adopt. The “words” in this
language are simply the meet-irreducible elements in the corre-
sponding partial order or lattice—or, dually, the join-irreducible
elements if we choose to express our interpretations as generative
models. This establishes a close relationship between these com-
positional representations (along with their associated preference
ordering) and maximization of the Bayesian posterior.

Of course, qualitative inference yields only qualitative conclu-
sions. Nevertheless, in many perceptual settings crucial quantita-
tive parameters are modulated by qualitative factors. For example,
perceived luminance (a quantitative parameter) changes depending
on whether or not the surface perceptually completes with another
(a qualitative decision; Gilchrist, 1977; Gilchrist & Jacobsen,
1989). The perceived orientation of a shape (quantitative) depends
on how it decomposes into parts (qualitative; Cohen & Singh,
2006). Historically, though, these types of qualitative perceptual
decisions have been more poorly understood than quantitative
ones. A more complete understanding of qualitative perceptual
decision making thus has the potential of furthering (rather than
preempting) a more complete quantitative understanding of per-
ceptual function.

The close relationship between depth minimization and poste-
rior maximization is predicated on a number of simplifying as-
sumptions. Naturally, if key assumptions (like equality of priors)
are incorrect in a given environment, the resulting conclusions will
deviate from optimality. As with any inference theory, the correct-
ness of the conclusions requires that the assumptions be suitably
“tuned” to the environment (see Brunswik, 1956; Geisler & Diehl,
2002). Indeed, the compositional structure of a given interpretation
space depends on adopting a description language that correctly

reflects environmental regularities, in the sense that it assigns high
prior to just those events that tend to occur frequently (which in the
algebra become the irreducible elements and combinations
thereof). Of course, in any given environment, certain legal com-
binations may in reality occur more often than others, in which
case the assumption of equal priors over the partial order would be
incorrect and the resulting interpretations nonoptimal. An obvious
example would be certain combinations of geons that occur more
than other combinations, such as the standard quadruped body
plan. (Such cases form a sublattice with its own combinatorics.) In
the end, if the aim is to achieve quantitatively optimal inferences,
then a more conventionally quantitative approach is required. But
with approximately correct assumptions, algebraic minimization
can achieve approximately correct results with a minimum of
computation, which under real time-pressured conditions might be
the more adaptive strategy (Brighton & Gigerenzer, 2008).

Conclusions

For those perceptual theorists who have fretted over the philo-
sophical justification of the simplicity principle, the idea of com-
plexity minimization has seemed at times no more than a handy
but unjustifiable calculating trick, whose empirical success was
essentially mystifying (Hatfield & Epstein, 1985). Chater’s (1996)
argument goes a long way toward clearing up this mystery: in a
very general but also somewhat abstract sense, complexity mini-
mization serves the purpose of building a veridical representation.
But because this property is shared by any reasonable complexity
measure (any one that is universal in Kolmogorov’s sense), this
argument does not help clear up the ambiguity in specifying
exactly which minimum rule the visual system uses. The argument
in the current article is that if the image description vocabulary is
well-chosen, maximizing interpretation depth likewise maximizes
the posterior. This brings out in a more explicit way how the
selection of an optimal interpretation relates to the assumptions
one has adopted—regarded either as a set of models assigned high
priors, or as an image-description vocabulary.

In this sense, this brings out the idea that the various rules and
strategies imputed in perceptual inference differ not only in the
computations they specify but in the knowledge and assumptions
they implicitly embody. Different assumptions license different
computational mechanisms. Here, certain assumptions about priors
and likelihoods transmuted Bayes’ rule into a very different-
looking—but mathematically equivalent—formal minimization
rule. This idea recasts the historic debate between the simplicity
and likelihood principles as one about alternative assumptions
rather than one about alternative principles. Indeed, the question
we should be asking is not what computational tricks the visual
system uses, but rather what constraints and assumptions about the
world are embodied in the tricks (Barlow, 1994; Marr, 1982;
Richards, 1988).
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