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One of the ultimate goals of vision research is to understand how some elements are grouped together
and differentiated from others to form object representations in a complex visual scene. There exists
an extensive literature on this grouping/segmentation problem, but most of the studies have used un-rec-
ognizable stimuli that have little to do with object recognition per se. We used Gabor-rendered outlines
of real-world objects to study some relationships between bottom-up and top-down processes in both
spatial- and motion form perception. We manipulated low-level properties, such as element orientation
and local motion, while incorporating higher-level properties, such as object complexity and identity, and
found that adding local motion improved overall performance in both object detection and object iden-
tification tasks. Adding orientation jitter effectively decreased object detection performance in both static
and motion conditions, and increased reaction time for identification in the static condition. Orientation
jitter had much less effect on reaction times for identification in the local motion condition than in the
static condition. Both contour properties (‘‘good continuation”) and object properties (identifiability)
had a positive effect on detection and reaction time for identification.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental goal of vision is to locate, characterize, and rec-
ognize objects. To determine ‘‘what” is ‘‘where”, the visual system
must first determine which parts of the image belong together in
groups that can be segmented from the background. This is known
as the image grouping/segmentation problem, and one of the most
important tasks is the extraction of object contours. Since contours
are often not well defined along all of their extent (due to partial
occlusion), the visual system needs to be able to infer their nature
from an incomplete representation. It can make use of several cues
to construct a coherent percept, for instance, texture gradients, col-
or, depth information, occlusion, and motion. How the brain com-
bines local information into a global structure, how it computes
form from these cues, remains an important issue in visual neuro-
science. Most studies trying to address this subject have used sim-
ple, non-object stimuli in detection or discrimination tasks, where
identification of objects was not necessarily needed. In an attempt
to reduce the gap between the extensive literature on grouping/
segmentation and object perception (where object identification
has to take place), we introduce a new set of stimuli where we
use Gabor-rendered outlines of real-world objects. We will first re-
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view some of the background on contour integration and form per-
ception, and then present two experiments that explore the
influence of jitter and motion on both the detectability and identi-
fiability of real-world object contours.

Several studies have looked at contour integration in both static
and motion conditions. In a paper on the role of temporal modula-
tion in visual contour integration, Bex, Simmers, and Dakin (2001)
compared the detectability of ‘‘snakes” and ‘‘ladders” in relation to
orientation jitter on the contour elements. ‘‘Snakes” are constituted
by Gabor elements that are locally aligned with the contour axis,
while ‘‘ladders” are constituted by elements perpendicular to its
axis. For a contour containing six elements placed along a path
with an angle of 20� between the segments, they found that the
amount of jitter that could be tolerated was approximately dou-
bled when they added motion to the Gabor elements (translation
of the carrier sine wave). In a later study, Bex, Simmers, and Dakin
(2003) used a different paradigm (where the contour elements
consisted of moving dots) and found that, as with static contour
images, the visibility of moving contours decreases at high curva-
ture, albeit by less than in the static case. It has also been found
that counter-phase temporal flicker can enhance contour detection
(Bex et al., 2001). In exploring the influence of spatial frequency
and orientation on motion-defined contours, Ledgeway and Hess
(2006) found a very broad tuning for spatial frequency, and a rela-
tively narrow tuning for orientation. Motion direction tuning is in
comparison relatively broadband (Allman, Miezin, & McGuinness,
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1985; Bex et al., 2001; Bex et al., 2003; Ledgeway & Hess, 2002,
2006).

Traditionally, mechanisms involved in object recognition and
mechanisms for encoding object position and motion have been
assumed to project ventrally and dorsally from primary visual cor-
tex to infero-temporal and posterior-parietal cortex, respectively
(DeYoe & Van Essen, 1988; Livingstone & Hubel, 1987; Ungerleider
& Desimone, 1982), constituting the so-called ‘‘ventral” and ‘‘dor-
sal” streams, respectively. Such a strong functional distinction be-
tween these two pathways is disputed however: several cortical
areas in both the ventral and dorsal streams have been implicated
in shape-from-motion (Braddick, O’Brien, Wattam-Bell, Atkinson,
& Turner, 2000; Murray, Olshausen, & Woods, 2003) and MT/
MST, a typical dorsal area dedicated to motion processing, also ap-
pears involved in the analysis of object shape (Kourtzi, Bülthoff,
Erb, & Grodd, 2002). Moreover, several studies point to a third
stream projecting from V1 to lateral occipito-temporal cortex
(LOC) that also underlies complex motion perception (Ferber,
Humphrey, & Vilis, 2003, 2005; Grill-Spector, Kushnir, Edelman,
Itzchak, & Malach, 1998; Murray et al., 2003). Evidence suggests
that the streams consist of a hierarchy of processing stages that
transform lower-order stimulus properties into higher-order prim-
itives (Grill-Spector et al., 1998), and anatomical work has revealed
reciprocal inter-stream connections at all levels of the visual hier-
archy (Felleman & Van Essen, 1991; Van Essen & Maunsell, 1983).

Several studies have set out to find how spatial form and mo-
tion form, presumed to be implemented by two independent sys-
tems (Ledgeway & Hess, 2006; Lorenceau & Alais, 2001; Rainville
& Wilson, 2004), interact when they are presented simultaneously.
Lorenceau and Alais (2001), for instance, showed that binding local
motions into global object motion depends on spatial form (open
vs. closed contour configurations). They suggested that this influ-
ence arises in early cortical levels where a spatial-form-based veto
of motion integration occurs in the absence of closure. Rainville
and Wilson (2004, 2005), on the other hand, argued that the inter-
ference is a result of processes further up in the hierarchy involving
curvature extraction or overall shape.

The stimuli that have been used in most of the above studies
have been relatively simplistic in nature, consisting of geometric
figures (squares, circles, polygons), parametric contours (radial fre-
quency patterns), snake-like contour segments, or dot patterns,
with little, if any, biological significance. These studies are invalu-
able because they allow parametric control on all low-level as-
pects, while restricting the variability and complexity of the
shape properties. The downside is, however, that they do not allow
to extrapolate the findings to more complex, natural shapes and to
link the grouping/segmentation processes to higher-order pro-
cesses such as object recognition. In an attempt to extend the top-
ics of the ongoing discussion to a domain that is more directly
related to object perception, we introduce a new set of stimuli
where we use Gabor-rendered outlines of real-world objects.1 This
will enable us to manipulate low-level properties that can be used in
models of contour perception, while incorporating higher-level ob-
ject properties such as complexity and identity. By adding motion
we can then study both spatial form and motion form using more
familiar stimuli.

Of course, we do not mean to suggest that one cannot study
high-level shape and contour processing with synthetically gener-
ated stimuli that are not derived from real-world objects. On the
contrary, quite interesting shape perception work has made use
of synthetic shapes consisting of combinations of Fourier dimen-
sions (e.g., Cortese & Dyre, 1996), well-controlled contours gener-
1 We have also performed a parallel series of experiments where we used kinetic
dot versions of the same objects/stimuli to look at related questions (see Segaert,
Nygård, & Wagemans, 2009).
ated by radial frequency patterns (e.g., Bell, Badcock, Wilson, &
Wilkinson, 2007; Wilkinson, Wilson, & Habak, 1998), or even syn-
thetic faces (e.g., Wilson, Loffler, & Wilkinson, 2002). Indeed, we
have made use of similar shapes with variable levels of complexity
and symmetry in our own work (e.g., Kayaert & Wagemans, 2009;
Machilsen, Pauwels, & Wagemans, in press; Op de Beeck, Wage-
mans, & Vogels, 2003). What we do mean to suggest is that stimuli
derived from real-world objects probably also induce some extra
processing in the highest levels in the visual hierarchy where con-
tact is made with representations of existing objects and associa-
tions with other items in semantic memory become available
too. Investigation of how good continuity, orientation jitter, local
motion, etc. affect the visual processing at these highest levels of
the visual hierarchy, and vice versa, requires the kind of stimuli
we introduce here.

In sum, such stimuli will enable us to answer one of the original
questions of Gestalt psychology: does grouping help identification
when the contour represents a familiar object (Wertheimer,
1938)? And vice versa? In Experiment 1, we examine the role of
static and dynamic grouping in the detection of these complex
shapes and we include good continuation and identifiability as
additional variables of interest. In Experiment 2, we explicitly ask
to what extent static and dynamic grouping influence the identifi-
cation of these Gaborized outlines. In addition to addressing the
two-way linkage between grouping and identification, we use
these stimuli to be able to generalize the earlier findings obtained
with simpler, parametrically controlled stimuli to more complex,
natural shapes. In a similar way as for snake detection paradigms,
we expect objects with more curved segments to be more difficult
to both detect and identify, and that adding orientation jitter will
degrade performance in both tasks. Furthermore, we expect mo-
tion to enhance both detection and identification of our object con-
tours. We also expect to see an influence of global object
properties, for instance, a positive effect for objects that are easier
to identify.
2. Experiment 1

In Experiment 1 we asked for detection of objects in a noisy
background, defined by contours with variable jitter levels on the
orientation of the constituent elements. The Gabor elements were
either static or had ‘‘local motion”, i.e., the phase of the Gabors was
translated as to give a motion direction perpendicular to the ele-
ment’s orientation while the Gaussian envelope remained station-
ary. The objective was to see if and how jitter and motion interact
in determining detection.

2.1. Subjects

Subjects (N = 6) were three male and three female, aged 20–24,
with normal or corrected-to-normal vision. One subject is the
second author, the remaining subjects were recruited in the
general student population for a paid (per hour) participation,
and were naïve regarding the purpose and the details of the
experiment.

2.2. Stimuli

The stimuli consisted of Gabor elements that were placed and
oriented such that they gave rise to the percept of an object
embedded in a background (Fig. 1). The objects were contour ver-
sions of 60 items from the Snodgrass and Vanderwart (1980) set of
line drawings, which we had first converted into silhouettes and
then into outlines (De Winter & Wagemans, 2004; Wagemans
et al., 2008). Of course, contours of real-world objects differ on a



Fig. 1. Examples of the stimuli used in the experiment (the contrast in these examples is set to 100% for clarity). Panels A–F present the same object, a bottle, at different jitter
intervals: 0, 60�, 90�, 120�, 180�, 360�, respectively. The 360� jitter interval condition corresponds to what we used as our control stimuli.
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number of factors that may have an influence on their perception.
We controlled for the overall complexity of the shape (represented
by its compactness; see Appendix A) and two variables of interest:
the ‘‘good continuation factor” of the contour (GCF; see Appendix
B), and the identifiability of the object (ID; measured in a separate
experiment where subjects were asked to name Gabor-rendered
object contours (collinear contour elements embedded in a ran-
dom background, same as in Fig. 1A) presented for 5 s; see see
Nygård & Wagemans, submitted for publication). Our measure
for compactness theoretically spans the interval ]0, 1] (from an
infinitely complex object, which asymptotically has zero compact-
ness, to a circle, which has a compactness of 1), while the compact-
ness for our stimulus set was 0.28 ± 0.13 (mean ± standard
deviation; see Fig. A1 for examples). The GCF spanned a range of
0.082–1.85, with a mean and standard deviation of 0.792 ± 0.393
(see Fig. B1 D for examples), while ID ranged from 0 to 1 with a
mean and standard deviation of 0.22 ± 0.23.

We made the stimuli by placing Gabor elements on the contour,
and then inside and around the contour (for more details, see
Nygård & Wagemans, submitted for publication). In short, the pro-
cess consisted of centering the object on a constant size square
grid, and filling-in empty cells with more elements. Contour ele-
ments were equally spaced along the length of the contour, with
an element separation of 1.86 times the wavelength of the Gabor
elements (ES = 1.86). We chose a cell size (CS) in function of ele-
ment separation so that, on average, there would be approximately
one element per cell:

CS ¼ 2 � ES
1þ

ffiffiffi

2
p ð1Þ



Fig. 2. Illustration of how the orientation of the Gabor elements on the contour was
set. h is the orientation of the local tangent of the contour, and n represents the
interval in which jitter angles could be chosen (n could be 0�, 60�, 90�, 120�, 180�, or
360�, centered on h).
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Local density cues were avoided by using the same distribution
for object- and background elements. We achieved this by copying
and pasting the position of elements in a random cell containing
contour elements to an empty cell. The number of elements in each
cell would vary with the length of the contour segment in that cell.
Furthermore, segment length is correlated with complexity: the
more complex the segment, the longer it is, and therefore the more
room to place elements. Since the objects had a big range in com-
plexity, this gave rise to some variability in the number of elements
in the display. We had a total of 602 ± 19.8 elements in the images,
of which 42.3 ± 12.9 were Gabors pertaining to the contour
(mean ± standard deviation).

We made sure that the elements did not overlap as a result of the
copy-and-paste procedure (this could potentially happen at the
borders of the cells). This was done through iterative steps: in case
of overlap, we would randomly choose a different cell containing
contour elements. This was repeated until there was no overlap,
or all the contour elements had been sampled. The background cell
was left empty if overlap could not be avoided. To supervise the
quality of our stimuli we counted the number of empty cells, and
calculated the distances between contour, surface, and noise
patches (within and between groups). The allowed number of
empty cells was limited to 1% of the total number of cells and the
difference in average distance within and between the groups of
patches was limited to 5%. Stimuli exceeding these criteria were
rejected and only valid stimuli were used in the experiment.

Gabors can conceptually be seen as a sine wave in a Gaussian
envelope. They were odd symmetric and defined by:

gðx; y; hÞ ¼ sinð2pf ðx sin hþ y cos hÞÞ � e�
x2þy2

2r2 ð2Þ

where (x, y) is the distance from the element center, h is the element
orientation, f is the spatial frequency, and r is the space constant.
We chose a spatial frequency of 2 cycles per degree (cpd), a space
constant equal to a fourth of the wavelength, and a Michelson con-
trast of 50%. The elements were placed on a uniform gray back-
ground, and the average luminance of the display was 25 cd/m2.

We manipulated the perceptual salience of the contour by add-
ing jitter to the orientation of the elements positioned on the con-
tour. In the most salient condition there was no jitter at all. The
orientation was then equal to that of the tangent on the local con-
tour where the element was positioned. We added jitter by taking
a random sample from a uniform distribution spanning 60�, 90�,
120�, 180�, or 360�2 for experiment 1, centered on the orientation
of the local tangent (see Fig. 2). A condition where all the elements
had a random orientation was used as a control (in essence this is
the same as the condition above where 360� of jitter was added;
see Fig. 1 for examples of our stimuli). All Gabor elements, i.e.,
those pertaining to contour, background, and control stimuli, were
either static or had ‘‘local motion” (i.e., the phase of the Gabors was
translated as to give a motion direction perpendicular to the ele-
ment’s orientation (speed = 3.5 deg/s) while the Gaussian envelope
remained stationary), giving a total of 12 different conditions (six
jitter levels for both static and motion conditions).

2.3. Procedure

Stimuli were generated offline and displayed on a Sony com-
puter monitor with a refresh rate of 85 Hz and at a resolution of
1024 � 768 pixels. The monitor was calibrated, linearized, and
checked using a Minolta 110 L spot meter. The stimuli subtended
14 � 14� of visual angle, and were presented in a two sequential
2 Note that, in the case of jitter values greater than or equal to 180�, this
transformation can also be seen as a change in both spatial phase and orientation of
the Gabor elements.
intervals of 941 ms, preceded by a fixation cross for 500 ms and
with an inter-stimulus-interval of 500 ms. Only one of the intervals
contained the contour of an object and the other contained a con-
trol stimulus. The subject was positioned with a chin rest 57 cm
from the monitor in a darkened room, and their task was to indi-
cate in which interval there was an object present (2-alternative-
forced-choice or 2-AFC task). The 12 conditions were repeated
two times each for all 60 contour stimuli for a total of 1440 trials
per subject. Static and motion conditions were blocked, while all
jitter conditions were randomized within blocks. Total duration
was approximately 3 h, and breaks were allowed at the subject’s
leisure. Auditory feedback was given (high and low tone for correct
and for wrong answers, respectively).

2.4. Results

Fig. 3 shows the data for all subjects, plotted as performance
against jitter interval for both the static (open symbols) and the lo-
cal motion (filled symbols) condition. We fitted a logistic function
to this data to model object detection performance, W, using the
following formulae:

WðX1Þ ¼ cþ ð1� cÞ � FðX1Þ ð3Þ

FðX1Þ ¼
eb0þb1X1

1þ eb0þb1X1
ð4Þ

where X1 is the jitter interval, Y is a design parameter reflecting the
minimum performance (or chance level, equal to 0.5), F is a logistic
Fig. 3. Plot of the object detection performance as a function of the jitter interval.
Different symbols represent different subjects; open symbols and the black line
reflect the data and fitted model (Eqs. (3) and (4)), respectively, for the static Gabor
condition, while filled symbols and the grey line reflect the data and fitted model for
the local motion Gabor condition.



Table 1
Overview of the parameter estimates for the main effects and some of their statistical
properties, based on the model described in Eqs. (3)–(5). All the main parameters are
highly significant.

DF Estimate (b) Std. error t-Value p > |t|

Intercept 8640 1.4154 0.1535 9.22 <.0001
Stat. vs. Mot. 8640 1.2267 0.116 10.57 <.0001
Jitter 8640 �0.03135 0.001448 �21.65 <.0001
GCF 8640 1.2612 0.1599 7.89 <.0001
ID 8640 0.9066 0.2579 3.51 0.0004

Table 2
Overview of the estimates of the random effects for the intercept (a0) and slopes (a1 to
a4) of the logistic function, and some of their statistical properties, based on the model
described in Eq. (6). Note that none of the parameters reached significant values
(smallest p-value was 0.1735).

DF Estimate Std. error t-Value p > |t|

a0 5 0.2103 0.1326 1.59 0.1735
a1 5 0.000013 8.66E-06 1.45 0.2065
a2 5 0.1628 0.1140 1.43 0.2126
a3 5 0.6140 0.4491 1.37 0.2298
a4 5 0.000036 0.000024 1.52 0.1883
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function where b0 and b1 reflect the intercept and the slope of the
function. The fits are shown for both static (black line) and local mo-
tion (grey line) conditions. Visual evaluation suggests that there is a
main effect of jitter interval on detection performance: the more jit-
ter, the poorer the performance, eventually dropping to chance level
as the level of jitter approaches 180–200�. In addition, it seems that
local motion enhances object detection performance by approxi-
mately 5–15% compared to the static condition.

In a statistical analysis we performed a logistic regression on a
model containing the parameters manipulated in the paradigm
(jitter interval and static vs. motion Gabors), plus the two addi-
tional stimulus parameters GCF and ID. The logistic function, F,
was now of the form:

FðX1;X2;X3;X4Þ ¼
eb0þb1X1þb2X2þb3X3þb4X4

1þ eb0þb1X1þb2X2þb3X3þb4X4
ð5Þ

where X1, X2, X3, and X4 are the variables for static vs. local motion
condition (categorical variable), jitter interval, ‘‘good continuation
factor” (GCF), and object identifiability (ID). b0 reflects the intercept
of the function, and b1 to b4 are the regression parameters to be esti-
mated for the respective variables. Fig. 4 presents detection perfor-
mance in relation to our stimulus parameters GCF and ID. All the
parameters were significant, as can be seen in Table 1.

This analysis assumes that there are no outliers in terms of sub-
ject performance, i.e., that there are no significant individual differ-
ences. When we look at Fig. 3, we see that there are slight
variations in different subjects’ maximum performance (at jit-
ter = 0) for the static condition, something that would influence
the shape of a fitted psychometric function. To test for the impor-
tance of these variations, we studied if the variance of the intercept
and slope of the individual subjects significantly differs from that
of the mean by performing a multilevel analysis. We used the same
model as above, but where the power of the exponential was mod-
ified to separately include a random effect a0 for the intercept and
a1 to a4 for the slopes. Below is an example of how this was imple-
mented for a0 (for a1, a2, a3, and a4: proceed as for a0 by substitut-
ing the respective bn by (bn + an)):

FðX1;X2;X3;X4Þ ¼
eðb0þa0Þþb1X1þb2X2þb3X3þb4X4

1þ eðb0þa0Þþb1X1þb2X2þb3X3þb4X4
ð6Þ

a0 to a4 are drawn from a normal distribution N with a mean equal
to zero and an estimated variance. The results are presented
in Table 2: none of the random effects reached a significant level
(smallest p-value was 0.1735), an indication that there were no sta-
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Fig. 4. Plot of the object detection performance as a function of the stimulus paramete
panel). Open circles and the black line reflect the data and fitted model, respectively, for t
fitted model for the local motion Gabor condition.
tistically significant individual differences. Pooling across subjects,
therefore, seems justified.

As mentioned in the visual evaluation of Fig. 3, and as confirmed
in Table 1, the addition of motion enhances object detection per-
formance. In Fig. 3, it would seem that the enhancement is slightly
more pronounced at the intermediate jitter levels (i.e., 90 and 120).
To test this we added second-order interaction effects to our model
and found that the interaction between jitter and motion was not
statistically significant (p = 0.4179 in the full model). When we
perform a stepwise backward regression on the full model, all
interactions except the one between jitter and GCF fall away (Table
3; p < 0.0001). We therefore have no evidence to support that the
performance increase by adding motion is different for different
jitter values.

Table 4 presents the odds ratios, equal to the exponential of the
b-values, from the former analysis (presented in Table 3). Odds ra-
tios (OR) are multiplicative factors that show by how much the
odds of correct detection increase (if OR > 1) or decrease (if
OR < 1) for each unit of increase in the corresponding variable.
For instance, the estimated OR for the motion categorical variable
is 3.41, meaning that, after control for jitter interval, GCF, and ID,
going from static to local motion Gabors increases odds of object
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Fig. 5. Plot of the reaction time for object identification task as a function of the
jitter interval. Different symbols represent different subjects; open symbols and the
black line reflect the data and fitted model for the static Gabor condition, while
filled symbols and the grey line reflect the data and fitted model for the local
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Table 3
Overview of the parameter estimates for the reduced model (main effects and two-
way interactions) and the statistical properties, based on the model described in Eqs.
(3)–(5).

DF Estimate (b) Std. error t-Value p > |t|

Intercept 8640 0.1887 0.2664 0.71 0.4787
Stat. vs. Mot. 8640 1.2285 0.1161 10.58 <.0001
Jitter 8640 �0.01665 0.002912 �5.72 <.0001
GCF 8640 3.1246 0.4080 7.66 <.0001
ID 8640 0.7598 0.2777 2.74 0.0062
Jitter � GCF 8640 �0.02039 0.004094 �4.98 <.0001

Table 4
Odds ratios (OR) of the main effect parameter estimates (b). OR = exp(b).

Estimate Lower Upper

Stat. vs. Mot. 3.4161 2.7205 4.289
Jitter 0.9835 0.9779 0.989
GCF 22.7508 10.2257 50.617
ID 2.1378 1.2404 3.684
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detection by 3.41 times, or 341%. Similarly, after control for static
vs. local motion, GCF, and ID, the odds decrease by 0.984 times,
or 1.60%, for each degree of jitter added to the Gabor orientation.
After control for static vs. local motion Gabors, jitter interval, and
ID, the odds of correct object detection increase by 22.75 times
for each unit increase in GCF, and finally, after control for static
vs. local motion Gabors, jitter interval, and GCF, the odds of correct
object detection increase by 2.14 times for each unit increase in ID.

2.5. Discussion

The present study used Gabor elements arranged so that they
give rise to both spatial form and motion form, where the shapes
were based on outlines of real-world objects. In line with previous
research, we have seen that jitter degrades object detection, while
adding motion has the opposite effect. Ledgeway, Hess, and Geisler
(2005) found that motion increased the contour detectability by
approximately 10% in relation to the static condition, well in line
with our results of a 10–15% improvement. We have also seen that
object identity, as well as contour-specific properties expressed
through the ‘‘good continuation factor” (GCF), play a role on detec-
tion. We tested for simple interaction effects of all the model
parameters and found that jitter and GCF were the only ones that
had a significant interaction. We find it worth noting that motion
and jitter did not have a significant interaction; some possible
implications of this will be discussed later.

3. Experiment 2

In Experiment 2 we go one step further in exploiting the poten-
tial of Gaborized contours. This experiment differs from Experi-
ment 1 in that we asked for identification of the objects instead
of detection. Furthermore, we changed the paradigm from a 2-
AFC to a reaction time experiment. The objective was to see if jitter
and motion had a similar influence on identification as it did on
detection. This provides an additional kind of generalization of
the earlier findings with simpler stimuli to more complex, natural
shapes and it allows for a more direct link between grouping and
recognition.

3.1. Subjects

Subjects (N = 6) were two male and four female, aged 20–24,
with normal or corrected-to-normal vision. One subject is the sec-
ond author; the remaining subjects were recruited in the general
student population for a paid (per hour) participation, and were
naïve regarding the purpose and the details of the experiment (dif-
ferent from those that participated in Experiment 1).

3.2. Stimuli and Procedure

Stimuli were produced in the same manner as for Experiment 1,
except that the jitter intervals now were 0�, 20�, 40� and 60�. Lower
jitter levels were now employed because identification of degraded
stimuli is a much more demanding task than detection (this may
not be the case for categorization of high-quality pictures, see
Thorpe, Fize, & Marlot, 1996). We reduced the object set to 20 items,
selected from the 60 objects used in Experiment 1, chosen to have a
fairly even distribution of compactness (0.36 ± 0.11), identifiability
(0.32 ± 0.20), and ‘‘good continuation” (0.928 ± 0.396).

Observers were first introduced to the objects by displaying
them for 2 s with the correct object name, and then trained prior
to the main experiment. The training trials started with a fixation
cross for 300 ms, followed by displaying the stimulus until the ob-
server pressed a button or until 5 s had elapsed. The task was to
press a button as soon as the object could be identified and then
to type the name of the object. Objects and jitter conditions (four
jitter levels) were presented in random order within blocks of sta-
tic and motion stimuli, and training was terminated when the ob-
server had correctly identified each object twice.

The main experiment followed the same paradigm as the train-
ing session. Every condition was repeated four times for each of 20
objects for a total of 640 trials per subject and a total duration of
approximately 2 h. Subjects were free to take breaks at their leisure.

3.3. Results

Based on preliminary analysis, one of the six subjects was re-
jected because of outlying reaction times and many errors (only
84% correct identification; criterion for rejection was set to average
performance below 95% correct). Only the correct trials were in-
cluded in the following analysis.

Fig. 5 presents the main effects of jitter on reaction time for
identification for the static (open symbols) and the local motion
condition (closed symbols). The lines represent simple linear
regressions (black for static and grey for local motion). We see an
effect of jitter, at least for the static condition, where reaction time
increases as jitter is added. We also see a clear effect of adding mo-
tion (lower reaction times than the static case), but here jitter
seems to have less effect. The different slopes for the static and



Table 5
Type III effects for the repeated-measures ANOVA (main effects) on reaction time for
object identification.

Effect Num Den F-Value Pr > F
DF DF

Stat. vs. Mot. 1 3060 2044.64 <.0001
Jitter 1 3060 82.55 <.0001
GCF 1 3060 38.09 <.0001
ID 1 3060 21.89 <.0001

Table 6
Type III effects for the repeated-measures ANOVA (reduced model; stepwise
backward elimination) on reaction time for object identification.

Effect Num Den F-Value Pr > F
DF DF

Stat. vs. Mot. 1 3057 362.08 <.0001
Jitter 1 3057 90.32 <.0001
GCF 1 3057 42.46 <.0001
ID 1 3057 23.92 <.0001
Jitter �Mot. 1 3057 37.26 <.0001
GCF �Mot. 1 3057 31.20 <.0001
ID �Mot. 1 3057 10.97 0.0009
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motion conditions seem to indicate an interaction between motion
and orientation jitter.

For the statistical analysis we performed a repeated-measures
ANOVA over subjects (same factors as in Eq. (5)). The results for
the main effects are presented in Table 5, and, again, all were
highly significant (p < 0.0001).

Like in the previous experiment, we would like to look at the pos-
sible interactions between the explanatory variables. Fig. 5 already
hinted at different effects of jitter on the static and motion condi-
tion, and statistics from a full model including simple interaction ef-
fects also confirmed this (Jitter �Motion; p < 0.0001). Reducing the
model to include only significant effects (Table 6), we see that there
is also a significant interaction between motion and GCF, as well as
motion and ID (p < 0.0001 and p = 0.009, respectively).

3.4. Discussion

In the same way as for Experiment 1, we used Gabor elements ar-
ranged so that they give rise to both spatial form and motion form,
here to serve the task of identification. We see that adding jitter has
a negative impact on performance (longer reaction time for correct
identification), while adding motion has the opposite effect. Looking
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Fig. 6. Plot of the reaction time for object identification task as a function of the stimulu
(ID; right panel). Open circles and the black line reflect the data and fitted model, respect
data and fitted model for the local motion Gabor condition.
at Fig. 5, one could be concerned that we are experiencing a floor ef-
fect in the local motion condition: the difference between the aver-
age reaction time for 0� and 60� of jitter is only 33 ms and the spread
of the data points is a lot smaller than for the static condition. We
performed an additional repeated-measures ANOVA for the local
motion trials only, and a stepwise backward elimination on the full
model (including two-way interaction effects) revealed jitter and ID
as significant factors in the reduced model (p = 0.0001 and
p = 0.0268, respectively). This does not entirely exclude the possible
influence of a ceiling effect, but it shows that jitter still plays a role
for moving Gabors within the tested interval. As in Experiment 1,
both contour-specific properties, expressed through the ‘‘good con-
tinuation factor” (GCF), and object identity (ID) influenced the reac-
tion times for correct identification (see Fig. 6).
4. General discussion

In these two experiments we have seen that both semi-local
contour properties and global object properties can play a role in
both object detection and identification. As expected, local motion
enhanced performance in both tasks. Several explanations could
account for this. For instance, the direction selectivity of some mo-
tion-sensitive neurons is broader than the orientation selectivity of
neurons that encode orientation from static structure (Allman
et al., 1985), making them less sensitive to the directional jitter
that inherently ensues from our manipulation of element orienta-
tion (since the local motion direction is perpendicular to the ele-
ment orientation). This could enable the motion system to
perceptually link elements where the static, orientation selective
cells were unable to do so. It is also possible that motion processing
strengthens, and perhaps extends, the lateral interactions in early
visual cortex through feedback and/or inter-stream connections
(Braddick, O’Brien, Wattam-Bell, Atkinson, & Turner, 2000;
Felleman & Van Essen, 1991; Ferber et al., 2003, 2005; Grill-Spector
et al., 1998; Murray et al., 2003; Van Essen & Maunsell, 1983). It
can also be argued that the moving stimulus produced a more sus-
tained response (as opposed to a static stimulus that may have a
more transient on/off response), thereby sustaining lateral
interactions.

Given the significant exchange of information between major
visual pathways, it is relevant to ask how spatial form and motion
form interact in these two tasks. Interestingly, we found slightly
different results for the effect of motion according to whether
the task was to detect or to identify objects: the interaction be-
tween jitter and motion was non-significant in the first case, but
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Fig. A1. Compactness was calculated by dividing the area of the object by the area
of a circle with the same contour length as the object (Compactness = Area Object/
Area Circle). The circle is by definition the most compact object possible (and thus is
the least complex; compactness = 1). The bottle, the bird, and the windmill are
examples of relatively compact (0.48), medium compact (0.28), and low compact
(0.14) objects, respectively. The identifiability of these three objects is 0.13, 0.60,
and 0.44, respectively (see Methods on how identifiability was measured).
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significant in the latter. These analyses were based on a largely dif-
ferent range of jitter intervals in the two experiments, so in order
to increase the comparability, we reanalyzed the data from Exper-
iment 1 in the range of 0–60� of added jitter. We did not find a sig-
nificant effect for an interaction between jitter and motion
(p = 0.84), and ID fell away as a significant main effect (p = 0.15).
However, since the tasks were different, and our data for Experi-
ment 1 is sparse in the range of 0–60� of added jitter, these results
should be treated with care. On the other hand, others have found
similar results using static stimuli composed of Gabors of different
contrasts and spatial frequencies: Meinhardt, Schmidt, Persike, and
Roers (2004) found that feature synergy (from cue combination)
depended on both visibility and objecthood, and that cue combina-
tion had a more beneficial effect in an identification task than in a
detection task (Meinhardt, Persike, Mesenholl, & Hagemann, 2006).
In our results, the estimate for the interaction between jitter and
motion in the identification experiment is positive (0.00374,
p < 0.0001), meaning that the effect of adding jitter is stronger in
the static condition than in the motion condition, i.e., that the in-
crease in reaction times is higher (as we also saw in Fig. 5). The
same is true for GCF and ID, but with opposite sign: the reaction
time decreases more in the static condition when GCF or ID in-
crease (estimates are �0.4688 and �0.2323; p < 0.0001 and
p = 0.0009, respectively). Therefore, it seems that the addition of
local motion not only has a facilitatory effect, but also that this ef-
fect is stronger when the stimuli are more difficult to see (i.e.,
when more jitter is added in the identification experiment). Our re-
sults are thus in line with those of Meinhardt et al. (2004, 2006).

Previous research suggests that the mechanisms responsible
for motion form have different characteristics in relation to those
responsible for spatial form (Ledgeway & Hess, 2006; Lorenceau
& Alais, 2001; Rainville & Wilson, 2004). When Ledgeway and
Hess (2006) studied the spatial frequency and orientation selec-
tivity for the mechanisms that extract motion-defined contours,
they found some differences in relation to static contours: the
spatial frequency tuning for motion contours was very broad,
and they remained very detectable when their orientation was
oblique to the contour (i.e., all elements had the same orienta-
tion, but not in the direction of the contour backbone). However,
this result cannot be extrapolated to explain our results, since all
our elements had the same spatial frequency and a non-uniform
orientation. Ledgeway and Hess (2006) further found a difference
in performance when alternating elements were aligned along
the contour (every other element was misaligned): subjects were
at chance level for static contours and around 75% correct for
motion contours. These results are below probability summation
for static alternating elements, and the authors suggested that
this could be due to some inhibitory process that interferes with
the static contour grouping. In our case, assuming that there is
more cue summation in figure identification than in figure detec-
tion supports the view that spatial form and motion form have
different characteristics. It seems that the motion cue adds more
certainty to the judgment of form (up to the identity level) than
to the judgment of the mere difference of target and distracter.
Adding motion increases local salience, and therefore improves
target detectability. However, and more importantly, it seems
to even more enhance grouping and linking of similar fragments
across space to allow integration into a global shape. Hence, it
would seem that it is the benefit of form completion from fea-
ture integration that explains the stronger cue summation effect
in object identification compared to object detection. Apparently,
promoting form completion by adding a motion cue serves fig-
ure-ground segregation and form identification, resulting in a
more stable object vision in noisy environments. This effect can
also be demonstrated with other features than orientation and
motion (Meinhardt et al., 2006).
5. Conclusion

In the first experiment we replicated results from many detec-
tion studies with our real-world object contour stimuli: adding ori-
entation jitter to contour elements deteriorates object detection,
while adding motion has the opposite effect. In the second experi-
ment we extended these results to an object identification task:
reaction times for identification increased as orientation jitter was
added, while adding motion drastically decreased reaction times.
In both experiments we were able to verify that both contour prop-
erties, such as ‘‘good continuation”, and object properties, such as
identity, also influence performance. Our results thus support the
long-standing Gestalt notion that grouping helps identification,
and vice versa. We consider these results as a first step in a more
extensive research program in which we try to connect perceptual
grouping, figure-ground organization, and object recognition. An
additional step in this endeavor will be to investigate grouping
and segmentation in stimuli that are equally complex as the present
ones without being identifiable. Provided that it would be possible
to equate all kinds of low-level and mid-level properties, this should
allow for a more stringent test of the role of identifiability on group-
ing and segmentation than we could do in the present study.
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Appendix A. Compactness as a measure of complexity
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Appendix B. ‘‘Good continuation factor

We defined ‘‘good continuation” by a double criterion. First,
based on the assumption that human visual interpolation of con-
tours is much like a piecewise spline (Feldman, 1997; Warren,
Maloney, & Landy, 2002, 2004), we looked at four contour ele-
ments at a time and checked whether the angles between seg-
ments joining the center of consecutive elements were less than
30� (Fig. B1, panel A). Then, we checked whether the difference
in orientation of two consecutive elements was smaller than
30� (Fig. B1, panel B). The window looking at the four contour ele-
ments was then moved along the contour (by one element at a
time), and the procedure was repeated (Fig. B1, panel C). ‘‘Good
continuation” for the stimulus was defined as the number of
Fig. B1. Panels A–C: Method for constructing the ‘‘Good Continuation Factor” (GCF; see
indicate that they contributed one or more (maximum four) times to GCF. GCF for the bir
the objects from the top row embedded in the background.
times both criteria were satisfied within a window. Doing so,
the model can (qualitatively) account for findings from earlier
studies that have shown that longer contours are more salient
than shorter ones (Field, Hayes, & Hess, 1993), since each element
has the possibility to contribute four times to the evaluation of
GCF (once each time the element falls within the window). In
Panel D of Fig. B1 the most salient Gabor elements are high-
lighted according to this method (brightest elements contributed
four times to GCF, the next brightest three times, and so onto the
darkest elements, which contributed zero times). The ‘‘good con-
tinuation factor” (GCF) was then calculated by normalizing the
‘‘good continuation” value in relation to contour length (i.e. divid-
ing the ‘‘good continuation” value by the number of elements on
the contour).
also text). Panel D, top row: examples of GCF for three objects. Lighter elements
d, bottle, and windmill is 0.497, 1.13, and 0.960, respectively. Panel D, bottom row:
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