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Abstract

For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory
channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which
objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in
human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge
configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative
process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to
compare human detection for contours with different statistical properties to the corresponding ideal detection models for
the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human
decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single
detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from
42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges
closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours
for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of
contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal
dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying
functional anatomy.
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Introduction

The human’s analysis and perception of complex natural scenes

under greatly varying environmental conditions is robust and

rapid. This remarkable ability of our brain relies on various

interacting processes which can be assumed to build representa-

tions of visual objects from the information contained in localized

image patches. A very elementary process in this context is contour

integration, where sets of colinearly aligned line segments or edge

elements are merged into coherent percepts of contours.

Contour integration is useful for identifying boundaries of

potential objects in a visual scene, and therefore important for

performing image segmentation and object recognition. Humans

and primates are remarkably efficient in integrating contours even

if the edges of a contour are not perfectly aligned or if parts of the

contour are occluded by other image components. Thus

uncovering theoretical principles and neural mechanisms under-

lying contour integration is an important step towards under-

standing visual information processing in the brain [1–3].

Psychophysical studies have investigated the impact of various

stimulus parameters on contour integration. For example, they

quantified how contour integration performance depends on

contour curvature [4], on the distance between consecutive

contour elements [5,6], on the deviation from a perfect alignment

of the oriented elements to the contour path [4], or on the spatial

frequency of the elements [7].

The first attempt to put such observations into a coherent

framework was made by a group of psychologists [8,9]. They

formulated the Gestalt laws for describing the principles

according to which the visual system groups local image features

into coherent percepts. The corresponding principle for contour

integration is termed the ‘law of good continuation’, stating that

line segments which are aligned colinearily or curvilinearly are

bound together. This idea was later formalized by introducing

the ‘association field’ (AF) [4], which specifies how strongly the

visual system associates two line segments with a particular

configuration of positions and orientations as belonging to one

contour.

Ideally, a theory of contour integration should predict

perceptual behaviour for arbitrary configurations of oriented

image patches. Here, we explore if an approach based on

‘generative models’ can quantitatively predict human contour

detection. Generative models derive from the classical perspective

that considers perception as inference [10]. They are statistical

models specifying how a stimulus might be generated from the

presence or absence of particular elementary causes or objects in a
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scene. Knowing the generative process enables an observer (i.e.,

the brain) to perform inference on such a stimulus.

In the context of visual perception, this perspective has

recently shown to be useful for understanding and modeling

multisensory cue integration [11,12]. In these investigations the

objective of perception was specified by a particular task which

essentially requires computations on only two sensory cues. In

comparison, contour integration is far more sophisticated,

performed on many sensory variables in parallel, and according

to an objective which is yet not known in a quantitative,

mathematical sense. A promising conceptual idea for closing this

gap is given by the observation that the association field can be

reinterpreted as a conditional link probability between two

oriented line segments [13,14]. This interpretation can be used

to define a contour generation process that relies on similar

conditional probabilities. Formulated as a generative model for

contours, it yields a specific statistics of stimuli comprising

oriented line segments. By inversion of this generative process,

contour integration is now reduced to an optimal inference

problem, namely the computation of the probabilities for an

element to belong to a contour. A thorough formalization of this

idea was performed by Williams and Thornber [13] who used it

to explain certain visual illusions.

The present work pursues an integrative approach linking

theory, modeling and psychophysical experiments. It aims at

explaining human contour integration and decision behaviour as

optimal inference in a mathematically exact and quantitative

manner (see Fig. 1). By extending the theoretical framework of

Williams and Thornber [13], we define a class of generative

models for contour integration from which we construct mathe-

matically well–defined ensembles of test stimuli for psychophysical

contour detection experiments. Using behavioral data collected

from five human observers, we subsequently identify the

parameters of the generative model which most closely explains

human decisions for each stimulus. We find that these parameters

match the findings from previous empirical work. An extensive

statistical analysis reveals that the best–matching model reproduc-

es practically all systematic behavior among our subjects. From the

particular structure and dynamics of our model, we derive

predictions about putative neural mechanisms realizing probabi-

listic contour integration in the brain. Finally, we discuss these

findings in comparison with physiological and anatomical

evidence from visual cortex.

Results

A generative model of contour creation and integration
The statistics of contours in natural images is highly complex,

and there is no complete description that could be taken as a

starting point for a modelling study. The best information

available is from studies with human observers who were

instructed to redraw contours in a set of natural images [15–18].

However, this statistics was only extracted for pairwise edge

configurations, and is only available as a tabulation and not in a

closed–form expression. We instead chose to employ the

probabilistic framework by Williams and Thornber [13] and

defined contours as being generated by a Markov random process

(details in Methods section): To create a contour of length N, one

places its first edge e1~fx1,y1,Q1g with random angle Q1 at a

random position (x1,y1). The second edge e2 of the contour is then

placed by randomly drawing its position and angle from a

conditional probability density A(e2De1,X ) with (as yet unspecified)

parameters X . This process is iterated until the final, N-th edge

has been placed. Note that we actually define the parameter Q as a

direction extending over the full circle ½0,2p�, rather than

representing an orientation only. This definition is necessary for

constraining contour creation to proceed along a chosen, general

direction. It prevents the creation process from turning around by

180 degrees when placing successive edge elements. For a more

elaborate justification and discussion of this property, we refer to

[13]. Note that we would also like to understand the term ‘edge’ in

a more general sense as any realization of an image patch, which is

localized at a position (x,y) and has an orientation Q. This definition

encompasses line segments and luminance borders, as well as the

Gabor patches which we used for rendering the stimulus

configurations generated by our probabilistic model.

Reasonable choices of A promoting features like colinearity and

cocircularity [19] (Fig. 2 A,B), yield contour samples which look

quite ‘natural’ (Fig. 3). In particular, these samples are perceived

by humans as contours and are salient when hidden among

distracting elements. The probability density A may be identified

with the AF [4] which is commonly used in psychophysical

literature to quantify how strongly a given configuration of two

edges provides evidence for the presence of a contour. Given the

distribution of contour elements and their total number are known

a priori, the properties of A, parametrized by X , fully define the

contour statistics.

This probabilistic framework for contour generation not only

provides contours with a well-defined statistics, but also implies an

ideal model for contour detection: Suppose that the N contour

edges are hidden in a field of M{N randomly oriented distractor

edges. Given the generating AF A was known, one can now

compute the likelihoods p̂pi that edge i is the starting edge of a

contour with length N . This is done by first constructing a matrix

A(X ) of the pairwise association probabilities for all edges

combinations (i, j) by sampling from A via Aji(X ) : ~A(ej Dei,X )
Vi,j~1, . . . ,M. The likelihoods p̂pi are then given by an ordinary

matrix multiplication (with ½:::�ij denoting the matrix element from

the i{th row and j{th column from the expression inside the

square brackets),

p̂pi~
XM
j~1

AN{1(X )
� �

ji
: ð1Þ

Here we adapted the basic framework from [13] to contours of

finite length which consist of a discrete set of elements. With few

modifications it is equally possible to handle continuous contours,

Author Summary

Since Helmholtz put forward his concept that the brain
performs inference on its sensory input for building an
internal representation of the outside world, it is a puzzle
for neuroscientific research whether visual perception can
indeed be understood from first principles. An important
part of vision is the integration of colinearly aligned edge
elements into contours, which is required for the detection
of object boundaries. We show that this visual function can
fully be explained in a probabilistic model with a well–
defined statistical objective. For this purpose, we devel-
oped a novel method to adapt models to correlations in
human behaviour, and applied this technique to tightly
link psychophysical experiments and numerical simula-
tions of contour integration. The results not only demon-
strate that complex neuronal computations can be
elegantly described in terms of constrained probabilistic
inference, but also reveal yet unknown neural mechanisms
underlying early visual information processing.

Optimality of Human Contour Integration
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or to integrate closed contours [13]. Note, that this algorithm

computes the true likelihoods only if the assumptions about the

underlying process are correct. In other words, it only then realizes

an ideal observer when contour integration is performed with the

same parameters X that were used for contour generation. When

applied with deviating assumptions it may still be used to perform

approximate inference, which, however, would be prone to

systematic misestimations.

The position of the contour can be estimated from the location

(xîi,yîi) of the edge îi with the largest likelihood of having been the

starting edge of the contour (̂ii~argmaxi p̂pif g, maximum likeli-

hood estimator). By eqn. (1), all possible contour paths are

exploited in parallel. It is related to iterative Bayesian estimation in

the sense that each matrix multiplication iterates a prior that

contains the starting edge likelihoods for contours with n{1
elements into a posterior that contains the likelihoods for

n{element contours. In total, N{1 iterations are required when

looking for contours of N edges.

In the context of two–alternative forced choice (2-AFC)

experiments it is less interesting to determine the precise position

of a contour than to infer which one of two different stimuli S1 and

S2 is more likely to contain a contour. Given the corresponding

matrices AS1
and AS2

for stimulus configurations S1 and S2,

respectively, one first computes

Figure 1. Framework for combining theory, modeling and psychophysics to study contour integration. Upper row, contour creation: A
contour is created either on the left or right hemifield of a computer screen by a Markov random process using a suitably defined association field
(AF, in brackets) for specifying the transition probabilities. Adding randomly oriented, similarly spaced background elements effectively hides the
contour and completes a stimulus. Lower left column, contour integration: The ideal algorithm for contour integration uses knowledge about the
generating process (i.e. the same AF as used in generating the contours, in brackets), to perform inference on a stimulus. For each edge, it computes
the probability of being the first (or last) element of a contour created by the generating Markov process. The likely position of a contour is finally
determined by maximum-likelihood estimation on the sum of these probabilities for each hemifield. Lower middle and right column, comparison to
humans and probabilistic models: In our paradigm, the ideal contour observer serves as a benchmark for human contour detection, which is probed
using the same stimuli under time constraints. At the same time, the inference algorithm of the ideal observer suggests a class of probabilistic
contour integration models in which we search for the optimal model which best explains human behavior and performance. Note that ‘optimal’
does not mean that the contour integration model strives for an optimal contour detection performance: it should also make the same errors as
human observers, as in this illustrative example, where a shorter ‘chance’ contour in the background is judged more salient by the human subject.
doi:10.1371/journal.pcbi.1002520.g001
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pSk ~
XM
i~1

p̂p
Sk
i ~

XM
i~1

XM
j~1

AN{1
Sk

(X )
h i

ji
ð2Þ

and then compares which of the likelihoods pS1 or pS2 is larger.

In addition, we introduce a scaling factor bi for each edge i.
This factor is used to cover situations in which edge elements have

different degrees of visibility. bi would be low if, for example, an

edge is fuzzy, has a low contrast, or posseses no certain orientation,

like at the border of a cloud in a natural scene. In a probabilistic

framework bi can be interpreted as a likelihood for the presence of

an edge i [13], which modifies the original contour integration

algorithm eqn. (1),

p̂pi~
XM
j~1

ffiffiffiffi
bj

p
BN{1(X )
� �

ji

ffiffiffiffi
bi

p
with Bji : ~

ffiffiffiffi
bj

p
Aji

ffiffiffiffi
bi

p
: ð3Þ

Also bi is part of the generative model and thus might depend on

its parametrization X , bi(X ).

In our paradigm, the objective for contour integration is to infer

the likelihoods for (starting) edges being part of a contour, taking

the observation of their orientations and positions as available

evidence. By exploiting all knowledge about the statistical nature

of contours contained in the AF, eqn. (3) realizes an ideal contour

observer which performs iterative Bayesian estimation on the

evidence provided by the edges in a stimulus. This ideal observer

not only serves us as a benchmark for humans and models

performing the given task: by assuming that human contour

integration follows a similar objective, eqn. (3) describes a suitable

probabilistic model class which we can require, by means of fitting

their parameters X , to reproduce human behavior as well as

possible.

Psychophysical contour detection experiments
We performed psychophysical experiments using the stimuli

generated by our models. While our paradigm is similar to

previous studies, our approach is conceptually different: we used a

precise mathematical definition of edge configurations for

generating contour stimuli, providing us with ideal observer

models for integrating these contours. These models then served us

as a benchmark for both, average human performance and

individual human decision behaviour.

In a 2–AFC paradigm human subjects had to detect a contour

which had been placed either into the left or into the right

hemifield of a computer screen (Fig. 3 A). The contour was

hidden among randomly oriented distractors, which had been

placed such that the only information left about the location of

the contour was in the relative alignment of the contour’s edges.

Since we do not know a priori which exact parameters X for our

association field are best suited to match human contour

integration, we choose different combinations Xm to systemat-

ically probe human behavior and to vary the difficulty of the

task. In particular, we varied alignment of edges and curvature of

the contours (Fig. 3 B) by changing the length scales of the AF

sa and sb, respectively (see Methods). In addition we varied

mean inter-edge distance from 1.2 to 3.6 degrees of visual angle

while holding the spatial extension of the contour constant,

resulting in contours from N~10 down to N~4 edges,

respectively (Fig. 3 C). For studying the temporal dynamics of

contour integration, all stimuli were shown for varying time

periods of 20, 30, 60, 100 and 200 ms. After this period

(stimulus-onset asynchrony, SOA), masks were presented which

consisted of edge elements located at the same positions, but with

randomly assigned orientations. Stimuli from AFs with different

underlying parameter sets Xm were presented in random order,

which varied for each subject (for details of all procedures, see

Methods section).

Figure 2. Parameters and geometry of association field, and eccentricity scaling. (A) Geometrical relation between edges ei and
ej~fxj ,yj ,Qjg and their relative coordinates rij , aij and bij . The red arrow indicates the direction edge j should have for a perfect co-circular
continuation of a contour through ei and ej . Conditional link probability A(ej Dei) (the ‘association field’) depends on the deviation of Qj from this
direction with a scale of sa (in red). In addition, link probability also depends on the difference bij between the directions of i and j on a length scale
sb (in green). (B) The association field A(ej Dei) is defined as a product of a radial part Ad and an angular part AW (see Methods). The starting edge ei

with direction Q~0 is shown as the blue arrow in the center of the coordinate systems. Left, the radial part Ad is shown in dependence on the
distances Dx, Dy to the destination edge. Center, the angular part averaged over all destination directions Qj . Right, the product of the distributions
in the left and center graphs. Grey scale is proportional to link probability, normalized to 1 (darker shades indicate higher values). Parameters of all
sketches are taken from optimal model which was fit to explain the psychophysical data. (C) Edge salience b(E,m,n) in dependence on edge
eccentricity E and parameters m and n. Left, for a constant n~1 the parameter m [ ½{1,1� controls the slope (black, m~0; blue, m~{0:4; red, m~0:8).
Center, for a constant m~0:8 the parameter n [ ½0,?� controls the concavity (black, n~1; blue, n~1=4; red, m~4). Right, the scaling b(E,{1,0:5)
obtained by fitting the probabilistic contour integration model to human behavior.
doi:10.1371/journal.pcbi.1002520.g002
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Fig. 4 A and Fig. 5 A,B summarize our experimental findings.

We first focus on the data for an SOA of 200 ms (Fig. 4 A): As

expected, and in accordance with previous investigations [4],

contours were more difficult to detect if edge alignment is subject to

jitter and if contour curvature increases. Performance also

decreased for increasing edge distances, but less strongly for straight

contours. For such contours, almost perfect contour integration was

still possible with inter-element distances up to 2.7 degrees of visual

angle. Fig. 5 A,B shows how contour detection performance

improves with an increasing SOA between target and mask. Again,

lower performance is observed for higher jitters or larger element

distances, but the general shape of the curves is very similar.

Surprisingly, we found considerable detection performances also

when SOAs were as low as 20 ms. These results suggest that

contour integration is a very fast process requiring long-ranging

interactions between orientation detectors in visual cortex.

For comparison, we performed contour integration with the ideal

observer model eqn. (3) on the same stimuli as used in the experiment.

As we had perfect knowledge about orientation and position of each

edge in the stimuli, the factors b(ei) were all set to 1. By construction,

the performance of an ideal observer must be superior or equal to any

other observer, including human subjects. Fig. 4 B (crosses) clearly

shows that this is indeed the case, and that the ideal observer performs

much better than humans. This large difference might be explained

by a mixture of the following four factors:

1. Human observers might be subject to (decision) noise which is

external to the contour integration process, whereas the ideal

observer is noise–free.

2. Information available to the ideal observer and to human

subjects could be different.

3. Objectives of the human observers could be different, e.g. our

chosen definition of contours could substantially diverge from

which edge configurations humans interpret as contours.

4. It might be impossible for the brain to actually perform the

computations needed for (approximate) inference in the given

task, e.g. because of neurophysiological and anatomical

constraints.

Figure 3. Contour detection paradigm and stimulus parameters. (A) Each trial started with the appearance of a fixation point. Subsequently,
a stimulus was presented with a contour hidden in the left or right hemifield of the screen. This stimulus was masked after a time T after stimulus
onset (SOA). The mask consisted of edge elements at the same positions, but with random orientations. Edge elements were rendered as Gabor
patches with random phases. For better visibility, the size of the Gabors was scaled by a factor of two in this illustration. (B) Sample section of a
different stimulus with a straight, but jittered contour of 10 elments, smallest mean edge distance. (C) Sample section of a stimulus with the largest
used edge distance and a contour of 4 elements. In all panels, the location of the contour is indicated by white arrows, which were absent in the real
experiment.
doi:10.1371/journal.pcbi.1002520.g003
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To which extents do these factors explain the observed

differences in performance?

Using a detailed statistical analysis of human and ideal observer

decisions (introduced in the next subsection), we will show that the

factor noise contributes only to a small extent. In contrast, the factor

available information is much more important. Information

provided to the model and to human observers is clearly different,

because the ideal model eqn. (3) uses for each stimulus the exact AF

parameters Xm that were used for creating the hidden contour,

while subjects in our experiment did not have this information.

They did not know which kind of contour to expect in the next

stimulus, because it was selected from the stimulus pool in a random

order (see Methods). In consequence, the question arises whether

one can find a different inference model from the same class of optimal

models, however, with a fixed single set of parameters XH , that can

fully explain human behavior for all stimuli used in our experiment.

Information available to this constrained model and to humans

would then be identical. When applied to stimuli from an ensemble

generated by an AF with different parameters, such a model would

clearly no longer be ideal, but note that it would still represent an

optimal estimator when used for contour stimuli from the ensemble

that corresponds to its AF. If successful, this search would thereby

yield an exact mathematical quantification of the assumed

probabilistic objective for contour integration in human observers.

Namely, it would reveal both, optimality per se and the specific

ensemble of stimuli for which optimality holds, and it also would

exclude computational constraints as reason for the observed

difference in ideal and human performance.

To constrain the search for this ‘optimal’ model as strongly as

possible, we will now introduce a novel statistical measure which

quantifies how well a model predicts systematic human behavior.

This measure extends beyond the usual approach of comparing

average detection performance.

Quantifying human decisions
The usual criterion for evaluating contour integration models is

performance in correctly detecting contours (e.g. [16]). We have to

require that a model at least reaches human performance. It may

even exceed human performance substantially, as human decisions

are usually subject to a fair amount of noise. Hence for assessing

how well a model X explains human performance, we determine

the fraction CX of stimulus sets m in which the model reaches or

surpasses mean human performance. A stimulus set m hereby

refers to the parameters Xm of the generating process.

A less obvious, but much stronger criterion is to consider any

unexpected or excess correlations within the decisions of different

human subjects to one specific stimulus set. Here we aim at a

measure that reflects the decisions that are common to different

subjects. This measure would more sensitively quantify the

constructive contributions of contour integration to behaviour as

compared to the simple performance measure. Performance is

strongly influenced by the general difficulty of a task, and by

destructive sources of noise which could be external to the

processes underlying contour detection.

To illustrate our approach consider a particularly simple

example: Suppose that two human observers try to detect contours

in a set of nc stimuli with the same statistical properties. Let us

further assume that both observers reached the same performance

p in detecting a contour correctly. If detection errors are made

randomly and independently of a particular stimulus, for example

through noise in the contour integration or decision process, we

expect to find on average kexp~nc(p2z(1{p)2) identical

responses. We can now compare kexp to the actually measured

number of identical responses kid . If on average over different

stimulus sets, kid turns out to be significantly larger than kexp, we

can conclude that the two observers are more strongly correlated

than expected under the independency assumption.

With this heuristics in mind, we can now more generally derive

our measure of excess correlations: we first compute the expected

distribution r̂r(k) over the number of identical decisions k in one

stimulus set, assuming independent detection errors (see Methods

section). Using the actually measured kid , we then calculate the

probability that sampling from r̂r would yield a lower or equal

value for k. Finally we average these probabilities for different

stimulus conditions, thus obtaining a measure R for excess

correlations. This measure yields R&1=2 if the distribution of

Figure 4. Contour detection performances. Comparison of contour detection performance in percent correct (A) for human observers to (B) the
ideal and the optimal models. The performances are shown in dependence on inter–element distance (i.e., total number of edges in a contour) and
on the alignment parameters sa~sb of the AF (color legend as inset to (B)). The psychophysical data for an SOA of 200 ms in (A) was averaged over 5
human observers, with the vertical bars denoting standard errors. In (B), model performances (ideal model: crosses, optimal model: open circles) for
all contour ensembles (i.e., all jitters s and contour lengths N) are plotted against the corresponding human performances. In this scatter plot, all
points above the solid line indicate model performance being above human performance. Detection performance for the optimal model was
averaged over 5000 samples from each contour ensemble, instead of using only 48 samples as in the actual experiment.
doi:10.1371/journal.pcbi.1002520.g004
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kid ’s is similar to r̂r. Any value of R being significantly larger than

1/2 confirms the existence of decision correlations not explained

by mean performances. The symbol R was choosen because our

measure is related to the integral over a ROC curve, quantifying

the distance between an expected distribution with an actually

measured distribution.

Applying this analysis to pairs of human subjects, we found the

values shown in Table 1. Apart from subject #4, excess

correlations are similar between pairs of subjects. Averaging over

observer pairs yields a value of RH~0:666, which is significantly

larger than 0.5 (pv0:01, R?
H (p~0:01)~0:528). Significance was

assessed by performing the same analysis on surrogate data

generated by shuffling human decisions over the 48 stimuli for

each stimulus ensemble. This procedure kept mean performance

for each observer and stimulus ensemble constant, and allowed us

to compute a value R?
H (p) which correlations had to exceed to be

considered statistically significant w.r.t. the corresponding p-value.

This result shows that human responses are far more correlated

than expected from their average performances. It implies that

particular stimuli, or whole stimulus subsets in a contour ensemble

are either much easier, or more difficult to detect than others. For

finding a good model of human contour integration, this means

that additional information in correct or erroneous decisions can

be exploited which is not contained in observer performance.

If the ideal observer was a good model whose superior

performance is solely a consequence of being not subject to noise,

it would fully capture this systematic behaviour, and (besides its far

higher performance) reveal equal or higher excess correlations

when its decisions are compared with human decisions. However,

evaluation of R between human and ideal observer yields a value

of R~0:52 only, which is very close to chance level and far from

RH .

In essence, we need a different model which may have lower

performance in our specific task, but must have higher predictive

power for human behaviour. Using a model that is not ideal in the

sense that it deviates from the process that generated the contours

will lead to systematic misdetections in a 2–AFC setting, which is

one possible cause of the human’s excess correlations. In the

following, we will use mean performances C and excess

correlations R to systematically search for such contour integration

Figure 5. Temporal aspects of contour detection. Psychophysical contour detection performances in dependence on SOA in the upper row are
compared to performance of the optimal model, which best matches human behaviour, in the lower row. Iterations performed in the optimal model
were rescaled to time by assuming a constant propagation speed mediated by the AF interactions (corresponding to 13.9 DVA per 200 ms, which
was the average length of all contours in the stimulus ensembles). (A) and (C) show performances for different AF alignment jitters, for contours of
length N~9 (color legend as inset to (C)). (B) and (D) show performances for different inter–element distances which are inversely proportional to the
total number of edges in a contour, for an AF jitter of 0O (color legend as inset to (D)). Detection performance for the optimal model was averaged
over 5000 samples from each contour ensemble, instead of using only 48 samples as in the experiment, to yield a better statistics and smoother
curves.
doi:10.1371/journal.pcbi.1002520.g005

Optimality of Human Contour Integration

PLoS Computational Biology | www.ploscompbiol.org 7 May 2012 | Volume 8 | Issue 5 | e1002520



models with fixed parameters which quantitatively and individually

explain human behavior in all experimental conditions.

A generative model for human contour integration
The excess correlations of RH~0:666 among human decisions

constitute a benchmark for any proposed model X : Instead of

comparing pairs of two human observers, we will now compare a

model X to human observers and require the excess correlations

RX to reach the same value as RH . As mentioned above, in

contrast to human observers a model is not subject to external

noise affecting the decisions. This makes a direct comparison of

excess correlation values R problematic because it will necessarily

lead to higher values in RX . This statistical bias can be reduced by

constructing a prototypical, noise-free human observer P. Its

excess correlations RP with the real, ‘noisy’ human observers

(details see Methods) constitute a more stringent benchmark value

for the noise-free models. For our data, we obtained RP~0:719
(pv0:01, R?

P(p~0:01)~0:540).

We already explained that one reason for human observers

exhibiting RHw0:5 could be that a stimulus ensemble obtained

from one generative process contains subsets of contours which are

consistently easier to detect than other subsets. This is indeed the

case in our experiment, where each contour ensemble contains

contours placed at different eccentricities from the fixation spot. It

is known that for humans, contours close to the fovea are more

easy to integrate [20–22] than in the periphery, whereas the ideal

model is translationally invariant and thus unaffected by the

placement of a contour.

By searching for a model X with CX ~1 and RX&RP, we

favored models that replicate generic human behavior including

correct but also erroneous decisions, rather than looking for an

algorithm which has only the same, or higher, average contour

integration performance. During our search we remained within

the same class of (optimal) probabilistic models, but incorpo-

rated plausible constraints that relate to available prior

knowledge. If successful, such a strategy will ultimately allow

to explicitly state a probabilistic objective for human contour

integration.

For finding an optimal model, we focused on two major

determinants shaping human contour integration which have been

identified by previous work [4,23,24]:

N Shape of the association field (AF): Although stimuli in our

experiment were drawn from different AFs, we hypothesize

that a single, general-purpose AF will be sufficient to model

human contour integration. For parametrisation, we chose the

product of von-Mises functions eqn. (9) which we originally

used to create the stimuli (see methods section), but varied the

alignment and curvature parameters sa and sb independently

(Fig. 2 A,B). For the radial part Ad of the AF (Fig. 2 B, left),

we used an exponentially decaying function with spatial

constant r0~1:16 degrees of visual angle,

Ad (r)!exp({r=r0): ð4Þ

N Modulation of edge saliency with eccentricity: Contour

integration performance strongly depends on mean contour

eccentricity [20–22]. In our data, error rate on average

increased from about 27 to 44 percent when eccentricity

increased from about 2 to 11 degrees of visual angle

(SOA = 200 ms).

The source for this effect may be rooted in the cortical

magnification factor [25], which decreases with eccentricity. This

leaves less neurons per unit area of the visual field providing

information about a stimulus, leading to more noisy representations

of visual features. In a task with a short SOA, detectability of edges

would hence decrease with eccentricity. In our framework this is

modeled by decreasing the scaling factors b (see eqn. (3) for contour

integration. With eccentricity E defined as the Euclidean distance

from the fixation spot, we parametrized the dependency of b on E by

b(E,m,n)~1z2m
E

Emax

� �n

{
1

2

� �
, ð5Þ

using the two parameters m and n for systematically varying this

function (Fig. 2 C). The amplitude m [ ½{1,1� determines how

strongly b varies with eccentricity (Fig. 2 C, left), and the exponent

n [ ½0,?� regulates how steeply b changes with eccentricity (Fig. 2
C, center). For nv1, b is concave down, and for nw1, b is concave

up. Emax denotes maximum eccentricity in our setup which was

16.66 degrees of visual angle. For the special choice m~0 and n~1,

b is constant and eqn. (3) would be identical to eqn. (1).

The four parameters sa, sb, m, and n now uniquely determine

the model candidates X (sa,sb,m,n).

The results shown in Fig. 6 demonstrate that reproducing

correlated human decisions is a stronger constraint for model

evaluation than accomplishing performances. For this didactic

example we held m~0 and n~1 constant and only varied the

association field parameters. While the performance score CX in

Fig. 6 A reaches one for a multitude of parameter combinations,

correlation with human behavior RX reveals a more distinct

pattern where only few parameter combinations reach peak

values. It can also be seen that varying these two parameters alone

is not sufficient to reach the model benchmark of RP~0:719.

Although reproducing RP is a strong selection criterion, we note

that surpassing mean performance at the same time is a necessary

second criterion, because high values of RX not always coincide

Table 1. Excess correlations RH (i,j) between all subject pairs i, j.

RH (i,j) Subject i~1 Subject i~2 Subject i~3 Subject i~4 Subject i~5

Subject j~1 – 0.686 0.694 0.616 0.689

Subject j~2 – – 0.690 0.650 0.629

Subject j~3 – – – 0.623 0.723

Subject j~4 – – – – 0.658

Subject j~5 – – – – –

Excess correlations RH (i,j) between all subject pairs i, j. Note that by definition, RH (i,j)~RH (j,i). All values are significantly different from 0.5 (pv0:01).
doi:10.1371/journal.pcbi.1002520.t001
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with a sufficiently high mean performance (compare Fig. 6 A with

Fig. 6 B).

We next varied the four parameters independently. Extensive

simulations (the most relevant parts of the sampled parameter

space are shown in Fig. 7) reveal one specific parameter

combination, sa~0:25,sb~0:57,m~{1,n~0:5, for which our

best-performing model XH reaches RXH
~0:719, thus fully

explaining human decisions for this experiment (sketch of AF

and eccentricity scaling resulting from these parameters depicted

in Fig. 2 B,C, right graphs). Neither varying the parameters of the

AF, nor varying the parameters of the eccentricity scaling alone

yielded values of R exceeding 0.63. From here on, we will refer to

the model defined by this ‘best’ parameter set XH as the ‘optimal

model’, in order to distinguish it from the original, ideal model.

This result is surprising, because a structurally simple model

with only four parameters captures the full variety of human

behavior in our experiment, which was tested with a multitude of

different stimulus sets. The performance of this noise-free model is

still superior to human performance (Fig. 4 B, open circles), but

much closer to the experimental data (Fig. 4 A) than in the ideal

observer (Fig. 4 B, crosses).

In order to compare model behaviour to temporal aspects of

contour integration observed in human subjects (Fig. 5 A,B), one

can link iteration depth in eqn. (3) to SOA in the experiment. For

this purpose, we assume that linking contour elements in the brain

bases on neuronal signals that propagate with a constant velocity

from edge detector to edge detector (possibly over several relay

stations or interneurons). One iteration (i.e. matrix multiplication)

in the Bayesian algorithm eqn. (3) would then correspond to the

time Dt a neuronal signal needs to bridge the average distance SrT
of two edge elements linked by this iteration. As total contour

length is constant in the experiment, the average element distance

is proportional to the reciprocal of the total number of contour

edges N, SrT!1=N, and performing n iterations then corresponds

to real time t via t~t0n=N. Heuristically, using smaller SOAs in

the experiment is similar to a reduction in the number of matrix

multiplications, which in turn is formally equivalent to computing

the likelihoods for edges belonging to contours with less elements.

By choosing t0~200ms, we assume that the largest SOA in the

experiment corresponds to N{1 iterations (Fig. 5 C,D). The

temporal dynamics of the optimal model turns out to be

remarkably similar to the time courses of human subject’s

performances for different SOAs (Fig. 5 A,B). This indicates that

the dynamics of human contour integration is at least compatible

with a recurrent computation scheme.

Predictions of the model
Model parameters and the dynamics of the recurrent algorithm

make specific predictions for neurophysiological and behavioral

variables.

The parameters sa and sb suggest a specific shape for the AF

that fits the behavioural data best. The investigations of Kapadia

et al. [23] provide independent data for a comparison of this shape

to electrophysiological findings. They measured the modulation of

the response (firing rate) of a cortical neuron in area V1 to an edge

element within its classical receptive field in dependence on the

presence of a second, flanking edge element presented at varying

locations outside this region. The strength of this modulation

reveals contextual interactions that could implement such an AF.

Interestingly, the shape of this modulation curve at a distance of

0.5 degrees of visual angle from the receptive field’s centre

matches nicely with the shape of a cross-section through our AF

with the optimal parameters (Fig. 8 A).

A second comparison can be made with AFs extracted from

labeled contours in natural images [16]. In order to approxi-

mately match the angular characteristics (Fig. 3 B,C in [16]) and

spatial extension (Fig. 3 E in [16]) of the edge co–occurrence

statistics, sa and sb have to be reduced by a factor of about 2–

2.5. The reason for this deviation might be rooted in the mean

edge distance considered in [16], which is by about the same

factor smaller than the mean distance used in our experiments. In

fact, the largest distance considered in the edge co–occurrence

statistics (d~1:23 degrees of visual angle) is even smaller than the

smallest edge distance in our experiments (d~1:4 degrees of

visual angle). Assuming that contour curvature is a critical

parameter for contour integration, the maximum direction a for

which two edge elements are still integrated into a contour will

depend on edge distance. In particular, if the mean distance

between edge elements is reduced by a factor f , the maximum

direction a would then have to be reduced by about the same

factor.

Parameters m and n suggest a specific shape for the visibility of

an edge, or the reliability of its neural representation, in

Figure 6. Comparing different measures for fitting the model to psychophysical data. (A) Performance score CX and (B) excess
correlations RX for different models X with independently varied association field parameters sa and sb.
doi:10.1371/journal.pcbi.1002520.g006
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dependence on visual field eccentricity. Also here, a comparison

with independent data is possible: Foley et al. [24] quantified

psychophysical thresholds for detecting edge elements at varying

eccentricities in the visual field. This study computed a sensitivity

modulation factor s for a Gabor-shaped receptive field required to

explain psychophysical detection thresholds. The dependence of

this factor s on eccentricity E was well–described by

s(E)~0:947(E=0:36). Again, comparison with the scaling function

b(E,{1,0:5) using the parameters of the best model XH , reveals a

very close similiarity between the two curves (Fig. 8 B).

Beyond comparing model properties to already existing

experimental data, we obtained predictions which motivate further

experiments. The probabilistic nature of our model requires

stimulus evidence to be multiplicatively combined with recurrent

feedback from neighboring edge elements. This feature is different

from most current, biophysically motivated neural networks

models performing contour integration by summing the corre-

sponding inputs. Further simulations (not shown) suggest that a

nonlinearity in synaptic integration of recurrent and feedforward

inputs is indeed required for explaining human behavior [26,27].

A further prediction derives from the unidirectional nature of

contour creation, which suggests a similar unidirectional process

also for contour integration. Unidirectionality significantly en-

hances performance in comparison to bidirectional interactions. In

such a scenario, activation of neuronal feature detectors would

spread into one direction along the contour, in contrast to classical

contour integration models where association fields and functional

interactions are not directionally biased. If neuronal populations

would encode likelihoods for oriented image patches to be part of

a contour, according to eqn. (3) these different coupling

symmetries would predict different activation patterns for the

populations receiving feedforward input from image patches

Figure 7. Searching for the best contour integration model X (sa,sb,m,n) in a four-dimensional parameter space. Excess correlations RX

are shown in color code (see color bar on the right). Each subfigure encloses the results for one specific choice of the scaling parameter m and power
coefficient n, with sa and sb independently varied within the shown range. The parameter combination with highest RX is enclosed with a purple
circle, and combinations for which contour integration performance was inferior to humans (CX v1) are left white.
doi:10.1371/journal.pcbi.1002520.g007
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which are parts of contours (Fig. 9). Specifically, unidirectional

interactions would cause highest activity in neurons representing

the end elements of a contour (Fig. 9 A). In contrast, bidirectional

interactions would cause highest activity at central elements of a

contour (Fig. 9 B). In addition, the model dynamics predicts

oscillatory patterns which dampen over time until a stationary

state is finally reached.

Discussion

In summary, we proposed a model for contour integration

whose parameters were calibrated to explain human decisions

beyond average performances. In our experimental setting, it fully

reproduces average human behavior. At the same time, the model

possesses a well-defined probabilistic objective, i.e. it computes the

likelihoods that observed edge elements belong to contours. For

understanding recurrent computation in the visual system, our

particular approach thus establishes a novel framework. Its

distinctive feature is to quantitatively unite modeling and

experimental data with a normative theory. If successful, such a

framework allows to explictly specify a mathematically precise

objective for a visual or cognitive function.

Qualitatively, the structure and – to a certain extent – the

dynamics of our model are similar to models proposed by other

studies [28,29]: elementary feature detectors are linked by

connections which are positive (i.e., enhancing activation), if the

features are aligned colinearily in retinal space, and activation of

feature detectors is propagated in parallel to other detectors over

these links. We also confirmed that the shape of interactions

emerging from our parameter search is indeed very close to

physiological data [23]. A complementary idea was explored by

Geisler et.al. [16]: instead of finding the ‘right’ shape of the AF by

fitting a model to empirical data, they derived the corresponding

statistics from natural images by computing the edge co–

occurrence likelihoods from contours traced by human observers.

As explained in the Results section, our AF has about the same

properties as the edge co–occurrence statistics if it is properly

rescaled for smaller edge distances. Geisler et al. also used the AF

in a proabilistic model to predict human performance in a contour

integration paradigm. In general, these predictions were qualita-

tively very good, but human performance was not always fully

reached by their model. In an interesting extension of this work,

Geisler and Perry asked human observers whether two edges at the

border of an occluder belong to the same or different physical

contours [15]. In this task, the subjects achieved a performance

similar to an ideal observer constructed from the statistics of

labeled contours in natural images.

One major advantage of our specific framework is that it

extends beyond matching performance only. Fig. 6 A clearly

exemplifies that many different models X can meet this

benchmark. In consequence, one particular model reproducing

performance might not tell us very much about the real structures,

parameters, and dynamics that underlie contour integration in the

brain. By requiring a model to reproduce systematic deviations

from this average behaviour for individual stimuli, we exploit an

additional source of information (beyond average task difficulty)

which helps to narrow down the plethora of models considerably

(Fig. 6 B). To pinpoint the essence of this idea: by demanding

models to deviate from ideal behaviour, and to make the same

systematic errors as humans, we make them explain the data

better. In the specific setting used in this work, systematic errors

are explained by both, the decrease in edge visibility with

Figure 8. Comparing the model to data from independent
experiments. (A) Comparison of association field parameters to
electrophysiological data. Red, modulation index of firing rate of a
cortical neuron to a preferred stimulus in dependence on the angular
position of a second, flanking stimulus of same orientation (cross-
section extracted from Fig. 2C in [23]). Blue, cross-section through
optimal association field, scaled to the maxima of the red curve. (B)
Comparison of attenuation of edge likelihood with eccentricity with
psychophysical data. Red, sensitivity modulation s required to explain
psychophysical edge detection thresholds in dependence on eccen-
tricity E, (from [24]). Blue, optimal likelihood modulation b. Parameters
and equations see main text.
doi:10.1371/journal.pcbi.1002520.g008 Figure 9. Predictions for different association field symmetries.

Average likelihoods Sp̂piT to be the starting element of a contour of
length N~10, shown for all edge elements belonging to 10–element
contours (left columns), and for background edges (sa~sb~0). Vertical
axis denotes iterations in eqn. (1), and the color scale is normalized to
minimum/maximum likelihoods in each graph. (A) shows the corre-
sponding dynamics for the optimal model which uses uni–directional
AFs. For obtaining (B), we symmetrized the AF of the optimal model
such that it became invariant to the directions of arbitrary edge pairs.
For this bi–directional AF, simulations on the same stimuli as used for
(A) were performed. If neuronal populations would encode these
likelihoods p̂pi , uni–directional interactions would cause highest
activities at the end of a contour, while bi–directional interactions
predict highest activities at center elements of a contour.
doi:10.1371/journal.pcbi.1002520.g009
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eccentricity, and the particular parameters (shape) of the AF.

Neither one of these two factors alone can explain the excess

correlations between human observers to their full extent. In some

examples where observers made errors, the target contour was

located in the periphery, while a smaller ‘chance’ contour near the

fovea was apparently more salient. In other cases where consistent

errors among observers showed up, it was difficult to unambig-

uously determine the particular stimulus feature that led to the

erroneous decisions. A more thorough analysis will require to

determine where the observers ‘look’ if they search for a contour.

A second advantage of our approach is that during the search

for a ‘better’ model, we remain within a class of probabilistic

models with a well–defined objective: computing the probability of

edge elements to belong to contours, whose statistical properties

are quantified by the model’s parameters X . By reproducing

behaviour to the maximally possible extent, we finally arrive at a

model which is no longer optimal with respect to the arbitrarily

chosen task, but optimal with respect to a similar task and under

the given constraints. In a broader context, our observations fit

well to similar probabilistic frameworks that explain visual

illusions, i.e. apparent failures of our visual system, by the idea

that the current task does not match the objective or priors of

visual information processing [13].

In addition to this major conceptual point, our work sheds

further light on the nature of contour integration: First, the

dynamics of the iterative integration process in the model looks

very similar to the performance of human observers in dependence

on SOA time (Fig. 5 A,C and Fig. 5 B,D). A similar dynamics

which also saturates after only a few recurrent cycles has been

observed in a biophysically realisitic model with long–range

excitatory interactions [28]. Somewhat counterintuitively, our

model also reproduces the experimental fact that longer contours

are perceived earlier, if decisions are based on the outputs of each

iteration. These results underline that our framework is compatible

with iterative information integration in the visual system. Second,

we found that human observers have a performance considerably

higher than chance level even if the contour was presented for only

T~20ms. This result indicates that contour integration is a fast

perceptive process [30], which further constraints putative neural

mechanisms.

We expect that our model generalizes well beyond explaining

only our experimental data and reproducing specific observations

[23,24] because the almost perfect match between model and

human behavior does not result from overfitting: We used only

four independent parameters to explain decisions for more than

2000 stimuli from 42 different contour ensembles. Moreover, we

obtain more information from the fit than we initially put into the

model: The ideal contour observer (which is the ‘inversion’ of the

respective contour–generating process for each contour ensemble)

is actually the worst in explaining the human data. Only after

including realistic constraints as e.g. restricting the integrator to

one association field, we were able to reproduce our psychophys-

ical data. It will thus be interesting to see how our optimal model

will perform on different contour integration problems. For

example, comparison with the Geisler et al. data [16] suggests

that for smaller mean edge distances (i.e., denser Gabor fields)

than in our experiment, the angular parameters of the AF have to

be rescaled. Furthermore, the model currently does not capture

effects where cues in features other than the relative alignment of

edges modulate contour integration. Such features include colour

[31,32], contrast [33], or spatial frequency [7,34]. It is not clear

whether varying other features of the background or of the

distracter elements will impair contour integration [7], or have

only a negligible effect on performance [35]. A natural extension

of our model would use an extended parametrization (i.e.

orientation, spatial frequency, and colour instead of orientation

only), and introduce interactions between similar feature combi-

nations, thus mimicking the physiological observation that neurons

with similar response properties have a higher probability to be

connected.

A unique feature of the model is the directionality of its

interactions, which is inherited from the directedness of the

contour generation process [13]. For understanding its implica-

tions, consider for example contour integration along a straight,

horizontal sequence of aligned horizontal edge elements: In a

‘classical’ contour integration model, each edge activates one

feature detector with preferred horizontal orientation. Activation

from this detector then symmetrically spreads to the left and to the

right to the neighbouring detectors (bidirectional interactions). In

contrast, in the probabilistic model each edge activates two

detectors with the same preferred horizontal orientation. One of

these detectors will then spread activation only to the left

neighbouring detectors, while the other detector will spread

activation only to the right neighbouring detectors. There is no

crosstalk between the two detectors. Hence contour integration is

performed by two independent processes propagating in parallel

into two opposing directions along the contour (unidirectional

interactions).

From a computational point of view, such unidirectional

interactions are more efficient by avoiding false positives in

contour detection [36]. For example, they effectively suppress

‘contour’ configurations with changes in direction by 180 degrees,

such as two circle segments that are attached tangentially at one of

their ending points. In fact, comparisons of further simulations (not

shown) with our psychophysical data suggest that bidirectional

couplings normally used in contour integration models can not

even explain human contour integration performance [26,27].

Is our contour integration model biophysically plausible? Its

interactions needed to perform contour integration could be

mediated by orientation–specific connections between cortical

neurons. Examples for such connections, which preferentially link

neurons with similar orientation selectivity, are horizontal long–

ranging axons within primary visual cortex (V1) [37–39], or

backprojections from secondary visual cortex (V2) to V1 [39,40].

Our results show that one single, ‘general purpose’ association field

is sufficient to quantitatively explain human behavior in response

to stimuli generated from multiple AFs. Thus in principle, only

one ‘set’ of cortical long–ranging axons with a geometry matching

the AF of our optimal model is sufficient to perform contour

integration in the brain, if this structure is used iteratively in a

recurrent computation. However, the variety of geometries and

length scales associated with these connections in different animals

makes it currently difficult to determine the real extent to which

they support contour integration. In addition, implementing

unidirectional interactions anatomically would require two distinct

neural populations with similar preferred orientations, but

asymmetric dendritic trees. Such a structure currently seems to

be in conflict with experimental evidence (homogeneous popula-

tions, largely symmetric dendritic trees, as e.g. shown in [37]),

although its existence can not be fully excluded from these studies.

Regarding the dynamics of contour integration, the probabilistic

model performs inference by iteratively using parallel computa-

tions that can easily be emulated by neural networks. For example,

the matrix–vector multiplication
P

i Bjibi can be re–interpreted as

the summation of pre–synaptic afferents bi, weighted by the

synaptic efficacies Bji, on the dendrites of a post–synaptic neuron j.
These interactions lead to a modulation of an edge detectors’

activity by the presence of other edges in its neighborhood. It is
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known that starting from V1, neural responses indeed become

modulated by the context of a stimulus within their ‘classical’

receptive field [41,42]. This modulation can enhance firing rates

for colinear edge configurations [43–45], and can cause neurons to

be active also in response to illusory contours [46]. One problem

with the accumulated evidence for contextual modulations as

putative signatures for contour integration processes in cortex is

their controversity. For instance, substantial suppressive effects for

colinear edge arrangements [47,48] have also been observed. In

addition, firing rate modulations are often weak or critically

depend on the exact stimulus configuration, which stands in

contrast to the strong and robust effects established by psycho-

physical studies. Despite this sometimes confusing empirical

evidence, Fig. 8 A demonstrates that modulation of activity

induced by neighboring contour elements in the optimal model

matches very well to electrophysiological data. In addition, neural

dynamics might also provide a more realistic mechanism for

establishing unidirectional contour integration than requiring a

directed anatomical substrate as discussed above. Unidirectionality

can be realized by volleys of activity, which propagate along the

neural populations activated by the contour’s edges [49].

Refractoriness of neurons would be the basic mechanism that

ensures that activation waves can not easily reverse direction. One

possibility to test our prediction of an unidirectional process

underlying contour integration is to perform massively parallel

recordings in animals performing contour integration. Focusing on

the activation dynamics of neurons whose receptive fields cover

distinct elements of the contour would allow to directly observe

activity waves propagating in a certain direction. An alternative,

but more indirect test could focus on the specific predictions

(Fig. 9) made by models with different coupling symmetries. Here

it would be sufficient to record and compare neural activity of

neuronal populations representing central edges and starting/

ending edges of contours, respectively. Experimentally, this

scenario is technically less demanding as it only requires single–

unit recordings. Unidirectionality then predicts highest activity at

starting/ending edges, while bidirectional models predict the

opposite behaviour. Although there is yet no experiment

addressing this issue, recent neurophysiological recordings of V1

neurons [50] which were stimulated by edge elements being part

of a contour show a very similar time course of activation: a strong

transient response, followed by a dampened oscillation that

relaxates into a sustained activation level.

A remarkable difference to more ‘standard’ neural networks

[28,29] is that the afferent input (i.e., evidence from the stimulus)

and the recurrent feedback (i.e., linking probabilities between

edges) are combined multiplicatively instead of additively to

produce a unit’s output. The utility of such a non–linear operation

for contour integration was indeed suggested by previous modeling

work on feature integration [51]. It is known that non–linear

computations on synaptic inputs are performed as early as from

LGN and primary visual cortex on [52–54], and it is possible that

these non–linearities provide the substrate required to compute the

AND-like operations necessary for implementing Bayesian infer-

ence.

Evolution has adapted information processing in the brain to

serve many objectives still awaiting discovery. While for some

simple and very fundamental tasks, experiments could demon-

strate that perception can be described as optimal inference

[11,12], there are many reports from psychophysics that suggest

the visual system to not operate optimally. The notion of

optimality, however, is (a) relative to some external criteria (i.e.,

the task design) that must not neccessarily be evolutionary

relevant, and (b) need to take constraints into account. These

considerations might have prohibited the application of normative

approaches to more complex visual functions, as e.g. the

perception of objects. In our work we overcame these difficulties

by starting with a probabilistic framework whose basic mathe-

matical structures were motivated by known properties of human

contour integration. This framework provides both, a task design

for experiments or simulations, and an initial suggestion for a

computational model. Introducing realistic constraints and fitting

the model’s structure to human decisions finally revealed that also

human contour integration can be well described as optimal

inference on a sensory stimulus. Moreover, our results demon-

strate that such an integrative approach may generate fundamen-

tal predictions about neural mechanisms that are difficult to obtain

in a pure bottom–up modelling approach.

Methods

Generative model for contours
We adapted the framework by Williams and Thornber [13] to

contours of finite length which are generated by a Markov process:

Let e~fx,y,Qg denote an edge element with associated direction

Q at coordinates (x, y), in two-dimensional space. If a contour

passes through edge i, A(ej Dei) defines the probability that the

contour will pass next through edge j (transition probability or

‘association field’). Contours of length N are generated by first

positioning a starting edge at a random position, and then

sampling a sequence of N{1 further edges from the association

field A.

Defining an association field
For a meaningful definition of contours, A should possess a

translational symmetry (same probability for creating a specific

edge configuration at different locations), a rotational symmetry

(same probability for creating an identical, but rotated contour),

and a reversal symmetry (same probability for creating a contour

with the reverse sequence of edges) [13]. These symmetries

effectively reduce the six-dimensional conditional probability

distribution A(ej Dei) to a three-dimensional function A(r,a,b)
which depends on the parameters r,a and b. For two edges ei,ej ,

these parameters are given by the coordinate transformation

rij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xj{xi)

2z(yj{yi)
2

q
ð6Þ

aij~atan2(yj{yi,xj{xi){Qi ð7Þ

bij~Qj{Qi: ð8Þ

rij is the Euclidean distance between edges i and j, aij the angle

under which an observer at edge i looking into the direction Qi

views edge j, and bij is the difference between the directions of

edges j and i (see Fig. 2 A).

We defined A as a product of a radial part Ad and an angular

part AW via A(r,a,b)~Ad (r)AW(a,b). The radial part will be

described in the next subsection. The angular part was param-

etrized as a product of von–Mises functions M(x,m,k) that

correspond to Gaussian distributions defined on a circular support,

M(x,m,k)~
1

2pI0(k)
exp(k cos(x{m)): ð9Þ
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m [ ½{p,p½ is the circular mean, kw0 a concentration parameter

(length scale), and x [ ½{p,p½ the angular variable. I0 is the Bessel

function of the first kind, of order 0. By the transformation

s~
ffiffiffiffiffiffiffiffi
1=k

p
, k is related to the width s of a Gaussian distribution.

The parametrization of AW then reads

AW(a,b)~0:5 M
b

2
,a,

1

s2
a

� �
M

b

2
,0,

4

s2
b

 !"

zM
b

2
,azp,

1

s2
a

� �
M

b

2
,p,

4

s2
b

 !# ð10Þ

~c0 cosh
1

s2
a

cos(b=2{a)z
4

s2
b

cos(b=2)

 !
: ð11Þ

We used c0 to abbreviate a normalisation factor given by

co~1= 4p2I0
1

s2
a

� �
I0

4

s2
b

 !" #
: ð12Þ

This particular choice of AW (Fig. 2 B, centre) implements two

important principles for association fields, namely (I) link

probability decreases on a length scale sa with the distance from

a co-circular edge configuration with 2a~b [19], and (II) link

probability decreases on a length scale sb with increasing

curvature K (for co-circular edge configurations with inter-edge

distance r, K is directly related to b via K(r)~2 sin(b=2)=r).

Hiding contours among distracters
The idea of this contour integration experiment is to hide a

contour among randomly oriented distractor elements, and to force

a human observer to use the relative alignment between the edges as

the only cue to find the contour. This implies removing all other

hints about the location of the contour, as e.g. element distances or

densities, from a stimulus. For this purpose we employed an

improved procedure similar to the algorithm proposed by Braun

[36]: Starting from a regular positioning of edge elements filling the

background around a contour, these elements are subjected to a

Brownian motion until a dynamical steady state is reached. Typically

this procedure yields an edge distance distribution Ad
bgr(r) between

background elements which differs from the contour edge distance

distribution given by Ad (r). We therefore replaced our initial Ad (r)
by Ad

bgr(r), and repeated the whole procedure iteratively until the (I)

background-background edge distance distribution, (II) background-

contour edge distance distribution, and (III) contour-contour edge

distance distribution were identical.

When generating a contour with large curvature in the first

place, it could happen that two distant edges will overlap when

they are rendered for stimulus display as finite-width Gabors. We

omitted this problem by randomly permuting the sequence of

relative angles a, b and distances r between subsequent contour

elements until any overlap vanished. By this policy we prevent

giving unwanted cues to the location of a contour, while at the

same time conserving the pairwise edge statistics of contour

ensembles implied by a specific association field.

Detecting contours by inference
In our paradigm, a contour is placed either in the left or in the

right hemifield of a stimulus, and hidden among distracters. An

observer has then to decide on which hemifield the contour has

been placed (two-alternative forced-choice). We now derive an

optimal contour observer for this situation:

A stimulus S decomposes into a part SL on the left, and a part

SR on the right hemifield. Each part Si,i [ fL,Rg consists of a set

of edge elements, in which any combination of N edges could

correspond to the hidden contour. We call a specific edge

combination a contour configuration Cik, which is an ordered set of N
edge elements. Index k runs from 1 to Ki, which is the total

number of all different, putative contour configurations in stimulus

part Si. Note that different configurations k=k’ may be composed

of the same edge elements, but in a different ordering.

We now compute the probability that a contour placed into S is

contained in stimulus part Si. To simplify notation, we denote the

contour configuration we are looking for with C, and the

(unordered) set of background elements with B. We have to sum

over all Ki possible contour configurations:

P(C [ Si DSL,SR)~
XKi

k~1

P(C~Cik DSL,SR): ð13Þ

The right hand side can be expressed in terms of the likelihood

LC(Cik) that configuration Cik was obtained from the generative

contour model,

P(C~Cik DSL,SR)~LC(Cik)=
X

i’~L,R

XKi

k’~1

LC(Ci’k’): ð14Þ

Next we express the likelihood LC in terms of the association field

A. With m and n denoting two arbitrary edges in stimulus part i,
we define the components Ai½ �mn : ~A(rmn,amn,bmn) of likelihood

matrices Ai by sampling from the association field A. For a specific

configuration Cik where the index sequence m(j), j~1, . . . ,N
defines the succession of edges, LC(Cik) can be written as

LC(Cik)~P
N{1

j~1
Ad

i

� �
m(jz1)m(j)

AW
i

� �
m(jz1)m(j)

~P
N{1

j~1
Ai½ �m(jz1)m(j):

ð15Þ

In the final step, we split the sum over all edge configurations Cik

into a sum over all edges j where a contour can start, and a sum

over all edge configurations that have the same starting edge j,

P(C [ Si DSL,SR)~
XMi

j~1

XKi

Cik j~fstarting edgeg

���
LC(Cik)=(Normalization)

~
XMi

j~1

XMi

l~1

AN{1
i

� �
lj
=(Normalization)

ð16Þ

with the appropriate normalization terms from the denominator in

eqn. (14). Here we introduced Mi to denote the total number of

edge elements in hemifield i. If the probability for a contour in a

specific hemifield is 1/2, the ideal contour integrator will estimate

that the contour was placed on the left hemifield if

P(C [ SLDSL,SR)§0:5. Thus eqn. (16) corresponds to eqn. (2).

Stimulus sets
For the psychophysical experiments and model simulations, we

used na~6 different parameter sets sa~sb~0,4:5,9,13:5,18,22:5

Optimality of Human Contour Integration
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degrees for the shape of the association field eqn. (11). We used

nd~7 different numbers of contour elements (N~4,5,6,7,8,9,10)

while holding the length of the contour approximately constant,

which causes the average inter-element distance r to be

proportional to 1=N. All combinations of these parameters gave

a total of nand~42 stimulus conditions.

For each stimulus condition, nc~48 contours (targets) were

generated and each embedded into randomly oriented back-

ground elements according to the procedure outlined above (with

nc=2 contours on the left hemifield and nc=2 contours on the right

hemifield). The inter-edge distance statistics approximately

followed an exponentially decaying function. While our procedure

suppresses all first-order cues from the inter-edge distance

statistics, there is a remote possibility that observers might use

second- or higher order cues to locate the contour. This problem

was avoided by generating a second contour path on the hemifield

opposite to the target contour, but randomly choosen orientations

for the edge elements. For each of these stimuli, masks were

generated with edges of random orientations at the same positions.

For stimulus presentation, contour and mask stimuli were

rendered by placing Gabor elementsGxc,yc,Q,s(x,y) with spatial

extent s~0:20 degrees visual angle (8 pixels), wavelength l~0:40
degrees visual angle(16 pixels), random phase h, and orientation Q
centered at the corresponding positions xc and yc. G was defined as

Gxc,yc,Q,s(x,y)~GmzG0 exp {
(x{xc)2z(y{yc)2

2s2

 !

cos
2p

l
(x{xc)cos Qz(y{yc)sin Q½ �zh

� �
,

ð17Þ

with G0~29cd=m2 denoting the contrast and Gm~29cd=m2 the

mean background luminance. The mean distance between the

contour elements for N~10 corresponds to 1:39 degrees visual

angle.

Psychophysical experiments
L~5 subjects (2 female, mean age 29.4 years) participated in

the two-alternative forced choice (2-AFC) experiment. All had

normal or corrected-to-normal vision. They sat 80 cm in front of a

gamma-corrected, 21–inches CRT screen (11526864 pixels,

100 Hz refresh rate). Each trial started with the appearance of a

small fixation spot in the display center.

After a fixation period of 1 s, a contour stimulus was presented

which was followed by its corresponding mask after a time tSOA

(stimulus onset asynchronies, tSOA~20,30,60,100,200ms). Pre-

sentation of the mask lasted for 500 ms, followed by a blank

screen. Observers were instructed to indicate the hemifield where

the contour had been displayed (left or right) by pressing one of

two response buttons during the blank period at the end of each

trial. Responses occuring too early or too late (w3000ms) after

mask offset were rejected. In summary, each observer had to

detect ncnand~2016 contours for each of the five SOAs. For

assessing decision correlations between subjects, we used the same

2016 stimuli for different observers, but presented them in a

randomly interleaved order which was different for each subject.

Statistical methods
We evaluate the similarity between a model X and our L

human observers by comparing their mean contour detection

performances and their individual decisions.

Let si denote the score of an observer i for one stimulus, with

si~1 if the hemifield with the contour was identified correctly, and

si~0 otherwise. With m indexing one out of K~nand stimulus

conditions, the total number cm
i of correctly detected contours is

given by cm
i ~

Pnc

l~1 sm
i,l . The percentage CX of conditions in

which model X has an equal or higher contour detection

performance is then given by

CX ~1=K
XK

m~1

H cm
X {

1

L

XL

i~1

cm
i

 !
, ð18Þ

with H denoting the Heaviside function. CX is our first benchmark

for comparing models to humans.

Next we consider the number km
i,j of identical responses of two

observers i and j (which could either be two humans, or one

human and one model X ), in stimulus condition m,

km
i,j~

Xnc

l~1

sm
i,l s

m
j,lz½1{sm

i,l �½1{sm
j,l �

n o
: ð19Þ

We will now compare this value to the probability pnc (kDci,cj) to

obtain k identical responses, provided that in total, ci and cj

contours were detected correctly by observer i and j, respectively.

The basic assumption hereby is that contour detection errors are

made independently of a specific stimulus within a stimulus

condition m. pnc is easily computed by considering the number of

possibilities how k identical responses can be distributed among

the nc stimuli, while holding ci and cj constant. Introducing a,

which is related to the other variables via k~2aznc{ci{cj , we

obtain

pnc (kjci,cj)~

0 if awci ^ avcizcj{nc ^ a=[N

ci

a

 !
nc{ci

cj{a

 !,
nc

cj

 !
otherwise:

8>><
>>:

ð20Þ

We finally compare the expected distribution of identical

responses pnc
(kDcm

i ,cm
j ) with the actually measured value km

i,j by

computing the total probability Pm
i,j to obtain a value k which is

equal or lower than km
i,j ,

Pm
i,j~

Xkm
i,j

{1

k~{?

pnc (kDcm
i ,cm

j )zpnc (km
i,j Dc

m
i ,cm

j )=2: ð21Þ

Because pnc is a discrete probability distribution, we need to add

a continuity correction for k~km
i,j (last term). This term ensures

that Pnc is on average 0.5 when k is drawn from pnc . The

average of Pnc over all possible observer combinations i and j,

and over all stimulus conditions m, yields a number R which is

larger than 0.5 if observers’ decisions are more strongly

correlated than can be expected from our independency

assumption. For the human observers in our experiment we

obtain RH according to

RH~
1

KL(L{1)

XL

i~1

XL

j=i

XK

m~1

Pm
i,j : ð22Þ

The decisions of a specific model X are compared to all human

observers via
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RX ~
1

KL

XL

i~1

XK

m~1

Pm
i,X : ð23Þ

For judging the similarity between a model X and human

observers, we can not directly compare RH and RX : as argued

in the main text, humans are subject to decision noise, but the

model X is not. Therefore the model will give identical

responses in all repetitions of the same trial, while two humans

would give different responses even if they had the same

objective. Hence if we find a model XH which perfectly explains

human behavior, RX will always be larger than RH . To remove

this statistical bias, we construct i~1, . . . ,L hypothetical,

noisefree human ‘prototypes’ P(i) from the majority vote of

the L{1 human observers j with j=i. The decisions of these

prototypes are thus given by

sm
P(i),l~H

X
j=i

sm
j,l{

L{1

2

 !
: ð24Þ

By comparing the prototypes i to their real human counterparts

P(i), using the statistical methods as described above, we obtain

RP~
1

KL

XL

i~1

XK

m~1

Pm
i,P(i): ð25Þ

RP defines our second benchmark for comparing models to

humans: If RX approximates RP, the corresponding model

reproduces both, the nature and the amount of correlations in

human behavior.
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44. Li W, Piëch V, Gilbert CD (2006) Contour saliency in primary visual cortex.

Neuron 50: 951–962.
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