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Abstract 

 

One of the important roles of our visual system is to detect and segregate objects. Neurons in 

the early visual system extract local image features from the visual scene.  To combine these 

features into separate, global objects, the visual system must perform some kind of grouping 

operation.  One such operation is contour integration. Contours form the outlines of objects, 

and are the first step in shape perception. We discuss the mechanism of contour integration 

from psychophysical, neurophysiological and computational perspectives. 

 

 

1. A psychophysical perspective 

 

1.1. Natural scenes and the visual system 

The mammalian visual system has evolved to extract relevant information from natural images 

that in turn have specific characteristics, one being edge alignments that define image features.  

Natural scenes exhibit consistent statistical properties that distinguish them from random 

luminance distributions over a large range of global and local image statistics. Edge co-

occurrence statistics in natural images are dominated by aligned structure {Geisler, 2001 

#3299;Sigman, 2001 #1440;Elder, 2002 #3254} and parallel structure (Geisler et al. 2001). The 

aligned edge structure follows from the fact that pairs of separated local edge segments are 

most likely to be aligned along a linear or co-circular path.  This pattern occurs at different 

spatial scales (Sigman et al. 2001). The co-aligned information represents contour structure in 

natural images.  The parallel information, on the other hand, is most frequently derived from 

regions of the same object and arises from surface texture. Edges are an important and highly 

informative part of our environment.  Edges that trace out a smooth path show correspondence 

of position over a wide range of different spatial scales.  As edges become more jagged, and 

indeed more like edges of the kind common in natural images (i.e. fractal), correspondence in 

position becomes limited to a smaller band of spatial scales. Although jagged edges have 

continuous representation over spatial scale, the exact position and orientation of the edge 

changes from scale to scale (Field, Hayes & Hess 1993). The contour information is therefore 
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quite different at different spatial scales so, to capture the full richness of the available 

information, it is necessary to make use of a range of contour integration operations that are 

each selective for a narrow band of scales.  

 

1.2. Quantifying contour detection 

The history of studies on contour integration stretches back to the Gestalt psychologists (Koffka 

1935) who formulated rules for perceptually significant image structure, including contour 

continuity: the Gestalt “law” of good continuation.  More recent attempts to examine these 

ideas psychophysically have used element arrays composed of dots or line segments (Beck, 

Rosenfeld & Ivry 1989, Moulden 1994, Smits & Vos 1987, Uttal 1983). Although these studies 

were informative, the broadband nature of the elements used and the lack of control for 

element density made it difficult to appreciate the relationship between the tuning properties 

of single cells and the network operations describing how their outputs might be combined.  

Contours composed of broadband elements or strings of more closely spaced elements could 

always be integrated using a single, broadband detector without the need for network 

interactions (relevant to this is fig 2).   

 

Since local edge alignment in fractal images depends on scale, Field, Hayes and Hess (1993) 

addressed this question using spatial frequency narrowband elements (i.e. Gabors) and ensured 

that local density cues could not play a role. We thought there might be specific rules for how 

the responses of orientation-selective V1 cells are combined to encode contours in images.  A 

typical stimulus is seen in figure 1A; it is an array of oriented Gabor micropatterns, a subset of 

which (frame on the left) are aligned to make a contour (indicated by arrow). 
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Figure 1: Contours defined by orientation-linking.  In A, a comparison of a straight 

contour defined by elements that are aligned with the contour (left) or orthogonal 

to it (right).  In B, the visual system’s performance on detecting orientationally-

linked contours of different curvature, compared with that of a single elongated 

filter (solid line).  In C, the proposed mechanism, a network interaction called an 

“Association Field” (adapted from Field et al 1993 & Hess and Dakin, 1997) 

 

In the figure in the left frame of figure 1A, the contour in the middle of the field going from the 

bottom right to the top left is clearly visible, suggesting that either elements aligned or of the 

same orientation group together.  The figure in the right frame of figure 1A on first inspection 

does not contain an obvious contour, yet there is a similar subset of the elements of the same 

orientation and in the same spatial arrangement as in the left frame of figure 1A.  These 

elements are however not aligned with the contour path, but orthogonal to it, and one of our 

initial observations was that although this arrangement did produce visible contours, the 

contours were far less detectable than those with elements aligned with the path. This 
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suggested rules imposed by the visual grouping analysis relating to the alignment of 

micropatterns, which may reflect the interactions of adjacent cells with similar orientation 

preference exploiting the occurrence of co-oriented structure in natural images. 

 

1.2.1.Snakes, ladders, and ropes.  

Most experiments on contour integration have used “snake” contours in which the contour 

elements are aligned, or nearly aligned, with the path (see figure 1 A-top left).  Other forms of 

contours are “ladders” (Bex, Simmers & Dakin 2001, Field et al. 1993, Ledgeway, Hess & Geisler 

2005, May & Hess 2007a,b; May and Hess, 2008) in which the elements are perpendicular to the 

path (see figure 1A-top right), and “ropes”(coined by S. Schwartzkopf) (Ledgeway et al. 2005), in 

which the elements are all obliquely oriented in the same direction relative to the contour. 

Snakes are the easiest to detect and ropes are the hardest (Ledgeway et al. 2005).  Since the 

three types of contour are distinguished by a group rotation of each contour element, they are 

identical in their intrinsic detectability (an ideal observer would perform identically on all three); 

the difference in performance between the different contour types therefore reveals something 

about the mechanisms that the visual system uses to detect them, i.e. it constrains models of 

contour integration. 

 

Since ropes are essentially undetectable, models tend to possess mechanisms that can link 

elements arranged in a snake or ladder configuration, but not in a rope configuration (May & 

Hess 2007b, May & Hess 2008, Yen & Finkel 1998). To explain the inferior detection of ladders, 

Field et al (1993) and May and Hess (2007b) proposed weaker binding between ladder elements 

than snake elements.  Using a model based on Pelli et al.’s (2004) crowding model, May and 

Hess (2007b) showed that this single difference between snake and ladder binding was 

sufficient to explain their finding that detection of ladder contours was fairly good in the centre 

of the visual field, but declined much more rapidly than snakes with increasing eccentricity. 

 

1.3. The Association Field concept 

To determine how visual performance varies as a function of the curvature of the contour, the 

angular difference between adjacent 1-D Gabors along the contour path is varied.  The effect of 

this manipulation (unfilled symbols) is shown in figure 1B where psychophysical performance (% 

correct) is plotted against path angle (degrees).  Performance remains relatively good for paths 

of intermediate curvature but declines abruptly once the path becomes very curved.  These 

paths were jagged in that the sign of the orientation change from element to element is 

random, in contrast to smooth curves where the angular change always has the same sign.  

Smooth curves are easier to detect by a small amount (Dakin & Hess 1998, Hess, Hayes & Field 

2003, Pettet, McKee & Grzywacz 1996) but otherwise show the same dependence on curvature.  

While straight contours could in principle be detected by an elongated receptive field, avoiding 

the need for more complex inter-cellular interactions, this would not be the case for highly 

curved contours.  The solid line in figure 1B gives the linear filtering prediction (Hess & Dakin 

1997) for a single elongated receptive field: its dependence on curvature is much stronger than 

that measured psychophysically, adding support to the idea that contours of this kind are 

detected by interactions across a cellular array rather than by spatial summation within an 

individual cell. This conclusion was further strengthened by the finding that performance is only 

marginally affected if the contrast polarity of alternate contour elements (and half the 
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background elements) is reversed (Field, Hayes & Hess 1997).  This manipulation would defeat 

any elongated receptive field that linearly summated across space.  This suggests that even the 

detection of straight contours may be via the linking of responses of a number of cells aligned 

across space but with similar orientation preferences. 

 

On the basis of the above observations Field, Hayes and Hess (1993) suggested that these 

interactions could be described in terms of an Association Field, a network of cellular 

interactions specifically designed to capitalize on the edge-alignment properties of contours in 

natural images.  Figure 1C illustrates the idea and summarizes the properties of the Association 

Field. The facilitatory interactions are shown by continuous lines and the inhibitory interactions 

by dashed lines.  The closer the adjacent cell is in its position and preferred orientation, the 

stronger the facilitation. This psychophysically defined “Association Field” matches the joint-

statistical relationship that edge-alignment structure has in natural images (Geisler, 2001; 

Sigman, 2001; Elder, 2002; Kruger, 1998; for more detail, see Elder, this volume). 

 

So far we have assumed that the detection of contours defined by the alignment of spatial 

frequency bandpass elements embedded within an array of similar elements of random 

orientation is accomplished by a low-level mechanism operating within spatial scale (i.e. V1-V3 

receptive fields) rather than by a high-level mechanism operating across scale.  This latter idea 

would be more in line with what the Gestalt psychologists envisaged. The question then 

becomes, are contours integrated within or across spatial scale?  Figure 2 shows results 

obtained when the spatial frequency of alternate micropatterns is varied (Dakin & Hess 1998). 

The top frames show examples of curved contours made up of elements of the same spatial 

scale (B) as opposed to elements from two spatial scales (A and C).  The results in the bottom 

frames show how the psychophysical contour detection performance depends on the spatial 

frequency difference between alternate contour elements.  Contour integration exhibits spatial 

frequency tuning, more so for curved than for straight contours, suggesting it is primarily a 

within-scale operation, providing support for orientation linking as described by the Association 

Field operating at a low level in the cortical hierarchy. 
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Figure 2: Orientational linking occurs within spatial scale. Frames at the top left 

and right (a&c) show examples of contours defined by the orientation of elements 

that alternate in spatial scale.  The frame at the top centre illustrates a contour 

defined by the orientation of elements within the one scale.  In the bottom 

frames, the detectability of contours, be they straight (bottom left) or curved 

(bottom right), shows spatial scale tuning (adapted from Dakin and Hess, 1998).  

In this experiment, one set of Gabors had a carrier spatial frequency of 3.2 cpd, 

and the other set had a spatial frequency indicated by the horizontal axis of the 

graphs. 

 

1.3.1. The nature and site of the linking process. 

The linking code within the Association Field must be conveyed in the firing pattern of cells in 

early visual cortex.  The typical form of this response as reflected in the post-stimulus time 

histogram involves an initial burst of firing within the first 50 milliseconds followed by a slow 

sustained response declining in amplitude over a 300 millisecond period.  In principle, the extent 

of facilitative inter-cellular interaction reflecting contour integration could be carried by the 

amplitude of the initial burst of firing or the later sustained response or the pattern (including 

synchronicity) of spikes. The initial burst of spikes is thought to carry the contrast-dependent 

signal (Lamme 1995, Lamme, Super & Speckreijse 1998, Zipser, Lamme & Schiller 1996), and this 

is unlikely to carry the linking signal because it has been shown that randomizing the contrasts 

of the Gabor elements has little effect on contour integration performance (Hess, Dakin & Field 

1998).  

 

Contour integration (i.e. its curvature dependence) does not depend critically on the element 

temporal frequency so long as it is within the temporal window of visibility of individual 
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elements (Hess, Beaudot & Mullen 2001), again suggesting a decoupling from contrast 

processing. However, when the local orientation of contour elements changes over time, three 

interesting finding emerge.  First, the dynamics of contour integration are slow compared with 

contrast integration.  Second, the dynamics are dependent on curvature; the highest temporal 

frequency of orientation change that would support linking varied from around 10Hz for straight 

contours to around 1-2 Hz for curved contours.  Third, this does not depend on absolute 

contrast of elements (Hess et al. 2001). These dynamics are not what one would expect if either 

synchrony of cellular firing which is in the 1-2 millisec range (Singer & Gray 1995) (Beaudot 

2002, Dakin & Bex 2002) or contrast (Polat 1999, Polat & Sagi 1993, Polat & Sagi 1994) were 

involved in the linking process. The sluggish temporal properties of the linking process may 

point to the code being carried by the later sustained part of the spike train (Lamme 1995, 

Lamme et al. 1998, Zipser et al. 1996). 

 

Contour integration is not a cue-invariant process (Zhou & Baker 1993) in that not all oriented 

features result in perceptual contours: contours composed of elements alternately defined by 

chromaticity and luminance do not link into perceptual contours (McIlhagga & Mullen 1996) and 

elements defined by texture-orientation do not link together either (Hess, Ledgeway & Dakin 

2000). The rules that define linkable contours provide a psychophysical cue as to the probable 

site of these elementary operations. McIlhagga and Mullen (1996) and Mullen, McIllhagga and 

Beaudot (2000) showed that contours defined purely by chromaticity obey the same linking 

rules but that elements alternately defined by luminance and chromatically do not link together.  

This suggests that, at the cortical stage at which this occurs, luminance and chromatic 

information are processed separately, suggesting a site later than V1since in V1 cells tuned for 

orientation processing both chromatic and achromatic information (Johnson, Hawken & Shapley 

2001). Hess and Field (1995) showed that contour integration must occur at a level in the cortex 

where the cells process disparity.  They devised a dichoptic stimulus in which the embedded 

contour could not be detected monocularly because it oscillated between two depth planes - it 

could be detected only if disparity had been computed first.  These contours were easily 

detected and their detectability did not critically depend on the disparity range, suggesting the 

process operated at a cortical stage at or after where relative disparity was computed.  This is 

believed to be V2 (Parker & Cumming 2001). 

 

 

2. A neurophysiological perspective 

 

2.1. Cellular physiology 

Neurons in primary visual cortex (V1 or striate cortex) respond to a relatively narrow range of 

orientations within small (local) regions of the visual field (Hubel & Wiesel 1968). As such, V1 

can be thought of as representing the outside world using a bank of oriented filters (De Valois & 

De Valois 1990). These filters form the first stage of contour integration. In line with this filter 

notion, the V1 response to visual stimulation is well predicted by the contrast-energy of the 

stimulus for synthetic (Boynton, Demb, Glover & Heeger 1999, Mante & Carandini 2005) and 

natural images (Dumoulin, Dakin & Hess 2008, Kay, Naselaris, Prenger & Gallant 2008, Olman, 

Ugurbil, Schrater & Kersten 2004). 
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Even though V1 responses are broadly consistent with the contrast-energy within the images, a 

significant contribution of neuronal interactions is present that modulate the neural responses 

independent of the overall contrast-energy (Allman, Miezin & McGuinness 1985, Fitzpatrick 

2000). These neuronal interactions can enhance or suppress neural responses and may also 

support mechanisms such as contour integration.  The Association Field might be implemented 

by facilitatory interactions between cells whose preferred stimuli lie close together on a smooth 

curve, and inhibitory interactions between cells whose preferred stimuli would be unlikely to 

coexist on the same physical edge.  There is anatomical evidence for such a hard-wired 

arrangement within the long-range intrinsic cortical connections in V1 (Gilbert & Wiesel 1979, 

Gilbert & Wiesel 1989). Neurons in different orientation columns preferentially link with 

neurons with co-oriented, co-axially aligned receptive fields {Bosking, 1997 #1057;Kisvárday, 

1997 #3943;Malach, 1993 #1060;Stettler, 2002 #3745;Weliky, 1995 #1802;Schmidt, 1997 

#1056;Pooresmaeili,  #3892}. 

 

Neurophysiological recordings further support these anatomical observations (Gilbert, Das, Ito, 

Kapadia & Westheimer 1996, Kapadia, Ito, Gilbert & Westheimer 1995, Li, Piech & Gilbert 2006, 

Nelson & Frost 1985, Polat, Mizobe, Pettet, Kasamatsu & Norcia 1998). Neuronal responses to 

local oriented bars within the classical receptive field are modulated by the presence of flanking 

bars outside the classical receptive field, i.e. in the extra-classical receptive field. Importantly, 

the elements in the extra-classical receptive field are not able to stimulate the neuron alone, so 

the response modulation critically depends on an interaction between the elements placed 

within the classical receptive field and those placed outside it. Furthermore, the amount of 

response modulation is greatly affected by the relative positions and orientations of the 

stimulus elements. Co-axial alignment usually increases neural responses whereas orthogonal 

orientations usually decrease neural responses (Blakemore & Tobin 1972, Jones, Wang & Sillito 

2002, Kastner, Nothdurft & Pigarev 1997, Knierim & Van Essen 1992, Nelson & Frost 1978, 

Nothdurft, Gallant & Van Essen 1999, Sillito, Grieve, Jones, Cudeiro & Davis 1995).  These neural 

modulations may partly be explained by the hard-wired intrinsic connectivity in V1 but may also 

be supported by feedback or top-down influences from later visual cortex (Li, Piech & Gilbert 

2008). 

 

The evidence suggests that the extra-classical receptive field modulations resemble the 

proposed contour Association Field. For example, recording in V1, Kapadia and colleagues 

(Kapadia et al. 1995) presented flanking bars in many different configurations in the extra-

classical receptive field while presenting a target bar in the classical receptive field at the 

neuron’s preferred orientation. Kapadia and colleagues found that facilitation was generally 

highest for small separations and small or zero lateral offsets between the flanker and target 

bar.  They also varied the orientation of the flanking bar while maintaining good continuation 

with the target bar. The distribution of preferred flanker orientations was strongly peaked at the 

cell’s preferred orientation, indicating co-axial facilitation. Yet some cells did not have an 

obvious preferred flanker orientation or appeared to prefer non-co-axial flanker orientations. 

Kapadia and colleagues suggested that the latter neurons might play a part in integrating curved 

contours.  Tuning to curvature is also highly prevalent in V2 and V4 (Anzai, Peng & Van Essen 

2007, Hegde & Van Essen 2000, Ito & Komatsu 2004, Pasupathy & Connor 1999) suggesting a 

role for these sites in co-circular integration along curved contours. V4 neurons are also tuned 
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to simple geometric shapes, further highlighting its role in intermediate shape perception 

(Gallant, Braun & Van Essen 1993, Gallant, Connor, Rakshit, Lewis & Van Essen 1996). 

 

2.2. Functional imaging 

Functional MRI studies further highlight the involvement of human extra-striate cortex in 

contour integration. For example, Dumoulin, Dakin and Hess (2008) contrasted the responses to 

several natural and synthetic image categories (Figure 3).  They found distinct response profiles 

in V1 and extra-striate cortex. Contrast-energy captured most of the variance in V1, though 

some evidence for increased responses to contour information was found as well. In extra-

striate cortex, on the other hand, the presence of sparse contours captured most of the 

response variance despite large variations in contrast-energy. These results provide evidence for 

an initial representation of natural images in V1 based on local oriented filters. Later visual 

cortex (and to a modest degree V1) incorporates a facilitation of contour-based structure and 

suppressive interactions that effectively amplify sparse-contour information within natural 

images.  

 

 

 
 

Figure 3: fMRI responses elicited by viewing pseudo-natural (A, C) and synthetic 

(B, D) images. The fMRI responses are shown on an inflated cortical surface of the 

left hemisphere (C, D). The responses are an average of five subjects and the 

average visual area borders are identified. Both pseudo-natural and synthetic 

images yield similar results. In V1 strongest responses are elicited by viewing of 

the “full images” (D, bottom inset). This supports the notion that V1 responses are 

dominated by the contrast-energy within images. In extra-striate cortex, on the 
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other hand, strongest responses are elicited by viewing  “contour” images (D, top 

inset). These results suggest that facilitative and suppressive neural interactions 

within and beyond V1 highlight contour information in extra-striate visual cortex. 

Adapted from Dumoulin, Dakin and Hess (2008). 

 

Similarly, Kourtzi and colleagues implicated both early and late visual cortex in the process of 

contour integration (Altmann, Bulthoff & Kourtzi 2003, Altmann, Deubelius & Kourtzi 2004, 

Kourtzi & Huberle 2005, Kourtzi, Tolias, Altmann, Augath & Logothetis 2003). Using a variety of 

fMRI paradigms they demonstrated involvement of both V1 and later visual areas. However, the 

stimuli in all these fMRI studies contain closed contours. Contour closure creates simple 

concentric shapes that may be easier to detect (Kovacs & Julesz 1993) and may involve 

specialized mechanisms in extra-striate cortex (Altmann et al. 2004, Dumoulin & Hess 2007, 

Tanskanen, Saarinen, Parkkonen & Hari 2008). Furthermore, contour closure may introduce 

symmetry for which specialized detection mechanisms exist (Wagemans 1995). Therefore these 

fMRI results may reflect a combination of contour integration and shape processing, and may 

not uniquely identify the site of the contour integration. 

 

Beyond V2 and V4 lies ventral cortex, which processes shapes. In humans, the cortical region 

where intact objects elicit stronger responses than their scrambled counterparts is known as the 

lateral occipital complex (LOC) (Malach, Reppas, Benson, Kwong, Jiang, Kennedy, Ledden, Brady, 

Rosen & Tootell 1995). It extends from lateral to ventral occipital cortex. The term ‘complex’ 

acknowledges that this region consists of several visual areas. Early visual cortex (V1) is often 

also modulated by the contrast between intact and scrambled objects but in an opposite 

fashion, i.e. fMRI signal amplitudes are higher for scrambled images (Dumoulin & Hess 2006, 

Fang, Kersten & Murray 2008, Grill-Spector, Kushnir, Hendler, Edelman, Itzchak & Malach 1998, 

Lerner, Hendler, Ben-Bashat, Harel & Malach 2001, Murray, Kersten, Olshausen, Schrater & 

Woods 2002, Rainer, Augath, Trinath & Logothetis 2002). Stronger responses to scrambled 

objects have been interpreted as feedback from predictive coding mechanisms (Fang et al. 2008, 

Murray et al. 2002) or incomplete match of low-level image statistics including the breakup of 

contours (Dumoulin & Hess 2006, Rainer et al. 2002). These results highlight the interaction 

between early and late visual areas in the processing of contour and shape. 

 

 

3. A computational perspective 

 

3.1. Two main classes of contour integration model 

Models of contour integration generally fall into one of two categories: Association Field models 

or filter overlap models [although see Watt, Ledgeway & Dakin (2008) for consideration of other 

models]. In contrast to the Association Field, in filter overlap models, grouping occurs purely 

because the filter responses to adjacent elements overlap. 
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Association Field models. Field et al (1993) did not explicitly implement an Association Field 

model, but several researchers have done so since.  Yen and Finkel (1998) set up a model that 

had two sets of facilitatory connections: co-axial excitatory connections between units whose 

preferred stimulus elements lay on co-circular paths (for detecting snakes, as in figure 1A left), 

and trans-axial excitatory connections between units whose preferred stimulus elements were 

parallel (for detecting ladders, as in figure 1A right).  The two sets of connections competed with 

each other, so the set of connections carrying the weaker facilitatory signals was suppressed.  

Their model did a fairly good job of quantitatively accounting for a range of data from Field et al. 

(1993) and Kovács and Julesz (1993). 

 

Another Association Field model was set up by Li (1998), who took the view that contour 

integration is part of the wider task of computing visual saliency.  Li’s saliency model was based 

firmly on the properties of V1 cells.  The same model was able to account for contour 

integration phenomena, as well as many other phenomena related to visual search and 

segmentation in multi-element arrays (Li 1999, Li 2000, Li 2002, Zhaoping & May 2007).  

However, Li provided only qualitative demonstrations of the model’s outputs, rather than 

quantitative simulations of psychophysical performance like those of Yen and Finkel. 

 

The models of Li and of Yen and Finkel were recurrent neural networks, which exhibit temporal 

oscillations.  Both models showed synchrony in oscillations between units responding to 

elements within the same contour, but a lack of synchrony between units responding to 

elements in different contours.  Both sets of authors suggested that this might form the basis of 

segmentation of one contour from others or from the background.  In addition, the units 

responding to contour elements responded more strongly than those responding to distractor 

elements. 

 

The Association Field models described so far used ad hoc weightings on the facilitatory 

connections.  A different approach is to assume that the connection weights reflect the image 

statistics that the observer is using to do the task.  In this view, the Association Field is a 

statistical distribution that allows the observer to make a principled decision about whether two 

edge elements should be grouped into the same contour.  Geisler et al (2001) used this 

approach and found that Association Fields derived from edge co-occurrence statistics in natural 

images accurately accounted for human data on a contour detection task.  Elder and Goldberg 

(2002) followed with a similar approach. 

 

Watt et al. (2008) have pointed out that many of the patterns of performance found in contour 

integration experiments may reflect the difficulty of the task, rather than the properties of the 

visual mechanism that the observer is using.  Traditionally, task difficulty is factored out by 

expressing the participant’s performance relative to the performance of the ideal observer for 

the task (Banks, Geisler & Bennett 1987, Geisler 1984, Geisler 1989).  For many simple visual 

tasks, it is straightforward to derive the ideal algorithm, but this is not the case for most contour 

integration tasks because of the complexity of the algorithms used for generating the contours.  

Recently, Ernst et al. (2012) tackled this problem in an elegant way: they turned the idea of the 

Association Field on its head and used it to generate the contours in the first place.  The 

Association Field used to generate the contours is then the correct, i.e. optimal, statistical 
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distribution for calculating the likelihood that the stimulus contains the contour.  Using this 

approach, the properties of the contour, such as curvature, element separation, etc., are 

determined by the parameters of the Association Field; the ideal observer, who always uses the 

Association Field that generated the contour in the first place, would therefore have an 

advantage over the human observer in knowing which sort of contour was being presented on 

each trial.  Not surprisingly, Ernst et al. found that, although the ideal observer’s pattern of 

performance, as a function of contour properties, was qualitatively similar to human 

performance, the ideal observer performed much better.  They investigated the possibility that 

the human observer was using the same Association Field on each trial.  This strategy would be 

optimal for contours generated using that Association Field, but suboptimal in all other cases.  

They generated the single Association Field that fitted best to all the data, but even this 

suboptimal model outperformed the human observers.  Ernst et al. ruled out the effect of noise 

because the model’s correlation with the human data was the same as the correlations between 

individual subjects, so it would seem that their model was simply using a better Association Field 

for the task than the human observers. 

 

Although the ideal observer’s performance can provide a useful benchmark against which to 

compare human performance, it may be over-optimistic to assume that human observers will be 

able to implement a strategy that is optimal for whichever psychophysical task they are set: it is 

more likely that the human observer possesses mechanisms that are optimal for solving real-

world tasks, and recruits them to carry out the artificial psychophysical task at hand (McIlhagga 

& May 2012). The natural-image-based approach to deriving the association Field taken by 

Geisler et al. and Elder and Goldberg may therefore be more fruitful than a pure ideal-observer 

approach. 

 

Filter-overlap models. As an alternative to Association Field models, Hess and Dakin (1997) 

implemented a model in which the contour linking occurred due to spatial overlap of filter 

responses to different elements.  Applying a V1-style filter to the image has the effect of blurring 

the elements so that they join up.  Thresholding the filter output to black and white generates a 

set of blobs, or zero-bounded response distributions (ZBRs), and a straight contour will generate 

a long ZBR in the orientation channel aligned with the contour.  In Hess and Dakin’s model, the 

formation of ZBRs took place only within orientation channels, and this severely limited its 

ability to integrate curved contours.  The model’s performance, as a function of contour 

curvature, is plotted in Figure 1B, which shows that, while the model could successfully detect 

straight contours, its performance deteriorated rapidly as the contour became more curved.  

Hess and Dakin suggested that this kind of model may reflect contour integration in the 

periphery, while the Association Field may reflect processing in the fovea. 

 

The poor performance of Hess and Dakin’s filter-overlap model on detection of highly curved 

contours was not a result of the filter-overlap process itself, but a result of the fact that 

formation of ZBRs took place within a single orientation channel.  May and Hess (2008) lifted 

this restriction, and implemented a model that could extend ZBRs across orientation channel as 

well as space.  Unlike Hess and Dakin’s model, May and Hess’s model can easily integrate curved 

contours, and we have recently found that it provides an excellent fit to a large psychophysical 

data set (Hansen, May & Hess, in preparation).  May and Hess’s model forms ZBRs within a 3-
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dimensional space, (x, y, ), consisting of the two dimensions of the image (x, y), and a third 

dimension representing filter orientation ().  A straight contour would lie within a plane of 

constant orientation in this space, whereas a curved contour would move gradually along the 

orientation dimension as well as across the spatial dimensions.  This 3-dimensional space is 

formally known as the tangent bundle, and subsequently other researchers have confirmed its 

usefulness in contour-completion tasks (Ben-Yosef & Ben-Shahar 2012). 

 

Around the same time that May and Hess (2008) were developing their model of contour 

integration, Rosenholtz and colleagues independently had the same idea, but applied it to a 

much broader set of grouping tasks (Rosenholtz, Twarog, Schinkel-Bielefeld & Wattenberg 

2009).  To perform grouping on the basis of some feature dimension, f, you can create a 

multidimensional space  (x, y, f), and then plot the image in this space.  Then image elements 

with similar feature values and spatial positions will be nearby and, if you blur the 

representation, they join up. 

 

3.1.1. Spatial extent of contour linking  

Contour integration performance generally declines with increasing distance between the 

elements in a contour stimulus (Field et al. 1993, May & Hess 2008). As with the comparison 

between different contour types (snake, ladder and rope), increasing the separation does not 

make the task intrinsically harder, so the effect of increasing the separation tells us about the 

spatial extent of the linking mechanism. 

 

May and Hess (2008) varied both the element separation and Gabor carrier frequency in a 

factorial design and found that the results strongly constrained the architecture of filter-overlap 

models of contour integration.  They found that performance was largely unaffected by the 

carrier wavelength of the elements; high-frequency elements could be integrated over almost as 

long distances as low-frequency ones.  This rules out filter-overlap models that use a linear filter 

to integrate the elements because, to integrate over a large distance, you need a large-scale 

filter, and large-scale filters tend not to respond well to high-frequency elements.  To explain 

this result, May and Hess proposed a 2nd-order mechanism in which a squaring operation lies 

between two linear filters.  If we adjust the scale of the 1st-stage filter (before the nonlinearity) 

to match the contour elements, and adjust the scale of the 2nd-stage filter (after the 

nonlinearity) to be large enough to bridge the gap between the elements, then we can 

accommodate pretty much any combination of element spacing and carrier wavelength.  If the 

1st and 2nd stage filters are parallel, the model detects snakes; if they are orthogonal, the 

model detects ladders.  The very poor performance on ropes suggests that there is no 

corresponding mechanism in which the 1st and 2nd stages are oriented at 45 to each other. 

 

3.1.2. Does the same mechanism mediate both contour integration and psychophysical flanker 

facilitation? 

It has often been suggested that the mechanism that mediates contour integration is also 

responsible for the psychophysical flanker facilitation effect, whereby a low-contrast target is 

made more detectable by the presence of spatially separate flanking elements positioned a 

moderate distance from the target.  This is an attractively parsimonious idea that has been 

suggested by many researchers  
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(Gilbert et al. 1996, Kapadia et al. 1995, Li 1996, Li 1998, Pettet, McKee & Grzywacz 1998, Polat 

1999, Polat & Bonneh 2000, Stemmler, Usher & Niebur 1995, Yen & Finkel 1998).  If the same 

mechanisms underlie psychophysical flanker facilitation and contour integration, one would 

expect both phenomena to be observed in the same range of conditions.  This prediction was 

tested by Williams & Hess (1998). Firstly, they found that, unlike foveal contour integration, 

flanker facilitation requires the elements to have the same phase.  Secondly, flanker facilitation 

was abolished when co-circular target and flankers differed in orientation by 20, whereas 

contours are easily detectable with larger orientation differences between neighbouring 

elements.  Thirdly, flanker facilitation was abolished or greatly reduced when the stimulus was 

placed only 3 into the periphery, whereas contour integration can be performed easily at much 

larger eccentricities.  More recently, Huang, Hess, & Dakin (2006) showed that flanker 

facilitation was disrupted by dichoptic presentation to a much greater extent than contour 

integration, suggesting that contour integration has a more central cortical site than flanker 

facilitation.  The results from Williams & Hess (1998) and Huang et al. (2006) showed that 

flanker facilitation occurs in a much more limited range of conditions than contour integration, 

so it seems unlikely that contour integration could be achieved by the mechanisms responsible 

for psychophysical flanker facilitation.  Williams and Hess argued that the latter effect might 

arise through a reduction in positional uncertainty due to the flanking elements, a view 

subsequently supported by Petrov, Verghese and McKee (2006). 

 

3.1.3. Does the same mechanism mediate both contour integration and crowding? 

Crowding is the phenomenon whereby a stimulus (usually presented in the periphery) that is 

easily identifiable becomes difficult to identify when flanked by distracting stimuli.  One view is 

that crowding is caused by excessive integration across space. Pelli, Palomares, and Majaj (2004) 

proposed that, at each point in the visual field, there is a range of integration field sizes, and the 

observer uses the size of field that is best for the task at hand; integration fields are used for any 

task that involves integration of information from more than one elementary feature detector.  

Pelli et al. argued that, at each location in the visual field, the minimum available integration 

field size scales with eccentricity.  This means that, particularly in the periphery, the observer 

may be forced to use an integration field that is inappropriately large for the task, and that is 

when crowding occurs. 

 

Pelli et al.’s integration field sounds much like Field et al.’s Association Field, and May and Hess 

(2007b) argued that the Association Field is in fact an example of the kind of integration field 

that Pelli et al. suggested mediates the crowding effect.  May and Hess implemented a simple 

version of Pelli et al.’s crowding model and showed that this model could explain data on 

contour detection in fovea and periphery, as well as showing Pelli et al.’s three key diagnostic 

features of crowding: The critical target-flanker spacing for crowding to occur is independent of 

the size of the target, scales with eccentricity, and is greater on the peripheral side of the target.  

Subsequently, van den Berg, Roerdink and Cornelissen (2010) reported a population code model 

of feature integration that, like May and Hess’s  (2007b) model, explained both contour 

integration and crowding. 

 

May and Hess (2007b) provided only circumstantial evidence for their proposed link between 

contour integration and crowding.  Pelli and Chakravarthy (2011) later directly tested this 
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proposal by using the same stimuli for both a contour integration task and a crowding task.   As 

the “wiggle” in the contours increased, the contour integration performance got worse 

(indicating less integration), and performance on the crowding task got better (again indicating 

less integration).  The “wiggle threshold” was the same on both tasks, indicating that the same 

mechanism mediated both contour integration and crowding (see also Rosenholtz, this volume). 

 

 

4. Conclusion 

 

The visual system groups local edge information into contours that are segmented from the 

background clutter in a visual scene.  We have outlined two ways that this might be achieved.  

One is an Association Field, which explicitly links neurons with different preferred locations and 

orientations in a way that closely matches edge co-occurrence statistics in natural images.  The 

other is a simple filter-rectify-filter mechanism that, in the first stage, obtains a response to the 

contour elements and, in the second stage, blurs this filter response along the contour; contours 

are then defined by thresholding the filter output and identifying regions of contiguous 

response across filter orientation and 2D image space.  Both proposed mechanisms are 

consistent with much of the available evidence, and it may be that either or both of these 

mechanisms play a role in implementing contour integration in biological vision.  Evidence from 

electrophysiology and functional imaging suggests that contour integration is implemented in 

early visual cortices, perhaps V1, V2, and V4, but the exact biological implementation needs 

further elucidation.  The grouping phenomena discussed here involve local edge information, 

but similar grouping processes might also be manifested in other domains.  Indeed, Rosenholtz 

and colleagues (2009) have shown how May and Hess’s (2008) filter-overlap algorithm for 

contour integration can be extended to accommodate a wide variety of grouping tasks.  Contour 

integration may also be related to other pooling phenomena such as crowding.  If this is the 

case, then the Association Field that has been proposed as a mechanism for contour integration 

may be a specific example of the integration field that is thought to be responsible for crowding.  

 

 

5. Acknowledgements 

 

This work was support by CIHR (#mop 53346 & mop10818) and NSERC (#46528-110) grants to 

RFH. A Marie Curie IRG  (#231027) and a NWO VIDI (#452-08- 008) grant supported SOD.  

 

 

  



16 

 

6. References 

 

Allman, J., Miezin, F., & McGuinness, E. (1985). Stimulus specific responses from beyond the 

classical receptive field: neurophysiological mechanisms for local-global comparisons in visual 

neurons. Annu Rev Neurosci, 8, 407-30. 

Altmann, C.F., Bulthoff, H.H., & Kourtzi, Z. (2003). Perceptual organization of local elements into 

global shapes in the human visual cortex. Curr Biol, 13 (4), 342-9. 

Altmann, C.F., Deubelius, A., & Kourtzi, Z. (2004). Shape saliency modulates contextual 

processing in the human lateral occipital complex. J Cogn Neurosci, 16 (5), 794-804. 

Anzai, A., Peng, X., & Van Essen, D.C. (2007). Neurons in monkey visual area V2 encode 

combinations of orientations. Nat Neurosci, 10 (10), 1313-21. 

Banks, M.S., Geisler, W.S., & Bennett, P.J. (1987). The physical limits of grating visibility. Vision 

Research, 27, 1915-24. 

Beaudot, W.H.A. (2002). Role of onset asychrony in contour integration. Vision Research, 42, 1-

9. 

Beck, J., Rosenfeld, A., & Ivry, R. (1989). Line segmentation. Spatial Vision, 42 (3), 75-101. 

Ben-Yosef, G., & Ben-Shahar, O. (2012). A tangent bundle theory for visual curve completion. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 1263-80. 

Bex, P.J., Simmers, A.J., & Dakin, S.C. (2001). Snakes and ladders: the role of temporal 

modulation in visual contour integration. Vision Research, 41  3775-82. 

Blakemore, C., & Tobin, E.A. (1972). Lateral inhibition between orientation detectors in the cat's 

visual cortex. Experimental Brain Research, 15, 439-40. 

Bosking, W.H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the 

arrangement of horizontal connections in the tree shrew striate cortex. J. Neurosci, 17, 2112-27. 

Boynton, G.M., Demb, J.B., Glover, G.H., & Heeger, D.J. (1999). Neuronal basis of contrast 

discrimination. Vision Res, 39 (2), 257-69. 

Chakravarthi, P., & Pelli, D.G. (2011). The same binding in contour integration and crowding. 

Journal of Vision, 11 (8), 1-12. 

Dakin, S.C., & Bex, P.J. (2002). Role of synchrony in contour binding: some transient doubts 

sustained. J Opt Soc Am A Opt Image Sci Vis, 19 (4), 678-86. 

Dakin, S.C., & Hess, R.F. (1998). Spatial-frequency tuning of visual contour integration. Journal of 

the Optical Society of America, A, 15 (6), 1486-99. 

De Valois, R.L., & De Valois, K.K. (1990). Spatial Vision.  (Oxford University Press. 

Dumoulin, S.O., Dakin, S.C., & Hess, R.F. (2008). Sparsely distributed contours dominate extra-

striate responses to complex scenes. Neuroimage, 42 (2), 890-901. 

Dumoulin, S.O., & Hess, R.F. (2006). Modulation of V1 activity by shape: image-statistics or 

shape-based perception? J Neurophysiol, 95 (6), 3654-64. 

Dumoulin, S.O., & Hess, R.F. (2007). Cortical specialization for concentric shape processing. 

Vision Res, 47 (12), 1608-13. 

Elder, J.H., & Goldberg, R.M. (2002). Ecological statistics of Gestalt laws for the perceptual 

organization of contours. Journal of Vision, 2 (4 (5)), 324-53. 

Ernst, U.A., Mandon, S., Schinkel-Bielefeld, N., Neitzel, S.D., Kreiter, A.K., & Pawelzik, K.R. (2012). 

Optimality of Human Contour Integration. PLoS Computational Biology, 8 (5) 

Fang, F., Kersten, D., & Murray, S.O. (2008). Perceptual grouping and inverse fMRI activity 

patterns in human visual cortex. J Vis, 8 (7), 2 1-9. 



17 

 

Field, D.J., Hayes, A., & Hess, R.F. (1993). Contour integration by the human visual system: 

evidence for a local "association field". Vision Research, 33 (2), 173-93. 

Field, D.J., Hayes, A., & Hess, R.F. (1997). The role of phase and contrast polarity in contour 

integration. Investigative Ophthalmology and Visual Science, 38, S999. 

Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Curr Opin 

Neurobiol, 10 (4), 438-43. 

Gallant, J.L., Braun, J., & Van Essen, D.C. (1993). Selectivity for polar, hyperbolic, and Cartesian 

gratings in macaque visual cortex. Science, 259 (5091), 100-3. 

Gallant, J.L., Connor, C.E., Rakshit, S., Lewis, J.W., & Van Essen, D.C. (1996). Neural responses to 

polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. Journal of 

Neurophysiology, 76 (4), 2718-39. 

Geisler, W.S. (1984). Physical limits of acuity and hyperacuity. Journal of the Optical Society of 

America, A, 1, 775-82. 

Geisler, W.S. (1989). Sequential ideal-observer analysis of visual discriminations. Psychological 

Review, 96, 267-314. 

Geisler, W.S., Perry, J.S., Super, B.J., & Gallogly, D.P. (2001). Edge co-occurrence in natural 

images predicts contour grouping performance. Vision Research, 41 (6), 711-24. 

Gilbert, C.D., Das, A., Ito, M., Kapadia, M., & Westheimer, G. (1996). Spatial integration and 

cortical dynamics. Proceedings of the National Academy of Sciences of the United States of 

America, 93, 615-22. 

Gilbert, C.D., & Wiesel, T.N. (1979). Morphology and intracortical connections of functionally 

characterised neurones in the cat visual cortex. Nature, 280, 120-25. 

Gilbert, C.D., & Wiesel, T.N. (1989). Columnar specificity of intrinsic horizontal and 

corticocortical connections in cat visual cortex. J Neurosci, 9 (7), 2432-42. 

Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A 

sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain 

Mapp, 6 (4), 316-28. 

Hegde, J., & Van Essen, D.C. (2000). Selectivity for complex shapes in primate visual area V2. J 

Neurosci, 20 (5), RC61. 

Hess, R.F., Beaudot, W.H.A., & Mullen, K.T. (2001). Dynamics of contour integration. Vision 

Research, 41, 1023-37. 

Hess, R.F., & Dakin, S.C. (1997). Absence of contour linking in peripheral vision  Nature, 390, 

602-04. 

Hess, R.F., Dakin, S.C., & Field, D.J. (1998). The role of “contrast enhancement” in the detection 

and appearance of visual contours. Vision Research, 38 (6), 783-87. 

Hess, R.F., & Field, D.J. (1995). Contour integration across depth. Vision Research, 35 (12), 1699-

711. 

Hess, R.F., Hayes, A., & Field, D.J. (2003). Contour integration and cortical processing. J Physiol 

Paris, 97 (2-3), 105-19. 

Hess, R.F., Ledgeway, T., & Dakin, S.C. (2000). Improvished second-order input to global linking 

in human vision. Vision Research, 40, 3309-18. 

Huang, P.-C., Hess, R.F., & Dakin, S.C. (2006). Flank facilitation and contour integration: Different 

sites. Vision Res, 46, 3699-706. 

Hubel, D.H., & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate 

cortex. J Physiol, 195 (1), 215-43. 



18 

 

Ito, M., & Komatsu, H. (2004). Representation of angles embedded within contour stimuli in 

area V2 of macaque monkeys. J Neurosci, 24 (13), 3313-24. 

Johnson, E.N., Hawken, M.J., & Shapley, R. (2001). The spatial transformation of color in the 

primary visual cortex of the macaque monkey. Nat Neurosci, 4 (4), 409-16. 

Jones, H.E., Wang, W., & Sillito, A.M. (2002). Spatial organization and magnitude of orientation 

contrast interactions in primate V1. Journal of Neurophysiology, 88, 2796-808. 

Kapadia, M.K., Ito, M., Gilbert, C.D., & Westheimer, G. (1995). Improvement in visual sensitivity 

by changes in local context: parallel studies in human observers and in V1 of alert monkeys. 

Neuron, 15 (4), 843-56. 

Kastner, S., Nothdurft, H.C., & Pigarev, I.N. (1997). Neuronal correlates of pop-out in cat striate 

cortex. Vision Research, 37, 371-76. 

Kay, K.N., Naselaris, T., Prenger, R.J., & Gallant, J.L. (2008). Identifying natural images from 

human brain activity. Nature, 452 (7185), 352-5. 

Kisvárday, Z.F., Tóth, E., Rausch, M., & Eysel, U.T. (1997). Orientation-specific relationship 

between populations of excitatory and inhibitory lateral connections in the visual cortex of the 

cat. Cerebral Cortex, 7, 605-18. 

Knierim, J.J., & Van Essen, D.C. (1992). Neuronal responses to static texture patterns in area V1 

of the alert macaque monkey. Journal of Neurophysiology, 67, 961-80. 

Koffka, K. (1935). Principles of Gestalt Psychology.  (New York: Hardcourt, Brace and World. 

Kourtzi, Z., & Huberle, E. (2005). Spatiotemporal characteristics of form analysis in the human 

visual cortex revealed by rapid event-related fMRI adaptation. Neuroimage, 28 (2), 440-52. 

Kourtzi, Z., Tolias, A.S., Altmann, C.F., Augath, M., & Logothetis, N.K. (2003). Integration of local 

features into global shapes: monkey and human FMRI studies. Neuron, 37 (2), 333-46. 

Kovacs, I., & Julesz, B. (1993). A closed curve is much more than an incomplete one: effect of 

closure in figure-ground segmentation. Proceedings of the National Academy of Sciences of the 

United States of America, 90, 7495-97. 

Lamme, V.A.F. (1995). The neurophysiology of figure-ground segregation in primary visual 

cortex. J. Neurosci, 15 (2), 1605-15. 

Lamme, V.A.F., Super, H., & Speckreijse, H. (1998). Feedforward, horizontal and feedback 

processing in the visual cortex. Current Opinion in Neurobiology, 8, 529-35. 

Ledgeway, T., Hess, R.F., & Geisler, W.S. (2005). Grouping local orientation and direction signals 

to extract spatial contours: Empirical tests of “association field” models of contour integration. 

Vision Res, 45, 2511-22. 

Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M., & Malach, R. (2001). A hierarchical axis of 

object processing stages in the human visual cortex. Cereb Cortex, 11 (4), 287-97. 

Li, W., Piech, V., & Gilbert, C.D. (2006). Contour saliency in primary visual cortex. Neuron, 50 (6), 

951-62. 

Li, W., Piech, V., & Gilbert, C.D. (2008). Learning to link visual contours. Neuron, 57 (3), 442-51. 

Li, Z. (1996). A neural model of visual contour integration. Advances in Neural Information 

Processing Systems, 9 (pp. 69-75). Boston, MA: MIT Pres. 

Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural 

Computation, 10 (4   ), 903-40. 

Li, Z. (1999). Contextual influences in V1 as a basis for pop out and asymmetry in visual search. 

Proceedings of the National Academy of Sciences of the United States of America, 96, 10530-35. 

Li, Z. (2000). Pre-attentive segmentation in the primary visual cortex. Spatial Vision, 13, 25-50. 



19 

 

Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6, 9-16. 

Malach, R., Amir, Y., Harel, H., & Grinvald, A. (1993). Relationship between intrinsic connections 

and functional architecture revealed by optical imaging and in vivo targeted biocytin injections 

in primary striate cortex. Proc. Natl. Acad. Sci. USA, 90, 10469-73. 

Malach, R., Reppas, J.B., Benson, R.R., Kwong, K.K., Jiang, H., Kennedy, W.A., Ledden, P.J., Brady, 

T.J., Rosen, B.R., & Tootell, R.B. (1995). Object-related activity revealed by functional magnetic 

resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A, 92 (18), 8135-9. 

Mante, V., & Carandini, M. (2005). Mapping of stimulus energy in primary visual cortex. J 

Neurophysiol, 94 (1), 788-98. 

May, K.A., & Hess, R.F. (2007a). Dynamics of snakes and ladders. J Vis, 7 (12), 13 1-9. 

May, K.A., & Hess, R.F. (2007b). Ladder contours are undetectable in the periphery: a crowding 

effect? J Vis, 7 (13), 9 1-15. 

May, K.A., & Hess, R.F. (2008). Effects of element separation and carrier wavelength on 

detection of snakes and ladders: Implications for models of contour integration. Journal of 

Vision, 8   (13), 1-23. 

McIlhagga, W.H., & May, K.A. (2012). Optimal edge filters explain human blur detection. Journal 

of Vision, 12 (10), 1-13. 

McIlhagga, W.H., & Mullen, K.T. (1996). Contour integration with colour and luminance contrast. 

Vision Research, 36 (9), 1265-79. 

Moulden, B. (1994). Collator units: second-stage orientational filters. In: M.J. Morgan (Ed.) 

Higher-order processing in the visual system: CIBA Foundation  Symposium 184 (pp. 170-84). 

Chichester, UK: John Wiley and Sons. 

Mullen, K.T., Beaudot, W.H.A., & McIlhagga, W.H. (2000). Contour integration in color vision: a 

common process for blue-yellow, red-green and luminance mechanisms? Vision Research, 40, 

639-55. 

Murray, S.O., Kersten, D., Olshausen, B.A., Schrater, P., & Woods, D.L. (2002). Shape perception 

reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99 (23), 15164-9. 

Nelson, J.I., & Frost, B.J. (1978). Orientation-selective inhibition from beyond the classic visual 

receptive field. Brain Res, 139 (2), 359-65. 

Nelson, J.I., & Frost, B.J. (1985). Intracortical facilitation among co-oriented, co-axially aligned 

simple cells in cat striate cortex. Exp Brain Res, 61 (1), 54-61. 

Nothdurft, H.C., Gallant, J.L., & Van Essen, D.C. (1999). Response modulation by texture 

surround in primate area V1: correlates of "popout" under anesthesia. Vis Neurosci, 16 (1), 15-

34. 

Olman, C.A., Ugurbil, K., Schrater, P., & Kersten, D. (2004). BOLD fMRI and psychophysical 

measurements of contrast response to broadband images. Vision Res, 44 (7), 669-83. 

Parker, A.J., & Cumming, B.G. (2001). Cortical mechanisms of binocular stereoscopic vision. Prog 

Brain Res, 134, 205-16. 

Pasupathy, A., & Connor, C.E. (1999). Responses to contour features in macaque area V4. J 

Neurophysiol, 82 (5), 2490-502. 

Pelli, D.G., Palomares, M., & Majaj, N.J. (2004). Crowding is unlike ordinary masking: 

distinguishing feature integration from detection. Journal of Vision, 4   (12), 1136-69. 

Petrov, Y., Verghese, P., & McKee, S.P. (2006). Collinear facilitation is largely uncertainty 

reduction. Journal of Vision, 6 (2), 170-78. 



20 

 

Pettet, M.W., McKee, S.P., & Grzywacz, N.M. (1996). Smoothness constrains long-range 

interactions mediating contour-detection. Investigative Ophthalmology and Visual Science, 37, 

4368. 

Pettet, M.W., McKee, S.P., & Grzywacz, N.M. (1998). Constraints on long-range interactions 

mediating contour-detection. Vision Research, 38 (6), 865-79. 

Polat, U. (1999). Functional architecture of long-range perceptual interactions. Spatial Vision, 12, 

143-62. 

Polat, U., & Bonneh, Y. (2000). Collinear interactions and contour integration. Spatial Vision, 13 

(4), 393-401. 

Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T., & Norcia, A.M. (1998). Collinear stimuli 

regulate visual responses depending on cell's contrast threshold. Nature, 391 (6667), 580-4. 

Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: suppression and 

facilitation revealed by lateral masking experiments. Vision Research, 33 (7), 993-99. 

Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. Vision Research, 

34 (1), 73-8. 

Rainer, G., Augath, M., Trinath, T., & Logothetis, N.K. (2002). The effect of image scrambling on 

visual cortical BOLD activity in the anesthetized monkey. Neuroimage, 16 (3 Pt 1), 607-16. 

Rosenholtz, R., Twarog, N.R., Schinkel-Bielefeld, N., & Wattenberg, M. (2009). An intuitive model 

of perceptual grouping for HCI design. Proceedings of the 27th international conference on 

Human factors in computing systems (pp. 1331-40). 

Sigman, M., Cecchi, G.A., Gilbert, C.D., & Magnasco, M.O. (2001). on a common circle:natural 

scenes and gestalt rules. Proc. Nat. Acad. Sci. USA, 98 (4), 1935-40. 

Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms 

detecting focal orientation discontinuities. Nature, 378, 492-96. 

Singer, W., & Gray, C.M. (1995). Visual feature integration and the temporal correlation 

hypothesis. Annu Rev Neurosci, 18, 555-86. 

Smits, J.T., & Vos, P.G. (1987). The perception of continuous curves in dot stimuli. Perception, 16 

(1), 121-31. 

Stemmler, M., Usher, M., & Niebur, E. (1995). Lateral interactions in primary visual cortex: A 

model bridging physiology and psychophysics. Science, 269, 1877-80. 

Stettler, D.D., Das, A., Bennett, J., & Gilbert, C.D. (2002). Lateral connectivity and contextual 

interactions in macaque primary visual cortex. Neuron, 36   739-50. 

Tanskanen, T., Saarinen, J., Parkkonen, L., & Hari, R. (2008). From local to global: Cortical 

dynamics of contour integration. J Vis, 8 (7), 15 1-12. 

Uttal, W.R. (1983). Visual form detection in 3-dimentional space.  (Hillsdale, NJ: Lawrence 

Erlbaum. 

van den Berg, R., Roerdink, J.B.T.M., & Cornelissen, F.W. (2010). A neurophysiologically plausible 

population code model for feature integration explains visual crowding. PLoS Computational 

Biology, 6 (1) 

Wagemans, J. (1995). Detection of visual symmetries. Spat Vis, 9 (1), 9-32. 

Watt, R., Ledgeway, T., & Dakin, S.C. (2008). Families of models for gabor paths demonstrate the 

importance of spatial adjacency. Journal of Vision, 8 (7), 1-19. 

Weliky, G.A., Kandler, K., Fitzpatrick, D., & Katz, L.C. (1995). Patterns of excitation and inhibition 

evoked by horizontal connections in visual cortex share a common relationship to orientation 

columns. Neuron, 15, 541-52. 



21 

 

Williams, C.B., & Hess, R.F. (1998). The relationship between facilitation at threshold and 

suprathreshold contour integration. Journal of the Optical Society of America, A, 15 (8), 2046-

51. 

Yen, S.-C., & Finkel, L.H. (1998). Extraction of perceptually salient contours by striate cortical 

networks. Vision Research, 38, 719-41. 

Zhaoping, L., & May, K.A. (2007). Psychophysical tests of the hypothesis of a bottom-up saliency 

map in primary visual cortex. PLoS Computational Biology, 3 (4) 

Zhou, Y.X., & Baker, C.L., Jr. (1993). A processing stream in mammalian visual cortex neurons for 

non-Fourier responses. Science, 261 (5117), 98-101. 

Zipser, K., Lamme, V.A.F., & Schiller, P.H. (1996). Contextural modulation in primary visual 

cortex. J. Neurophysiol., 16, 7376-89. 

 

 


