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Abstract

We proposed a new model of illusory contour formation based on the properties of dendritic computation. The basic elements of the
network are a single-excitatory cell with two dendritic branches and an inhibitory cell. Both dendritic branches behave as an independent
linear unit with a threshold. They sum all excitatory input from the nearby collinear cells, and the inhibition from one collateral of the
corresponding inhibitory cell. Furthermore, the output of dendritic branches multiplicatively interacts before it is sent to the soma. The
multiplication allows the excitatory cell to be active only if both of its branches receive enough excitation to reach the threshold.
Computer simulations showed that the presented model of the illusory contour formation is able to perform perceptual grouping of
nonadjacent collinear elements. It shows a linear response relationship with the input magnitude because dendritic inhibition counteracts
recurrent excitation. The model can explain why illusory contours are stronger with irregular placement of inducing elements rather than

regular placement and why top-down influences may prevent the illusory contour formation.
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1. Introduction

Illusory (or subjective) contours are vivid percepts of
lines between the inducing elements that do not have
support in physical stimulation. They give rise to even
more complex illusory figures such as Kanizsa square
(Fig. 1a) or Ehrenstein figure (Fig. 1b) [1]. Neurophysio-
logical investigations showed that many neurons in a
monkey V2 cortex are sensitive to illusory contours. That
is, neurons respond as if the real contour is presented in
their receptive field. These neurons respond to real
contours as well and they show similar orientation tuning
curves for real and for illusory contours. Therefore, they
could not distinguish between real and illusory contours.
Later it was found that the strength of their response
depends linearly on the size of the illusory line or the
number of inducing elements up to a saturation point [2].
Psychophysical investigations with humans also revealed
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graded strength or clarity of illusory contours with the
relative size of inducing elements [3].

How is sensitivity to the illusory contour formed in the
neural tissue? Grossberg and Mingolla [4] proposed a
model of boundary contour system (BCS), which is able to
perform perceptual grouping. BCS is a two-dimensional
network that simulates properties of neurons observed in
the primary visual cortex including simple, complex, and
hyper complex neurons. In order to explain illusory
contour formation, they introduce a bipole cell that forms
the illusory contour. The bipole cell is modelled as a
recurrent excitatory network that computes the logical
AND function between two collinear but spatially sepa-
rated parts (or poles) of their receptive field. Bipole cells
receive input from a network of complex cells that compete
with each other in order to achieve a sharp contour
detection. However, the model was not able to simulate the
finding that the strength of illusory contour varies with
input amplitude or number of inducing elements. The
model also does not account for the fact that strength of
the illusory contour depends on the placement of inducing
elements. Irregular lines produce stronger impression of the
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Fig. 1. Illusory figures: (a) Kanizsa square, (b) Ehrenstein figure; illusory
contours formed by (c) regular inducers or (d) irregular inducers.

illusory contour (Fig. 1d) than regular inducing lines
(Fig. 1c) [S]. Furthermore, illusory contour formation is
not an obligatory process and it could be prevented by
cognitive or top-down influences [1]. Moreover, attention
may prevent collinear interaction between neighbouring
line segments [0].

2. Model description

In this paper, we propose a new model of bipole cells and
show how is illusory contour formed based on the
properties of dendritic computation [7]. We suggest that
the bipole cells use dendritic inhibition in order to achieve
analogue sensitivity to the input magnitude [8]. First,
bipole cells sum inputs along its dendritic branches.
Outputs from dendritic branches multiplicatively interact
(logical AND computation) before they reach cell’s body.
Therefore, bipole cell will become active only if both
dendritic branches receive enough stimulation. When it is
active, bipole cell sends inhibition to its dendritic branches
in order to reduce the effect of recurrent excitation. In this
way, the proposed model is able to group collinear
elements into the illusory contour with analogue sensitivity
to input magnitude.

The basic elements of the network are an excitatory cell
with two dendritic branches and an inhibitory cell (Fig. 2).
The excitatory cell (empty circle in Fig. 2) receives
recurrent input from other excitatory cells, whose receptive
fields are collinear with it and, therefore, forming a
recurrent excitatory network (horizontal arrows at the
top of the Fig. 2). Also it sends signal to other excitatory
cells and to the inhibitory cell (filled circle in Fig. 2).
Excitatory and inhibitory cells are modelled as continuous-
time linear units with a threshold. The inhibitory cell has
two collaterals which contacts dendritic branches of the
excitatory cell. Both dendritic branches behave as an
independent linear unit with a threshold. They summed all
excitatory input from nearby collinear cells, and the
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Fig. 2. A model of the illusory contour formation based on the properties
of dendritic computation.

inhibition from one collateral of the corresponding inhibi-
tory cell. The branches also receive direct input from a
complex cell at corresponding locations. Furthermore, the
output of dendritic branches multiplicatively interacts before
it is sent to the soma. The multiplication allows excitatory
cell to be active only if both of its branches receive enough
excitation to reach the threshold. The excitatory cell must
receive suprathreshold activation from both sides because
illusory contours are possible only if at least two inducing
elements are present. Therefore, basic property of the bipole
cell is achieved using the dendritic multiplication.

We also introduced two different spatial scales in order
to achieve smooth contour representation. The large-scale
bipole cells detect the presence of the illusory contour.
Their output is sent to the small-scale cells that smooth the
contour by local recurrent interactions. Formally, the
network is described as

dXL,'
TR AixLi+f ;g(xl‘p)wlip + Iiwyi; — h(yL;)
xf lz gxLwiiy + Liwi — h(yLy) |, (1)
q
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2= —yLi+ Wiag(xLy) + TD:. @)

Term xL; denotes activity of the large-scale bipole cell at
the spatial location i and yL; is activity of the correspond-
ing inhibitory cell. The parameter A4 describes passive decay
that drives the cell toward the zero when no input is
presented. Function f{) describes output of the computa-
tion from a single dendritic branch. In the simplest case it is
given by

fla]l = max[a — Tr,0]", 3)
where Tr is a threshold, and »n could be smaller, larger or

equal to 1. We also studied model behaviour with a more
complex and biologically more realistic sigmoid function

1
Slal = 1T+eBa0O° 4)

Functions ¢() and /() describe an output from the
excitatory and the inhibitory cells, respectively. They are
defined as linear above threshold as shown in Eq. (3) with
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n = 1. Feedforward input is denoted with I; and the
recurrent excitatory input is denoted with x, and x, where
indices p and ¢ describes the left and the right pole of the
bipole cell. Indices are given by p={;: 1, ..., j<i} and
qg=1{j:j>1i, ..., N} and N is a network dimension. Term,
wy;, denotes strength of excitatory feedback and, w;;, denote
strength of feedforward excitatory connections. Recurrent
connections are described with Gaussian fall-off from the
centre of the receptive field

D (r—iy
Wi = WGXP {— } s ®)

2no?

where r is either p or ¢, D is amplitude and o is a spatial
spread of the Gauss kernel. Wj; denotes strength of
excitatory to the inhibitory connection. The multiplication
between two dendritic branches is denoted with x sign. In
Eq. (2), term TD; describes top-down influences on
inhibitory cells which could prevent collinear contour
grouping.
The small-scale bipole cells x.S; are given by
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and their corresponding inhibitory cells yS; are given by
dyS;
2= i Waig(eS) + TD; ™
The small-scale bipole cells receive input from the large-
scale bipole cells. Their lateral connections are restricted to
the nearest neighbours. Therefore, p = i—1 and ¢ =i+ 1.

3. Results

In order to test properties of the proposed network, we
performed computer simulations by solving a set of
nonlinear differential equations (Fig. 3). For simplicity,
we ignored the second spatial dimension. Also, we ignored
computations in the retina and the primary visual cortex.
Instead, we focused on the properties of recurrent
excitatory network and its ability to connect nonadjacent
input signals into a unique perceptual group. The model
parameters were set to: N=30; A4, =.1; A4,=.001;
D=150; =10, Wyi= Wyi=1, wy=.8; wyi=.2;
Wajp = Woiy = 1 for all i. Output functions f{), g() and A()
are described as threshold linear (Eq. (3)) with 7r = 0 and
n = 1. First, we showed that the model cells indeed behave
as the bipole cells because they do not respond when one of
its poles do not receive stimulation (Fig. 3a, dotted line).
Furthermore, computer simulations revealed that proposed
network is sensitive to the input magnitude as shown by
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Fig. 3. Computer simulations illustrating the network behaviour.
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different responses to different input magnitude of the right
inducer (Fig. 3a, solid and dashed lines). Fig. 3b shows a
linear relationship between the number of inducing
elements and excitatory cell response. In this simulation,
inducers are added from the middle two toward ends. In
this way, we simulate the neurophysiological experiment
described in [2] showing increase in cell’s response with
increase in the number of inducing elements. These
simulations illustrate that the input magnitude could be
defined either as a strength of individual contour elements
or as a number of contour elements within the same
dendritic branch. In both cases, cell response increases with
input magnitude.

We also simulated the difference in strength or clarity of
the illusory contour for regular or irregular placement of
the inducing elements described by Gillam [5] (Fig. 3c).
With irregular placement of the inducing elements some of
the bipole cells will receive stronger input because the
competition between the complex cells is distance depen-
dent. Consider a case in which certain inducing element is
isolated or placed far apart from other elements. The
complex cell positioned over it will receive less inhibition
compared to other complex cells. This situation is
illustrated in the input vector of Fig. 3¢ (dashed line). On
the other hand, with regular placement of the inducing
elements, all complex cells will receive the same amount of
inhibition (Fig. 3c, solid line). Due to the fact that the
distance between regularly spaced elements is smaller than
the distance between the most isolated elements in irregular
arrangement, the total amount of inhibition will be greater
with regular placement of elements. A strong inhibition
between complex cells will provide weaker input to the

bipole cells and consequently lead to weaker illusory
contour when stimulus is a regular set of inducing
elements.

According to Grossberg and Mingolla [4], illusory
contour formation is an obligatory process that always
produces strong contour. However, Albert [9] showed
examples where illusory contours are weak or absent
despite the existence of collinear inducers (e.g., when
crosses are used as inducers in Fig. 1a). We suggest that the
top-down influences (attending to or recognizing certain
perceptual groupings) may reduce the strength of the
illusory contour. This may happen because inducers could
be recognized as independent figures (e.g., crosses) or they
could draw attention to itself due to their symmetry or
parallelism. The top-down influence on illusory contour
formation and on collinear facilitation is explained in the
presented framework by the operation of the inhibitory
cells. We may assume that inhibitory cell receives excitation
from higher visual centres when attention is directed in the
part of the visual scene where its receptive field is located.
This is described by the term 7D in Eq. (2). The inhibitory
cell will distribute this top-down signal to the dendritic
branches of the corresponding excitatory cell and effec-
tively raise their threshold for activation. If top-down
signal is sufficiently strong it will completely prevent
formation of the illusory contour and cells show no
response although both parts of its receptive fields are
stimulated. This may occur when a stronger perceptual
grouping overrides the illusory figure [1,9]. The same
mechanism also helps to explain why attention prevents
collinear contour facilitation as observed by Ito and
Gilbert [6].
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Fig. 4. Parametric simulations with different dendritic output functions f{). (a) Power function with exponent n = .5 (solid line), 1 (dashed line), or 2
(dash-dotted line). (b) Sigmoid output function with C = .5 (solid line), 1 (dashed line), or 2 (dash-dotted line).
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We checked the robustness of the model in parametric
simulations shown in Fig. 4. First, we studied how the
network behaves with a different setting of exponent » in
Eq. (3), which describes the output function f{) of the
dendritic branches. Fig. 4a showed cell responses of a
large-scale bipole cell, xL; as a function of the input
strength for n = .5 (solid line), 1 (dashed line), and 2 (dash-
dotted line). In these simulations, the input vector
represents real contour which has the same value at all
spatial locations i. All other parameters are set to the same
values as in the simulations shown in Fig. 3. As can be seen,
the model shows the linear response to the input magnitude
when the dendritic output function is linear or slower
then linear. For the faster then linear output function,
response becomes linear at higher input magnitudes. In
Fig. 4b we showed that the analogue sensitivity is not
preserved for the sigmoid output function (Eq. (4)) with
B =2 and C=.5 (solid line), 1 (dashed line), or 2 (dash-
dotted line).

Furthermore, we studied the model behaviour when the
strength of synaptic weights between excitatory cells (w;;)
or excitatory and inhibitory cells (W;,) are systematically
varied (not shown). For simplicity, we set all w; to be of
equal strength. The basic finding is that the model achieves
analogue sensitivity as long as the synaptic weights between
the excitatory cells are kept weaker than the weights
between the excitatory and the inhibitory cells. When W,
is set to 0, an unbounded growth of excitatory activity is
observed. We also showed that the network behaviour is
not altered when the excitatory and the inhibitory cells
have nonlinear output functions or when a more complex
neuron model is used instead of a simple linear threshold
unit (i.e., nonlinear shunting model). Also, the introduction
of direct inhibition between bipole cells through a separate
population of inhibitory cells does not disrupt analogue
sensitivity. It is interesting to note that in all simulations
the network converges to a fixed point, and it does not
engage in oscillatory behaviour as in the models of contour
integration proposed by Li [10], and Yen and Finkel [11].
This result suggests that the dendritic computation
increases the dynamic stability of the recurrent excitator-
y—inhibitory networks.

4. Discussion

The proposed model of bipole cells is based on proper-
ties of the dendritic computation. Recent neurophysiolo-
gical and theoretical investigations showed that dendrites
are not passive neuron’s eclements. Rather, they actively
integrate incoming signals and behave as independent
computational units with their own input—output functions
[12]. Based on these findings, London and H&usser [7]
proposed a dendritic toolkit; a set of computational
mechanisms that dendrites could perform. Among them
is multiplication or coincidence detection between different
dendritic branches. Here, we proposed that the dendritic
multiplication is responsible for a generation of the illusory

contour. We also used local interaction between excitation
and inhibition on isolated dendritic branches in order to
achieve the MAX function computation. In [13], it is
shown that feedforward dendritic inhibition allows com-
putation of MAX function on cell’s input. Here, a
recurrent extension of the network with dendritic inhibition
is used. A disadvantage of the proposed model is that a
desirable behaviour is achieved when the output of a single
dendritic branch is linear above threshold. On the other
hand, theoretical analysis of the detailed model of the
pyramidal neuron suggests sigmoid output function as a
better description for dendrites [7].

In conclusion, the presented model of the illusory
contour formation is able to perform perceptual grouping
of nonadjacent collinear segments. It shows a linear
response relationship with input magnitude because the
dendritic inhibition regulates the signal flow and prevents
unbounded growth of activity in the recurrent excitatory
network [8]. Analogue sensitivity is achieved under a wide
variety of parameter settings and input—output functions as
shown in parametric simulations. The model can explain
why illusory contours are stronger with irregular placement
of inducing elements rather than regular placement and
why the attention or other top-down signals may prevent
the illusory contour formation. These findings could not be
modelled with a recent extension of the BCS proposed by
Grossberg and Raizada [14] and with the model of V1-V2
interaction proposed by Neumann and Sepp [15].
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