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Abstract

Recent psychophysical investigations showed that humans have the ability to compute the mean size of a set of visual objects. The

investigations suggest that the visual system is able to form an overall, statistical representation of a set of objects, while the information

about individual members of the set is lost. We proposed a neural model that computes the mean size of a set of similar objects. The

model is a feedforward, two-dimensional neural network with three layers. Computer simulations showed that the presented model of

statistical processing is able to form abstract numerical representation and to compute the mean size independently from the visual

appearance of objects. This is achieved in a fast, parallel manner without serial scanning of the visual field. The mean size is computed

indirectly by comparing the total activity in the input layer and in the third layer. Therefore, the information about the size of individual

elements is lost. An extended model is able to hold statistical information in the working memory and to handle the computation of the

mean size for surfaces with empty interiors.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The visual system is confronted with a multitude of
objects in everyday environment. How does the visual
system cope with this complexity when it is probed to
compute the size of objects? Recent psychophysical
investigations suggest that humans are able to compute
the mean size of a set of similar objects presented visually
[1,4,5]. Ariely [1] used a set of dots with different radius in a
member identification task and in a mean discrimination
task. In the member identification task, the participants
were asked to judge whether a test dot was presented in a
set of dots. In the mean discrimination task, the
participants were asked to judge whether the test dot
represents an average dot size in the set. A surprising
finding was that the participants were able to accurately
solve the mean discrimination task but had difficulty with
the member identification task. It suggests that the visual
system is able to form an overall, statistical representation
of a set of objects, while the information about individual
e front matter r 2006 Elsevier B.V. All rights reserved.
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members of the set is lost. In a detailed analysis of this
finding, Chong and Treisman [4,5] showed that the
statistical analysis of the size is performed in a fast, parallel
manner without serial scanning. They also showed that the
visual system actually computes the mean size and not the
median.
How is statistical processing implemented in the brain?

In this report, it is argued that a model of number detection
and discrimination proposed by Domijan [9] can account
for observed properties of the visual statistical processing.
The model was intended to explain how abstract repre-
sentation of numbers arises in a neural network. Such
representation is not sensitive to the position of objects,
their size or density, or any other visual properties. The
model was able to simulate properties of number sensitive
neurons discovered in the prefrontal cortex of monkeys
[16]. Also, the model simulates the results from psycho-
physical investigations of the number discrimination [7].
2. Model description

The model is a feedforward, two-dimensional neural
network with three layers. It is assumed that all required
computations are feedforward in order to achieve the rapid
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formation of numerical representation and to avoid
dynamic complexities associated with recurrent networks.
Therefore, the model is described in an algebraic form but
it can be easily transformed into a real-time form.

The first layer is an input layer defined as I ij ¼ 1 if an
object occupies location fi; jg or I ij ¼ 0 if that location is
empty. It roughly corresponds to the striate cortex where
the surface representation is formed. The dimensions of the
network are denoted with i ¼ 1,y,M and j ¼ 1,y,N.
The second layer employs two mechanisms: gradient
synaptic weights and dendritic multiplication. Signals from
the first layer are differentially weighted depending on their
spatial position in the network, meaning that every
location in the network receives a unique amount of tonic
activation. Furthermore, the input activity is convolved
with Gaussian kernels which models properties of neurons
in the parietal cortex. The total node activity is multiplied
by a corresponding node in the input layer. Dendritic
multiplication prevents interference from the nodes that do
not represent objects but are active due to the activation in
the neighbourhood. The multiplication simply silences
them because they do not receive direct support from the
input layer. Both mechanisms are necessary for obtaining a
proper transformation from the visual input to the number
representation as shown by computer simulations in [9].

Formally, activity of the node in the second layer, xij , at
spatial position fi; jg are given by

xij ¼ I ij �
X

m

X
n

GmnijImn þW ijJ

" #
. (1)

The nodes in the second layer compute Gaussian
weighted sum of their input. Gaussian kernel, Gmnij, is
given by

Gmnij ¼
1

2ps2
exp �

ðm� iÞ2 þ ðn� jÞ2

2ps2

� �
. (2)

The size of the receptive field or the spatial spread is
defined by a standard deviation of Gaussian kernel, s. The
nodes in the second layer also receive a tonic input or bias,
J, which is multiplied by synaptic weights, Wij, defined as

W ij ¼ 0:5 i þ j � 1ð ÞN½ �=NM. (3)

The tonic input generates a gradient of activity values
where every spatial location receives a unique amount of
excitation. Synaptic weights, Wij, are normalized by NM in
order to prevent excessive amount of activation in net-
works with large dimensions. The tonic input endows the
nodes with small differences in the activity in the case
where the neighbouring nodes receive the same amount of
excitation from their receptive fields. This can occur with
large objects that can cover the whole receptive field of
several nodes. It could be considered as a spatial code
which provides every location with a unique activity level.
Dendritic multiplication between the total excitation
(receptive field input plus tonic input) and the input signal,
Iij, at the corresponding location is denoted with an �
sign.
The third layer nodes, yij, described as

yij ¼ f xij

� �
�
X

p

X
q

f xpq � xij

� �
(4)

compute the winner-takes-all (WTA) function, restricted to
the four nearest neighbour locations, p and q, defined as
{(i�1, j), (i+1, j), (i, j�1), (i, j+1)}. The rectified output of
the third layer, Yij, is given by

Y ij ¼ g yij

h i
. (5)

The function f( ) is defined as f(a) ¼ 1 if a40 and f ðaÞ ¼

0 if ap0 and function g( ) is a linear threshold defined as
gðaÞ ¼ a if a40 and gðaÞ ¼ 0 if ap0. The third layer
computes the activity differences between the neighbouring
nodes and allows only the locally most active nodes to
survive the competition and to represent objects. The
particular node will remain active only if it receives
stronger input than its immediate neighbours. One
neighbour node with larger activity will be sufficient to
inhibit the node below its firing threshold. In the third
layer, every object is represented by a single node, which
enables computation of the input numerosity. The activity
difference is computed using the presynaptic inhibition
from the target node to the inhibitory axons from the
neighbouring nodes. The physiological substrate for this
feedforward presynaptic inhibition is a glutamate trans-
mitter spill-over on the presynaptic GABA receptors on the
nearby inhibitory axons [2].
3. Results

The network behaviour is tested using computer simula-
tions shown in Fig. 1. The network dimensions were
M ¼ 50, N ¼ 50, and the standard deviation of Gaussian
kernel was set to s ¼ 4. Instead of disks, we used squares as
the input objects. Columns in Fig. 1 depict different
network layers and the rows show network responses to
different input configurations. The first column denotes the
input. The second column shows the second layer activa-
tion after the convolution of the input with Gaussian
kernel. The third column indicates the second layer
activation after the dendritic multiplication takes place,
which removes some of the noise in the network activation.
It is an important step for an adequate object representa-
tion. Otherwise, more than one node may be active for a
single object in the third layer, whose activation is
illustrated in the fourth column. The top row in Fig. 1.
shows the network ability to extract invariant number
representation from the input with many objects of
different sizes. The middle row in Fig. 1. shows that the
network is robust with respect to the change in the size of
the receptive fields in the second layer and with respect to
changes in the input density. Here, s ¼ 6 and objects are
rearranged so as to be maximally close to each other.
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Fig. 1. Computer simulations of the proposed network architecture for the statistical processing of the visual input. The columns denote different network

layers and computations. The rows denote the network response to different input configurations. G—convolution with Gaussian kernel. DM—dendritic

multiplication.
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The bottom row in Fig. 1. illustrates the network limitation
when it is confronted with geometrically more complex
objects which have empty interiors. In this case, the
network is not able to achieve the proper representation
of input numerosity.

With several additions, the model can be applied to the
statistical processing of size. If we assume that there exists a
node that computes the sum of activation in the third layer
and a separate node that computes the sum of activation in
the input layer, then, the ratio between activities of these
two nodes represents a mean size of a set of objects. These
nodes simply count the number of active nodes in the
corresponding layers because in both layers only two
values are possible (0 for empty location and 1 for location
occupied by the object). Formally, they are described as

I ¼
X

i

X
j

I ij ; Y ¼
X

i

X
j

Y ij . (6)

Furthermore, we may assume that there is a third node
which computes the ratio of output of two summation
nodes in order to provide information about the mean size.
Ratio computation is possible in a simple neuron model
with divisive or shunting inhibition [3,12]. For example,
consider a node, z, defined by the following equation:

dz

dt
¼ �Azþ I � zY . (7)

The node z receives excitation from the I node, and
inhibition from the Y node. Inhibition multiplicatively
interacts with the activity of the node z. The parameter A

describes a passive decay of activity. Due to the fact that
this is a feedforward model, the node z will quickly reach
an equilibrium dz=dt ¼ 0 and the steady-state solution is
given by

z ¼
I

Aþ Y
(8)

which is proportional to the ratio I=Y [12]. With A5Y , the
node z computes the exact mean size. We hypothesize that
the read-out of the mean size information could occur in
the parietal or the prefrontal cortex where the number
sensitive neurons are discovered. The same neurons could
respond to statistical information also. The computation of
the mean size is achieved indirectly without explicit
computation of the size of individual elements in the set.
Consequently, the model is not able to solve the member
identification task which is consistent with experimental
findings. The mean computation is fast because it is based
on the feedforward network and it does not require serial
scanning of the visual input.
Although the model is conceptualized as a feedforward

network, it is possible to include self-excitatory connections
in order to sustain activity in the third layer after the input
vanishes. Due to the fact that single nodes are used to
represent object locations, it is sufficient to include only the
self-excitation (without the recurrent collaterals to other
nodes) which will drive the node to the saturation level and
keep it active until external reset is issued. The model
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should be able to sustain activity because in the mean
identification task, the presentation of a set of objects and a
test object is made sequentially. Moreover, Chong and
Treisman [4] observed no difference in performance with
an increased temporal gap between the presentation of the
set of objects and the test object indicating that statistical
representation was held in the working memory.

It should be noted that Chong and Treisman [4,5] used
open circles instead of filled circles in their experiments.
Open circles pose a challenge to the present model because
it is designed to operate on filled surfaces. This is illustrated
in Fig. 1 (bottom row) where it is shown that the third layer
greatly overestimates the number of objects when the
surface interiors are empty. However, the model could be
augmented with a pre-processing stage, which segment the
interior of the circles as separate surfaces than background.
This is possible in a model of visual segmentation proposed
by Domijan [10]. The segmentation network assigns
different activity level to the nodes that represent different
surfaces or objects while the nodes that code the same
surfaces obtain the same activity level due to the activity
spreading through the local excitatory connections. How
this is achieved is illustrated in Fig. 2. The input to the
segmentation network (Fig. 2a) is same as in the Fig. 1
(bottom row). The segmentation network is initialized with
the gradient of activity values similar to the weight gradient
used in Eq. (3) (Fig. 2b). After the convergence, every
surface is labelled with a unique activity label. Activity
values are uniformly spread along the whole surfaces
(Fig. 2c). Background locations receive the largest possible
Fig. 2. Computer simulation of the segmentation network: (a) input;

(b) initial state of the network; (c) network activity after the convergence;

(d) inverse transformation which removes the background and retains

the object representation.
activity value and they are easily distinguished from other
surfaces. An inverse transformation of activity values in the
segmentation network enables formation of representation
where the background is assigned the value of zero and all
squares along with their interiors are represented with the
value of one (Fig. 2d). Such a representation is appropriate
as an input for the network for statistical processing.

4. Discussion

The proposed model is based on several biophysically
realistic mechanisms. The assumption that synaptic weights
could be a function of spatial locations has been previously
used in models of sensorimotor transformations and in the
target selection in the parietal cortex. For instance, Groh
[11] used the simple linear function between weights and
locations in a model of transformation from the sensory
place code to the motor rate code. In a model of target
selection, Hahnloser et al. [14] introduced pointer neurons
which redirect activity in the recurrent network according
to the attentional demands. The pointer neurons made
excitatory connections with the other neurons. Synaptic
weights of excitatory connections are assumed to depend
on the spatial location in order to achieve smooth
transitions between targets.
A multiplicative interaction is assumed to occur between

different dendritic branches. In a recent computational
study of synaptic integration in a dendritic tree, Poirazi
et al. [17] discovered that the sum of independent sigmoid
functions is a good approximation of the input–output
relations in a pyramidal neuron. However, they ignored
interactions between distal and proximal dendritic
branches, which are better described with multiplication.
Therefore, Häusser and Mel [15] argued for a more
elaborate three-layer model of dendritic integration with
the summation in the first layer and the multiplication in
the second layer before the output is sent to the soma of the
neuron.
The presynaptic inhibition has been previously used in

the computational study of the WTA function where it is
implemented as a recurrent network. Yuille and Grzywacz
[18] found that their network exhibited sensitivity to initial
conditions, that is, the network was not able to reset itself
when new input had been presented. Furthermore, the
WTA is obtained only by biophysically unrealistic assump-
tions about the network connectivity. On the other hand,
the proposed model implements presynaptic inhibition as a
feedforward mechanism and therefore avoids problems
associated with recurrent networks such as dynamic
instabilities and insensitivity to the input fluctuations.
Also, synaptic weights of the unit strength are sufficient to
obtain the WTA behaviour without losing precision. The
presynaptic inhibition mediated by the glutamate spill-over
from the excitatory node to the axons of the inhibitory
interneurons has been discovered recently in the ventroba-
sal thalamus of rats [2]. Axonal terminals of the inhibitory
interneurons in the thalamus are endowed with kainate
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glutamergic receptors, whose activation depresses the
GABA release.

The presented model of computing the statistical
description of the visual input is a simple extension of the
model of the number discrimination proposed by Domijan
[9]. The model has several advantages over other models of
numerical processing. It does not depend on the serial
scanning of the input as the model by Grossberg and Repin
[13]. It uses a single spatial scale which does not confuse
single large object with many small ones, as it is possible in
a multi-scale model by Changeux and Dehaene [6]. Here we
showed that the same model could be applied in the
modelling of the mean size discrimination task. Therefore,
the model makes a testable prediction that during the
statistical processing of the size, the same parietal circuit is
employed as for computing of the approximate numerical
magnitude. In other words, the mean-size computation will
activate an intraparietal sulcus which is known to be
involved in a neural representation of the mental number
line. This activation is distinguished from the activation of
the parietal cortex during serial scanning of the input
guided by attention which involves the posterior superior
parietal cortex [8]. A potential concern with the model is
that it utilized different computational mechanisms at
every network stage. It is an open research question
whether it is possible to obtain the same results in a more
uniform architecture.

In conclusion, the model of numerical processing is able
to compute the mean size of a set of similar objects. This is
achieved in a fast, parallel manner without serial scanning
of the visual field. The mean size is computed indirectly by
comparing the total activity in the input layer and in the
third layer. Therefore, the information about the size of
individual elements is not represented while the mean size
of a set is computed. The extended model is able to hold
statistical information in the working memory and to
handle computation of the mean size for open circles as
well. The model employs several biophysically realistic
mechanisms such as gradient synaptic weights, dendritic
multiplication, divisive inhibition, and presynaptic inhibi-
tion by the glutamate spill-over.
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