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Abstract

Figure/ground assignment, in which the visual image is divided into nearer (figu-
ral) and farther (ground) surfaces, is an essential step in visual processing, but its
underlying computational mechanisms are poorly understood. Figural assignment
(often referred to as border ownership) can vary along a contour, suggesting a
spatially distributed process whereby local and global cues are combined to yield
local estimates of border ownership. In this paper we model figure/ground estima-
tion in a Bayesian belief network, attempting to capture the propagation of border
ownership across the image as local cues (contour curvature and T-junctions) in-
teract with more global cues to yield a figure/ground assignment. Our network
includes as a nonlocal factor skeletal (medial axis) structure, under the hypothesis
that medial structure “draws” border ownership so that borders are owned by the
skeletal hypothesis that best explains them. We also briefly present a psychophys-
ical experiment in which we measured local border ownership along a contour at
various distances from an inducing cue (a T-junction). Both the human subjects
and the network show similar patterns of performance, converging rapidly to a
similar pattern of spatial variation in border ownership along contours.

Figure/ground assignment (further referred to as f/g), in which the visual image is divided into nearer
(figural) and farther (ground) surfaces, is an essential step in visual processing. A number of fac-
tors are known to affect f/g assignment, including region size [9], convexity [7, 16], and symmetry
[1, 7, 11]. Figural assignment (often referred to as border ownership, under the assumption that the
figural side “owns” the border) is usually studied globally, meaning that entire surfaces and their
enclosing boundaries are assumed to receive a globally consistent figural status. But recent psy-
chophysical findings [8] have suggested that border ownership can vary locally along a boundary,
even leading to a globally inconsistent figure/ground assignment—broadly consistent with electro-
physiological evidence showing local coding for border ownership in area V2 as early as 68 msec
after image onset [20]. This suggests a spatially distributed and potentially competitive process of
figural assignment [15], in which adjacent surfaces compete to own their common boundary, with
figural status propagating across the image as this competition proceeds. But both the principles and
computational mechanisms underlying this process are poorly understood.
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In this paper we consider how border ownership might propagate over both space and time—that is,
across the image as well as over the progression of computation. Following Weiss et al. [18] we
adopt a Bayesian belief network architecture, with nodes along boundaries representing estimated
border ownership, and connections arranged so that both neighboring nodes and nonlocal integrating
nodes combine to influence local estimates of border ownership. Our model is novel in two particular
respects: (a) we combine both local and global influences on border ownership in an integrated and
principled way; and (b) we include as a nonlocal factor skeletal (medial axis) influences on f/g
assignment. Skeletal structure has not been previously considered as a factor on border ownership,
but its relevance follows from a model [4] in which shapes are conceived of as generated by or
“grown” from an internal skeleton, with the consequence that their boundaries are perceptually
“owned” by the skeletal side.

We also briey present a psychophysical experiment in which we measured local border ownership
along a contour, at several distances from a strong local f/g inducing cue, and at several time delays
after the onset of the cue. The results show measurable spatial differences in judged border owner-
ship, with judgments varying with distance from the inducer; but no temporal effect, with essentially
asymptotic judgments even after very brief exposures. Both results are consistent with the behavior
of the network, which converges quickly to an asymptotic but spatially nonuniform f/g assignment.

1 The Model

The Network. For simplicity, we take an edge map as input for the model, assuming that edges
and T-junctions have already been detected. From this edge map we then create a Bayesian belief
network consisting of four hierarchical levels. At the input level the model receives evidence E
from the image, consisting of local contour curvature and T-junctions. The nodes for this level are
placed at equidistant locations along the contour. At the first level the model estimates local border
ownership. The border ownership, or B-nodes at this level are at the same locations as the E-nodes,
but are connected to their nearest neighbors, and are the parent of the E-node at their location. (As a
simplifying assumption, such connections are broken at T-junctions in such a way that the occluded
contour is disconnected from the occluder.) The highest level has skeletal nodes, S, whose positions
are defined by the circumcenters of the Delaunay triangulation on all the E-nodes, creating a coarse
medial axis skeleton [13]. Because of the structure of the Delaunay, each S-node is connected to
exactly three E-nodes from which they receive information about the position and the local tangent
of the contour. In the current state of the model the S-nodes are “passive”, meaning their posteriors
are computed before the model is initiated. Between the S nodes and the B nodes are the grouping
nodes G. They have the same positions as the S-nodes and the same Delaunay connections, but to
B-nodes that have the same image positions as the E-nodes. They will integrate information from
distant B-nodes, applying an interiority cue that is influenced by the local strength of skeletal axes
as computed by the S-nodes (Fig. 1). Although this is a multiply connected network, we have found
that given reasonable parameters the model converges to intuitive posteriors for a variety of shapes
(see below).

Updating. Our goal is to compute the posterior p(Bi|I), where I is the whole image. Bi is a
binary variable coding for the local direction of border ownership, that is, the side that owns the
border. In order for border ownership estimates to be influenced by image structure elsewhere in
the image, information has to propagate throughout the network. To achieve this propagation, we
use standard equations for node updating [14, 12]. However while to all other connections being
directed, connections at the B-node level are undirected, causing each node to be child and parent
node at the same time. Considering only the B-node level, a node Bi is only separated from the
rest of the network by its two neighbors. Hence the Markovian property applies, in that Bi only
needs to get iterative information from its neighbors to eventually compute p(Bi|I). So consid-
ering the whole network, at each iteration t, Bi receives information from both its child, Ei and
from its parents—that is neigbouring nodes (Bi+1 and Bi−1)—as well as all grouping nodes con-
nected to it (Gj , ..., Gm). The latter encode for interiority versus exteriority, interiority meaning that
the B-node’s estimated gural direction points towards the G-node in question, exteriority meaning
that it points away. Integrating all this information creates a multidimensional likelihood function:
p(Bi|Bi−1, Bi+1, Gj , ..., Gm). Because of its complexity we choose to approximate it (assuming
all nodes are marginally independent of each other when conditioned on Bi) by
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Figure 1: Basic network structure of the model. Both skeletal (S-nodes) and border-ownerhsip nodes
(B-nodes) get evidence from E-nodes, though different types. S-nodes receive mere positional in-
formation, while B-nodes receive information about local curvature and the presence of T-junctions.
Because of the structure of the Delaunay triangulation S-nodes and G-nodes (grouping nodes) al-
ways get input from exactly three nodes, respectively E and B-nodes. The gray color depicts the
fact that this part of the network is computed before the model is initiated and does not thereafter
interact with the dynamics of the model.

p(Bi|Pj , ..., Pm) ∝
m∏
j

p(Bi|Pj) (1)

where the Pj’s are the parents of Bi. Given this, at each iteration, each node Bi performs the
following computation:

Bel(Bi)← cλ(Bi)π(Bi)α(Bi)β(Bi) (2)

where conceptually λ stands for bottom-up information, π for top down information and α and β
for information received from within the same level. More formally,

λ(Bi)← p(E|Bi) (3)

π(Bi)←
m∏
j

∑
Gj

p(Bi|Gj)πGj
(Bi) (4)

and analogously to equation 4 for α(Bi) and β(Bi), which compute information coming from Bi−1
and Bi+1 respectively. For these πBi−1(Bi), πBi+1(Bi), and πGj (Bi):

πGj
(Bi)← c′π(G)

∏
k 6=i

λBk
(Gj) (5)

πBi−1
(Bi)← c′β(Bi−1)λ(Bi−1)π(Bi−1) (6)
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and πBi+1
(Bi) is analogous to πBi−1

(Bi), with c′ and c being normalization constants. Finally for
the G-nodes:

Bel(Gi)← cλ(Gi)π(Gi) (7)

λ(Gi)←
∏
j

λBj
(Gi) (8)

λBj (Gi)←
∑
Bj

λ(Bj)p(Bi|Gj)[α(Bj)β(Bj)
m∏
k 6=i

∑
Gk

p(Bi|Gk)πGk
(Bi)] (9)

The posteriors of the S-nodes are used to compute the π(Gi). This posterior computes how well
the S-node at each position explains the contour—that is, how well it accounts for the cues flowing
from the E-nodes it is connected to. Each Delaunay connection between S- and E-nodes can be
seen as a rib that sprouts from the skeleton. More specifically each rib sprouts in a direction that is
normal (perpendicular) to the tangent of the contour at the E-node plus a random error φi chosen
independently for each rib from a von Mises distribution centered on zero, i.e. φi ∼ V (0, κS) with
spread parameter κS [4]. The rib lengths are drawn from an exponential decreasing density function
p(ρi) ∝ e−λSρi [4]. We can now express how well this node “explains” the three E-nodes it is
connected to via the probability that this S-node deserves to be a skeletal node or not,

p(S = true|E1, E2, E3) ∝
∏
i

p(ρi)p(φi) (10)

with S = true depicting that this S-node deserves to be a skeletal node. From this we then compute
the prior π(Gi) in such a way that good (high posterior) skeletal nodes induce a high interiority bias,
hence a stronger tendency to induce figural status. Conversely, bad (low posterior) skeletal nodes
create a prior close to indifferent (uniform) and thus have less (or no) influence on figural status.

Likelihood functions Finally we need to express the likelihood function necessary for the updat-
ing rules described above. The first two likelihood functions are part of p(Ei|Bi), one for each of
the local cues. The first one, reflecting local curvature, gives the probability of the orientations of
the two vectors inherent to Ei (α1 and α2) given both direction of figure (θ) encoded in Bi as a von
Mises density centered on θ, i.e. αi ∼ V (θ, κEB). The second likelihood function, reflecting the
presence of a T-junction, simply assumes a fixed likelihood when a T-junction is present—that is
p(T-junction = true|Bi) = θT , where Bi places the direction of figure in the direction of the oc-
cluder. This likelihood function is only in effect when a T-junction is present, replacing the curvature
cue at that node.

The third likelihood function serves to keep consistency between nodes of the first level. This func-
tion p(Bi|Bi−1) or p(Bi|Bi+1) is used to compute α(B) and β(B) and is defined 2x2 conditional
probability matrix with a single free parameter, θBB (the probability that figural direction at both
B-nodes are the same). A fourth and final likelihood function p(Bi|Gj) serves to propagate infor-
mation between level one and two. This likelihood function is 2x2 conditional probability matrix
matrix with one free parameter, θBG. In this case θBG encodes the probability that the figural direc-
tion of the B-node is in the direction of the exterior or interior preference of the G-node. In total this
brings us to six free parameters in the model: κS , λS , κEB , θT , θBB , and θBG.

2 Basic Simulations

To evaluate the performance of the model, we first tested it on several basic stimulus configurations
in which the desired outcome is intuitively clear: a convex shape, a concave shape, a pair of over-
lapping shapes, and a pair of non-overlapping shapes (Fig. 2,3). The convex shape is the simplest
in that curvature never changes sign. The concave shape includes a region with oppositely signed
curvature. (The shape is naturally described as predominantly positively curved with a region of neg-
ative curvature, i.e. a concavity. But note that it can also be interpreted as predominantly negatively
curved “window” with a region of positive curvature, although this is not the intuitive interpretation.)
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The overlapping pair of shapes consists of two convex shapes with one partly occluding the other,
creating a competition between the two shapes for the ownership of the common borderline. Finally
the non-overlapping shapes comprise two simple convex shapes that do not touch—again setting up
a competition for ownership of the two inner boundaries (i.e. between each shape and the ground
space between them). Fig. 2 shows the network structures for each of these four cases.

Figure 2: Network structure for the four shape categories (left to right: convex, concave, overlap-
ping, non-overlapping shapes). Blue depict the locations of the B-nodes (and also the E-nodes),
the red connections are the connections between B-nodes, the green connections are connections
between B-nodes and G-nodes, and the G-nodes (and also the S-nodes) go from orange to dark red.
This colour code depicts low (orange) to high (dark red) probability that this is a skeletal node, and
hence the strength of the interiority cue.

Running our model with hand-estimated parameter values yields highly intuitive posteriors (Fig. 3),
an essential “sanity check” to ensure that the network approximates human judgments in simple
cases. For the convex shape the model assigns figure to the interior just as one would expect even
based solely on local curvature (Fig. 3A). In the concave figure (Fig. 3B), estimated border own-
ership begins to reverse inside the deep concavity. This may seem surprising, but actually closely
matches empirical results obtained when local border ownership is probed psychophysically inside
a similarly deep concavity, i.e. a “negative part” in which f/g seems to partly reverse [8]. For the
overlapping shapes posteriors were also intuitive, with the occluding shape interpreted as in front
and owning the common border (Fig. 3C). Finally, for the two non-overlapping shapes the model
computed border-ownership just as one would expect if each shape were run separately, with each
shape treated as figural along its entire boundary (Fig. 3D). That is, even though there is skeletal
structure in the ground-region between the two shapes (see Fig. 2D), its posterior is weak compared
to the skeletal structure inside the shapes, which thus loses the competition to own the boundary
between them.

For all these configurations, the model not only converged to intuitive estimates but did so rapidly
(Fig. 4), always in fewer cycles than would be expected by pure lateral propagation, niterations <
Nnodes [18] (with these parameters, typically about five times faster).

Figure 3: Posteriors after convergence for the four shape categories (left to right: convex, concave,
overlapping, non-overlapping). Arrows indicate estimated border ownership, with direction pointing
to the perceived figural side, and length proportional to the magnitude of the posterior. All four
simulations used the same parameters.

5



Figure 4: Convergence of the model for the basic shape categories. The vertical lines represent the
point of convergence for each of the three shape categories. The posterior change is calculated as∑
|p(Bi = 1|I)t − p(Bi = 1|I)t−1| at each iteration.

3 Comparison to human data

Beyond the simple cases reviewed above, we wished to submit our network to a more fine-grained
comparison with human data. To this end we compared its performance to that of human subjects
in an experiment we conducted (to be presented in more detail in a future paper). Briefly, our
experiment involved finding evidence for propagation of f/g signals across the image. Subjects were
first shown a stimulus in which the f/g configuration was globally and locally unambiguous and
consistent: a smaller rectangle partly occluding a larger one (Fig. 5A), meaning that the smaller
(front) one owns the common border. Then this configuration was perturbed by adding two bars,
of which one induced a local f/g reversal—making it now appear locally that the larger rectangle
owned the border (Fig. 5B). (The other bar in the display does not alter f/g interpretation, but was
included to control for the attentional affects of introducing a bar in the image.) The inducing bar
creates T-junctions that serve as strong local f/g cues, in this case tending to reverse the prior global
interpretation of the figure. We then measured subjective border ownership along the central contour
at various distances from the inducing bar, and at different times after the onset of the bar (25ms,
100ms and 250ms). We measured border ownership locally using a method introduced in [8] in
which a local motion probe is introduced at a point on the boundary between two color regions of
different colors, and the subject is asked which color appeared to move. Because the figural side
“owns” the border, the response reflects perceived figural status.

The goal of the experiment was to actually measure the progression of the influence of the inducing
T-junction as it (hypothetically) propagated along the boundary. Briefly, we found no evidence of
temporal differences, meaning that f/g judgments were essentially constant over time, suggesting
rapid convergence of local f/g assignment. (This is consistent with the very rapid convergence
of our network, which would suggest a lack of measurable temporal differences except at much
shorter time scales than we measured.) But we did find a progressive reduction of f/g reversal with
increasing distance from the inducer—that is, the influence of the T-junction decayed with distance.
Mean responses aggregated over subjects (shortest delay only) are shown in Fig. 6.

In order to run our model on this stimulus (which has a much more complex structure than the simple
figures tested above) we had to make some adjustments. We removed the bars from the edge map,
leaving only the T-junctions as underlying cues. This was a necessary first step because our model is
not yet able to cope with skeletons that are split up by occluders. (The larger rectangle’s skeleton has
been split up by the lower bar.) In this way all contours except those created by the bars were used to
create the network (Fig. 7). Given this network we ran the model using hand-picked parameters that
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Figure 5: Stimuli used in the experiment. A. Initial stimulus with locally and globally consistent and
unambiguous f/g. B. Subsequently bars were added of which one (the top bar in this case) created a
local reversal of f/g. C. Positions at which local f/g judgments of subjects were probed.

Figure 6: Results from our experiment aggregated for all 7 subjects (shortest delay only) are shown
in red. The x-axis shows distance from the inducing bar at which f/g judgment was probed. The
y-axis shows the proportion of trials on which subjects judged the smaller rectangle to own the
boundary. As can be seen, the further from the T-junction, the lower the f/g reversal. The fitted
model (green curve) shows very similar pattern. Horizontal black line indicates chance performance
(ambiguous f/g).

gave us the best possible qualitative similarity to the human data. The parameters used never entailed
total elimination of the influence of any likelihood function (κS = 16, λS = .025, κEB = .5,
θT = .9, θBB = .9, and θBG = .6). As can be seen in Fig. 6 the border-ownership estimates at
the locations where we had data show compelling similarities to human judgments. Furthermore
along the entire contour the model converged to intuitive border-ownership estimates (Fig. 7) very
rapidly (within 36 iterations). The fact that our model yielded intuitive estimates for the current
network in which not all contours were completed shows another strength of our model. Because
our model included grouping nodes, it did not require contours to be amodally completed [6] in
order for information to propagate.

4 Conclusion

In this paper we proposed a model rooted in Bayesian belief networks to compute figure/ground.
The model uses both local and global cues, combined in a principled way, to achieve a stable and
apparently psychologically reasonable estimate of border ownership. Local cues included local
curvature and T-junctions, both well-established cues to f/g. Global cues included skeletal structure,
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Figure 7: (left) Node structure for the experimental stimulus. (right) The model’s local border-
ownership estimates after convergence.

a novel cue motivated by the idea that strongly axial shapes tend to be figural and thus own their
boundaries. We successfully tested this model on both simple displays, in which it gave intuitive
results, and on a more complex experimental stimulus, in which it gave a close match to the pattern
of f/g propagation found in our subjects. Specifically, the model, like the human subjects rapidly
converged to a stable local f/g interpretation.

Our model’s structure shows several interesting parallels to properties of neural coding of border
ownership in visual cortex. Some cortical cells (end-stopped cells) appear to code for local curvature
[3] and T-junctions [5]. The B-nodes in our model could be seen as corresponding to cells that code
for border ownership [20]. Furthermore, some authors [2] have suggested that recurrent feedback
loops between border ownership cells in V2 and cells in V4 (corresponding to G-nodes in our model)
play a role in the rapid computation of border ownership. The very rapid convergence we observed
in our model likewise appears to be due to the connections between B-nodes and G-nodes. Finally
scale-invariant shape representations (such as, speculatively, those based on skeletons) are thought
to be present in higher cortical regions such as IT [17], which project down to earlier areas in ways
that are not yet understood.

A number of parallels to past models of f/g should be mentioned. Weiss [18] pioneered the appli-
cation of belief networks to the f/g problem, though their network only considered a more restricted
set of local cues and no global ones, such that information only propagated along the contour. Fur-
thermore it has not been systematically compared to human judgments. Kogo et al. [10] proposed
an exponential decay of f/g signals as they spread throughout the image. Our model has a similar
decay for information going through the G-nodes, though it is also influenced by an angular factor
defined by the position of the skeletal node. Like the model by Li Zhaoping [19], our model includes
horizontal propagation between B-nodes, analogous to border-ownership cells in her model. A neu-
rophysiological model by Craft et al. [2] defines grouping cells coding for an interiority preference
that decays with the size of the receptive fields of these grouping cells. Our model takes this a step
further by including shape (skeletal) structure as a factor in interiority estimates, rather than simply
size of receptive fields (which is similar to the rib lengths in our model).

Currently, our use of skeletons as shape representations is still limited to medial axis skeletons and
surfaces that are not split up by occluders. Our future goals including integrating skeletons in a more
robust way following the probabilistic account suggested by Feldman and Singh [4]. Eventually, we
hope to fully integrate skeleton computation with f/g computation so that the more general problem
of shape and surface estimation can be approached in a coherent and unified fashion.
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