
Psychological Bulletin

A Century of Gestalt Psychology in Visual Perception: II.
Conceptual and Theoretical Foundations
Johan Wagemans, Jacob Feldman, Sergei Gepshtein, Ruth Kimchi, James R. Pomerantz, Peter
A. van der Helm, and Cees van Leeuwen
Online First Publication, July 30, 2012. doi: 10.1037/a0029334

CITATION
Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., &
van Leeuwen, C. (2012, July 30). A Century of Gestalt Psychology in Visual Perception: II.
Conceptual and Theoretical Foundations. Psychological Bulletin. Advance online publication.
doi: 10.1037/a0029334



A Century of Gestalt Psychology in Visual Perception:
II. Conceptual and Theoretical Foundations

Johan Wagemans
University of Leuven (KU Leuven) and Institute of Advanced

Studies (IEA-Paris), Paris, France

Jacob Feldman
Rutgers, The State University of New Jersey—New Brunswick

Sergei Gepshtein
The Salk Institute for Biological Studies, La Jolla, California

Ruth Kimchi
University of Haifa

James R. Pomerantz
Rice University

Peter A. van der Helm
Radboud University Nijmegen and University of Leuven

(KU Leuven)

Cees van Leeuwen
RIKEN Brain Science Institute, Tokyo, Japan, and University of Leuven (KU Leuven)

Our first review article (Wagemans et al., 2012) on the occasion of the centennial anniversary of Gestalt
psychology focused on perceptual grouping and figure–ground organization. It concluded that further
progress requires a reconsideration of the conceptual and theoretical foundations of the Gestalt approach,
which is provided here. In particular, we review contemporary formulations of holism within an
information-processing framework, allowing for operational definitions (e.g., integral dimensions, emer-
gent features, configural superiority, global precedence, primacy of holistic/configural properties) and a
refined understanding of its psychological implications (e.g., at the level of attention, perception, and
decision). We also review 4 lines of theoretical progress regarding the law of Prägnanz—the brain’s
tendency of being attracted towards states corresponding to the simplest possible organization, given the
available stimulation. The first considers the brain as a complex adaptive system and explains how
self-organization solves the conundrum of trading between robustness and flexibility of perceptual states.
The second specifies the economy principle in terms of optimization of neural resources, showing that
elementary sensors working independently to minimize uncertainty can respond optimally at the system
level. The third considers how Gestalt percepts (e.g., groups, objects) are optimal given the available
stimulation, with optimality specified in Bayesian terms. Fourth, structural information theory explains
how a Gestaltist visual system that focuses on internal coding efficiency yields external veridicality as
a side effect. To answer the fundamental question of why things look as they do, a further synthesis of
these complementary perspectives is required.
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General Introduction

From the very beginning, the following ideas were central to
Gestalt thinking. Phenomenal experience consists of part–whole
structures, configurations, or Gestalten. A Gestalt is an integrated,
coherent structure or form, a whole that is different from the sum
of the parts. Gestalts emerge spontaneously from self-
organizational processes in the brain. Gestalts result from global
field forces that lead to the simplest possible organization, or
minimum solution, given the available stimulation. With this sim-
plicity or minimum principle (also known as the law of Prägnanz),
the Gestaltists found themselves in opposition to the likelihood
principle advanced by von Helmholtz: the idea that the visual
system interprets, through some unconscious inference mecha-
nism, incoming proximal stimuli in terms of the most likely distal
source that might have given rise to these proximal stimuli.

In the first half of the 20th century, Gestalt psychology struggled
with several foundational problems arising from vaguenesses in
the research agenda: the inability to precisely define terms like
emergence and Prägnanz, the inability to quantify the minimum
principle and thus to make specific behavioral predictions, the lack
of methodological tools for operationalizing these notions, and the
difficulty of articulating testable theories or models of the under-
lying neural mechanisms. All of these shortcomings led to growing
dissatisfaction with the Gestalt program of research in the 1950s
and 1960s, and the subsequent decline of its impact on research in
perception and the rest of psychology. In our first article on the
occasion of 100 years of Gestalt psychology (Wagemans et al.,
2012), we demonstrated how some of these shortcomings were
already alleviated in more contemporary research, performed in
the Gestalt spirit, on perceptual grouping and figure–ground or-
ganization. Specifically, it was shown that psychophysical and
computational work on grouping, using carefully constructed stim-
uli, allowed for quantification of grouping principles. Furthermore,
experiments with richer stimuli than previously used revealed new
grouping and figure–ground principles, as well as their interac-
tions with other aspects of visual processing (e.g., attention and
shape perception). Finally, it was shown how grouping and figure–
ground organization could be related to computational principles,
ecological statistics, and neural mechanisms.

The present review complements the first one (Wagemans et al.,
2012) by describing the progress made regarding the core notions
from Gestalt theory—holism, emergence, the primacy of the
whole, the minimum principle or law of Prägnanz, and self-
organizing dynamics. First, we clarify the conceptual foundations
of Gestalt thinking by refining notions such as holistic properties,
emergent features, configural superiority, and global precedence—
relying mainly on operational definitions fitting into a more con-
temporary information-processing framework (Section 2). After-
wards, we illustrate recent progress regarding the deeper
theoretical foundations of the Gestalt framework by reviewing
models that implement, and thereby explain, Gestalt principles as
on-going dynamics (Section 3) and from three considerations of
economy: in the use of neural sensors (Section 4), in terms of
Bayes’ theorem (Section 5), and in symbolic descriptions that
allow for a dynamic implementation (Section 6). For a more
detailed list of contents, see the Appendix.

Although the discussed models pertain to specific perceptual
topics such as perceptual switching, apparent motion, object for-

mation, and visual regularity, Sections 3–6 focus on generic the-
oretical frameworks such as dynamical systems theory, complex
adaptive systems, measurement theory, the Bayesian approach to
perception, and neural networks. A review of these approaches
might also be useful to psychologists who are not primarily inter-
ested in visual perception, but are intrigued by the Gestalt ap-
proach to psychological theory. We hope that casting a range of
current perspectives on the issues raised in Gestalt psychology will
contribute significantly towards a synthesis between previous op-
positions (e.g., regarding flexibility vs. stability, intrinsic vs. ex-
trinsic processes, simplicity vs. likelihood), but the current status
of the field does not allow for such a synthesis yet. Only the first
steps in this direction are taken in this article. In the main body of
the article, we explicitly point out the interrelations between dif-
ferent theoretical notions and views, but a more integrative sum-
mary is provided only in the final, concluding section of the article.
We start our review with a discussion of historical and contempo-
rary views on holism, a fundamental notion of Gestalt psychology.

Holism

Holism in Traditional Gestalt Psychology

Gestalt psychologists argued that perceptual experiences are
intrinsically holistic and organized. They forcefully rejected the
proposal by structuralism (Wundt, Titchener)—rooted firmly in
British empiricism—that perceptions are constructed from atoms
of elementary, unrelated local sensations that are unified by asso-
ciations due to spatial and temporal contiguity. The Gestalt theo-
rists rejected both atomism and associationism, as well as any
summative approach, as an account for the experience of struc-
tured wholes. This was most clearly visible in Wertheimer’s
(1912) phi motion, in which pure motion could be seen without
actually seeing any object moving. In our first article (Wagemans
et al., 2012), the historical significance of this discovery was
discussed as the roots of the Berlin school of Gestalt psychology
and its distinction from the Graz school. Here, we offer a brief
description of the essential theoretical claims.

Wertheimer (1924/1938b, p. 2) described holism as the “funda-
mental formula” of traditional Gestalt psychology: “There are
wholes, the behavior of which is not determined by that of their
individual elements, but where the part-processes are themselves
determined by the intrinsic nature of the whole.” A specific sen-
sory whole is qualitatively different from what one might predict
by considering only its individual parts, and the quality of a part
depends upon the whole in which this part is embedded (e.g.,
Köhler, 1930/1971). The proposition most often stated as charac-
terizing Gestalt theory, that the whole is more than the sum of its
parts, is inaccurate. It is more correct to say, “The whole is
something else than the sum of its parts, because summing is a
meaningless procedure, whereas the whole-part relationship is
meaningful” (Koffka, 1935, p. 176).

The idea that sensory wholes possess properties that cannot be
derived from the properties of their constituents was not the
discovery of Gestalt psychology. Before the advent of Gestalt
theory, Christian von Ehrenfels (1890/1988) called attention to the
fact that perceptual experiences, such as perception of melody or
the shape of a visual object, are more than the mere sum of their
independent components. To account for such perceptual experi-
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ences, von Ehrenfels postulated a new sort of element, which he
termed Gestalt quality (Gestaltqualität). The Gestalt quality is
superadded to our experiences of sensory elements. Gestalt qual-
ities exist alongside or above the fundamental independent con-
stituents with which they are associated.

The Berlin school’s view of holism was more radical. Rejecting
the premise that the sum of sensory elements constitutes the
primary foundation of perceptual experience, Wertheimer (1922/
1938a) objected to any summative account in which something is
added to the sum of sensory elements, be it von Ehrenfels’s
(1890/1988) qualities, relations-between-elements, or higher men-
tal operations imposed on the sensory elements to produce unity.
Rather, he argued that we directly and immediately perceive Ge-
stalten: integrated, structured wholes the properties of which are
not derived from its individual parts or their simple sum and within
which constituent parts are in dynamic interrelations, such that the
specific functions and properties of the parts can only be defined
in relation to the whole.

This formulation raises many deep questions regarding the
functional relationships between parts and wholes and how they
might continuously change through their dynamic interrelation-
ships (e.g., Grelling & Oppenheim, 1938; Rausch, 1937; Smith,
1988). In general, it is useful to distinguish Gestalt parts (in a
person’s perception) from stimulus parts (in the environment).
Gestalt parts evolve from an interaction among the representations
of stimulus parts, even if the stimulus parts themselves do not
change, so that the whole determines how a stimulus part is
perceived and whether it becomes a Gestalt part.

Modern Approaches to Holism

The traditional Gestalt view on part–whole relations summa-
rized above may appear somewhat fuzzy to modern readers, who
are used to specific operational definitions. These have been of-
fered by more recent researchers, working in an information-
processing framework. We review four of these notions here: (a)
Garner’s dimensional integrality, (b) emergent features and con-
figural superiority, (c) global precedence in hierarchical patterns,
and (d) the primacy of holistic or configural properties.

Garner’s dimensional integrality. One notion central to
Gestalts is that whatever parts (features, elements), if any, they
may contain, these parts are perceived holistically rather than
separately or independently. Garner (1962, 1974; Garner, Hake, &
Eriksen, 1956) looked for empirical support from converging
operations, starting with elementary 2-D stimuli, in which each of
the given dimensions A and B possess two levels, 1 and 2,
resulting in four stimuli: A1B1, A1B2, A2B1, and A2B2. If Dimen-
sion A were color with 1 � red and 2 � green, and B were shape
with 1 � circle and 2 � square, the four stimuli would be red
circle, green circle, red square, green square. The first converging
operations tested whether perceivers could make speeded judg-
ments of (say) color without experiencing interference from un-
correlated variation on shape in a sequence of stimuli; if not, they
would experience what is now called Garner interference, mean-
ing that one dimension was not being perceived independently
from the other. A second convergence tested whether two stimuli
that differed (redundantly) in both dimensions could be discrimi-
nated from each other more quickly than could two stimuli differ-
ing in just one dimension. If so, and if the magnitude of that

redundancy gain exceeded what would be created by mere horse-
race statistics, that too would indicate that the dimensions were not
being perceived separately or sequentially but were instead per-
ceived jointly. A third convergence tested performance in divided
attention tasks: If perceivers could make classification judgments
that required perceiving both dimensions as well as or better than
judgments based on only one, that would indicate they could
divide their attention across both dimensions simultaneously (Gar-
ner, 1974).

The results showed that some stimulus dimensions, such as
shape and color, are perceived separately: They show no Garner
interference, no significant gains from redundancy, and worse
performance in divided attention tasks than in selective attention
tasks. Such dimensions further showed city-block metrics on sim-
ilarity judgments (the perceived dissimilarity of two stimuli is the
simple sum of their dissimilarities on the two dimensions). Garner
(1974) called these dimensions separable; for them, the whole
does indeed resemble the sum of its parts.

Other stimulus dimensions, such as the hue and saturation of a
single color chip, revealed a pattern of results he called integral:
They show both Garner interference and redundancy gains, but
again they show poor performance on divided attention tasks
relative to selective attention. In addition, integral dimensions
show Euclidean metrics on similarity judgments: The similarity of
two stimuli is determined by the length of the diagonal connecting
them in 2-D space. The interpretation is that integral dimensions
are perceived together, simultaneously, in a way in which the
separate dimensions have no psychological primacy. Shape dimen-
sions, such as curvature and elongation, are often perceived as
integral dimensions, even though they can be defined mathemat-
ically in independent terms, but one can use Garner’s procedure to
psychophysically calibrate the dimensions and make them as sep-
arable as possible (Ons, De Baene, & Wagemans, 2011).

For some stimuli, Dimension A is integral with respect to B, but
B is separable with respect to A. Garner called these asymmetri-
cally integral dimensions. Still other stimulus dimensions are
called configural when they show Garner interference, no redun-
dancy gains, but better performance on divided attention than on
selective attention tasks. An example would be the four stimuli
generated from pairs of parentheses: ((, (), )(, and )). Such stimuli
seem to be perceived via neither integral nor separable processing
of their individual curved segments but rather via emergent fea-
tures such as bilateral symmetry, parallelism, and closure (Pomer-
antz & Garner, 1973).

Emergent features and configural superiority. Emergent
features or EFs are features that are possessed by wholes—groups
of parts—but not by any individual part nor by any single group of
parts. Thus, they emerge when parts combine into wholes. Wholes
can have fewer or more Gestalt qualities because they possess
fewer or more EFs. If a set of trees is closely spaced, proximity and
similarity lead them to be grouped visually into a whole forest, and
that forest has properties (such as density) not possessed by any
individual tree. If the trees are planted into regularly spaced rows,
however, they now gain EFs such as collinearity and symmetry
that go beyond the mere clumping of parts into bunches. Wholes
with yet stronger Gestalt qualities show EFs that are unpredictable
and even surprising, characteristics central to the notion of emer-
gence itself (e.g., the Dalmatian dog once it is seen to stand out
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from the rest of the scene; see Figure 13 in Gallace & Spence,
2011).

Let us start with the simplest of all stimuli, a single dot, and
assume that its only distinguishing feature is its location. If we add
a second such dot, we then add its location as a second feature, but
we also add interdot distance and angle as two EFs not possessed
by either individual dot, though they are derivable from the dots’
positions. We can also start with a single line segment as a
stimulus, with length and orientation as distinctive features in
addition to its location. If we add a second segment, we add its
location, length, and orientation, but we also gain EFs such as the
distance and angle between the two lines and further EFs such as
the type of intersection they form if they touch (T, L, X, etc.) and
possibly forms of parallelism, collinearity, and symmetry as well.

With stimuli of greater complexity, there are an infinite number
of logically possible EFs that can be imagined. With a face, for
example, the ratio of the diameter of the left pupil to the width of
the mouth is an EF not possessed by the eye or the mouth alone,
but it is unlikely that perceivers would attend to such an EF, so
only a subset of EFs is likely to be perceived (i.e., have psycho-
logical reality). For instance, two line segments always create a
specific angle, but only certain angles are particularly salient, such
as zero degrees, which denotes that the lines are either parallel or
collinear. Research has shown that humans and some lower ani-
mals are exquisitely sensitive to parallelism and collinearity, which
also serve as quasi regularities in the case of small deviations from
zero degrees (e.g., Kukkonen, Foster, Wood, Wagemans, & Van
Gool, 1996; Wagemans, Van Gool, Lamote, & Foster, 2000).
When a third line segment is added, new EFs become possible,
such as closure, to which visual systems are also quite sensitive
(Chen, 2005; Wagemans et al., 2012, Section 4). Importantly, no
matter how many relational properties are added to the originally
local and basic features, these EFs may be merely sufficient for
perceiving a global Gestalt, not necessary: They may form the
basis for it, but they cannot be the cause of it.

Only some of these EFs also give rise to configural superiority
effects or CSEs (Pomerantz, Sager, & Stoever, 1977), which can be
used as an index to indicate when wholes are perceived before
parts (forest before trees). The easiest test for CSEs starts with
benchmarking performance in a baseline task of localizing a sin-
gleton (or odd one out) in a search display, for example, finding a
single B in a display otherwise consisting of As. Then an identical-
context stimulus C is added to each element so the task is now to
locate the sole BC in a field of ACs. Normally, adding identical,
noninformative context hurts performance because it makes the
stimuli more similar (in addition to increasing overall processing
load and possibly introducing masking or crowding). That is the
case with these letter stimuli: Participants take longer to find the
BC in a field of ACs than to find the B in a field of As.

With other parts substituted for A, B, and C, however, the
opposite result can arise, which constitutes evidence for configural
superiority. If diagonal line segments and an L-shaped corner are
used for A, B, and C so that the diagonals combine with the Ls to
form arrows and triangles, perceivers are more than twice as fast
to spot the target (see Figure 1A). When these same parts are
shifted just slightly in position, however, the CSE is lost (see
Figure 1B). Similar effects arise with pairs of parentheses (see
Figures 1C and 1D).

The key factor in obtaining a CSE appears to be the creation of
salient emergent features when the context C is added to the base
elements A and B. With the arrows and triangles of Figure 1A,
those EFs appear to be closure, number of terminators, and type of
intersection. Some of the strongest, most robust CSEs discovered
involve topological EFs such as presence versus absence of holes,
connectivity, and inside–outside relationships (Chen, 2005). (For
more CSEs and a new framework called the theory of basic
Gestalts, see Pomerantz & Portillo, 2011.)

Global precedence. Navon’s (1977) global precedence hy-
pothesis states that processing proceeds from global structures
towards analysis of local properties. This hypothesis was formu-
lated within a framework that views a visual object as represented
by a hierarchical network with nested relationships. The globality
of a visual property corresponds to the level it occupies within the
hierarchy: Properties at the top of the hierarchy are more global
than those at the bottom, which are in turn more local. Consider a
face defined by spatial relationship between facial components
(e.g., eyes, nose, mouth), which are, in turn, defined by relation-
ships among their subparts. The spatial relationship between the
components is more global than the specific shapes of the com-
ponents, and in turn, the relationship between the subparts of a
component is more global than the specific properties of the
subparts. The global precedence hypothesis claims that the order of
processing of an object is from global to local: Global properties of
a visual object are processed first, followed by analysis of local
properties. It has been tested with hierarchical patterns, in which
larger figures are constructed from smaller figures (first introduced
by Asch, 1962, and later by Kinchla, 1974, 1977). An example is
a set of hierarchical letters: large letters constructed from the same
set of smaller letters having either the same identity as the larger
letter or a different identity. Hierarchical patterns like these satisfy
two conditions, which are critical for testing the hypothesis
(Navon, 1977): First, the global and local structures can be equated
in familiarity, complexity, codability, and identifiability, so they
differ only in level of globality, and second, the two structures can
be independent, so that one structure cannot be predicted from the
other.

In a popular paradigm, observers are presented with hierarchical
stimuli and are required to identify the larger (global) or the
smaller (local) letter, in separate blocks of trials. Findings of
global advantage—faster identification of the global letter than the
local letter and disruptive influence from irrelevant global con-
flicting information on local identification (global-to-local inter-
ference)—are taken as support for global precedence (e.g., Navon,
1977, Experiment 3). Much subsequent research has concentrated
on delineating the boundary conditions of the global advantage
effect and examining whether its locus is perceptual or postper-
ceptual (for reviews, see Kimchi, 1992; Navon, 2003). Several
factors can modulate the effect, including overall size, eccentricity,
spatial uncertainty, elements’ sparseness, number of elements,
relative size of elements, figural goodness, exposure duration, and
attention allocation. Research indicates that the global advan-
tage—when it occurs—arises at the perceptual level, although the
effect can be magnified by postperceptual, response-related pro-
cesses.

Overall, global advantage is normally observed with the typical
hierarchical stimuli used in the global–local paradigm to the limits
of visibility and visual acuity. Nonetheless, to the extent that
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global advantage implies global precedence, the fact that global
advantage is obtained only under certain conditions suggests that
global precedence is not a universal law. Two main issues have
been raised concerning the interpretation of global advantage. One
issue concerns the hierarchical patterns that are the cornerstone of
the global–local paradigm. Hierarchical patterns provide an ele-
gant control for many intervening variables while keeping the
hierarchical structure transparent, but the local elements of the
hierarchical patterns do not really form the parts of the whole
(Kimchi, 1992; Navon, 2003). Furthermore, it has been argued that
the local elements in the Navon type of hierarchical patterns
function merely as placeholders (Pomerantz, 1983) or serve just to
define texture (Kimchi & Palmer, 1982; Pomerantz, 1983; but see
Navon, 2003). If so, the local elements may not be represented as
figural units, and consequently, faster identification of the global
form may be accounted for not by its level of globality but by a

qualitative difference in identification of a figural unit versus a
texture element. However, a study of the development over time or
microgenesis of the perception of hierarchical stimuli using a
primed matching paradigm (Kimchi, 1998) showed that the global
form was primed at brief exposures, whereas the local elements
were primed only at longer exposures, suggesting that the global
form is effective already early in the perceptual process, followed
by the individuation of the local elements.

The second issue is that relative size alone rather than globality
could explain the global advantage (e.g., Kinchla & Wolfe, 1979;
Navon & Norman, 1983). Navon (2003, p. 290) argued that
globality is inherently confounded with relative size—it is a fact of
nature that relative size is “an inherent concomitant of part–whole
relationship.” This is indeed the case if global properties are
properties of a higher level unit. Yet, if global properties depend
on the relationship between the elements, as the theoretical moti-

Figure 1. Emergent features in visual search, demonstrating configural superiority. Adding redundant elements
to each of the stimuli improves detection of the odd element in the display, but only when certain emergent
features arise (such as closure in Row A or symmetry in Row C). Adapted from “Perception of Wholes and Their
Component Parts: Some Configural Superiority Effects,” by J. R. Pomerantz, L. C. Sager, and R. J. Stoever,
1977, Journal of Experimental Psychology: Human Perception and Performance, 3, pp. 427–428. Copyright
1977 by the American Psychological Association.
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vation for the global precedence hypothesis implies (e.g., Navon,
1977, 2003), then the essential difference between global proper-
ties and component properties is not in their relative size. For
example, to distinguish squareness from its component vertical and
horizontal lines or faceness from its facial components based only
on their relative sizes would miss the point.

The vast majority of results demonstrate that perceptual pro-
cessing can proceed from global structuring towards analysis of
local properties under certain conditions (hence, global prece-
dence). Further findings also suggest that there are different kinds
of wholes with different kinds of parts and part–whole relation-
ships. Consider a face with its eyes, nose, and mouth, versus a wall
of bricks. Both are complex visual objects—wholes—but the eyes,
nose, and mouth of a face are its parts, whereas the bricks in the
wall are mere constituents. It is therefore possible that global
precedence characterizes the course of processing of some wholes
but not of others. This cries out for a refinement of the terminology
(e.g., global vs. holistic/configural properties) and a reconsidera-
tion of the primacy of holistic properties, which may not neces-
sarily reside strictly in temporal precedence. These are provided in
the next section.

The primacy of holistic properties. The Gestaltists’ claim
that wholes have properties that cannot be derived from the prop-
erties of their constituents is captured in modern cognitive psy-
chology by the notion of holistic or configural properties. Holistic
properties are emergent properties that cannot be predicted by
considering only the individual component parts or their simple
sum. Rather, they arise from the interrelations between the parts
comprising strong configurations. Examples are symmetry, regu-
larity, and closure (Garner, 1978; Kimchi, 1992, 1994; Pomerantz,
1981; Rock, 1986; Wagemans, 1995, 1997). Thus, for example,
four line segments that vary in orientation can configure into a
square—with a configural property of closure—or into a cross—
with a configural property of intersection. Holistic properties exist
along with, not instead of, component properties, and are a differ-
ent aspect of a stimulus (Garner, 1978). The Gestaltists’ claim that
wholes dominate parts finds its modern counterpart in the hypoth-
esis about the primacy of holistic properties, which states that
holistic properties dominate component properties in information
processing.

Empirical research pitting holistic against component properties
(with proper controls for differences in discriminability) provides
converging evidence for the primacy of holistic properties (see
Kimchi, 2003, for a review). For example, holistic properties have
been found to dominate speeded classification and discrimination
performance regardless of the discriminability of the components
(Kimchi, 1994), to be accessible to rapid search (Rensink & Enns,
1995), and to be available for priming under very short exposure
durations (Kimchi, 2000). Also related is the CSE (Pomerantz et
al., 1977), described above. In light of this, it is hardly tenable that
the whole is perceived just by assembling components. However,
several findings suggest that positing holistic primacy as a rigid
perceptual law is hardly tenable either. Configural dominance has
been found with some configurations but not others (e.g., Pomer-
antz, 1981), and the relative dominance of configural properties
versus component properties has been found to depend on its
relevance to the task at hand (e.g., Han, Humphreys, & Chen,
1999; Pomerantz & Pristach, 1989).

Furthermore, the description of holistic/configural properties as
emergent is only supported as a description of the stimulus. There
is no necessity that emergent properties be derived perceptually
because they may be directly detected by the perceptual system
rather than being computed from relevant properties of the com-
ponents. Thus, both component and holistic properties (whether
emergent or not) must be treated as stimulus aspects. Whether
holistic properties dominate component properties at a certain
level of processing or are extracted earlier than component prop-
erties is ultimately an empirical question, as long as the concepts
are clearly defined and the methods are available to address them.
For instance, phenomenological notions such as configural supe-
riority and dominance of the whole over the parts suggest that
perceptual processing is guided by the quality of wholes, which
does not imply a specific processing order, but which does suggest
that attentional processing proceeds from wholes to parts.

Although the terms are often used interchangeably, global and
holistic properties can be distinguished on theoretical and empir-
ical grounds. Global properties are defined by the level they
occupy within the hierarchical structure of the stimulus. The dif-
ference between global and local properties (as operationally de-
fined in the global–local paradigm) involves size: Global proper-
ties are by definition larger than local properties because the global
configuration is necessarily larger than the local elements of which
it is composed. The critical difference between holistic properties
and component properties, however, is not their relative size.
Holistic properties are relational properties that arise from the
interrelations among the component properties of the stimulus.

To examine whether the distinction between global and holistic
properties has psychological reality, we must dissociate level of
globality (global vs. local) from type of property (holistic vs.
nonholistic). With hierarchical stimuli, different types of proper-
ties may be present at the global and the local levels. Accordingly,
Kimchi (1994) employed hierarchical stimuli that varied in con-
figural properties (e.g., closure) and basic, nonconfigural proper-
ties (e.g., line orientation) at the global or the local level. The
orthogonal combination of type of property and level of structure
produced four sets of four stimuli each (see Figure 2). Participants
classified a set of four stimuli on the basis of the variation at either
the global or the local level of the stimuli (global or local classi-
fication task). Depending on the stimulus set, classification (global
or local) was based on closure or on line orientation. The results
showed that global classification was faster than local classifica-
tion (i.e., there was a global advantage) only when the local
classification was based on line orientation, not on closure.

Han et al. (1999) used arrows and triangles in the typical
global–local task. They found faster reaction times for global than
for local identification and global-to-local interference for both
orientation discrimination and closure discrimination, but the
global advantage was much weaker for the closure discrimination
task than for the orientation discrimination task. Under divided
attention conditions, there was a global advantage for orientation
but not for closure discrimination tasks. Thus, both Kimchi’s
(1994) and Han et al.’s results indicate that global or local advan-
tage for many-element hierarchical patterns depends on whether
discrimination at each level involves holistic or basic properties.
When local discrimination involves a configural property like
closure, the global advantage markedly decreases or even disap-
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pears relative to the case in which discrimination at that level
involves a basic property like orientation.

These findings converge with others showing a relative percep-
tual dominance of holistic properties. They also suggest that ho-
listic properties are not necessarily global or larger. Using a
different approach, Leeuwenberg and van der Helm (1991) also
claimed that holistic properties that dominate classification and
discrimination of visual forms are not always global. According to
their descriptive minimum principle approach (see Section 6, be-
low), the specification of dominant properties can be derived from
the simplest pattern representations, and it is the highest hierar-
chical level in the simplest pattern representation, the superstruc-
ture, that dominates classification and discrimination of visual
forms. The superstructure is not necessarily global or larger.

It is important to notice that there are logical asymmetries in the
relations between parts and wholes, or between components and
configurations: Components can exist without a global configura-
tion, but a configuration cannot exist without components. There-
fore, components are logically prior to the configuration of which
they are part. Similarly, if holistic/configural properties do not
reside in the component properties but rather emerge from the
interrelations among components, then logic dictates the priority of
the components. This issue received considerable attention in the
old Gestalt literature (e.g., Rausch, 1937). The point is that the
logical structure of a stimulus does not imply one fixed processing
order at all levels of processing (Garner, 1983; Kimchi, 1992;
Kimchi & Palmer, 1985). One possible solution is to assume that
nonconscious, bottom-up, stimulus-driven perceptual processing
proceeds from components to configurations, whereas conscious,

top-down, task-driven attentional processing generally starts with
configural properties and then descends to component properties if
required by the task (e.g., Hochstein & Ahissar, 2002).

In sum, the empirical evidence reviewed in these subsections
converges towards the idea that wholes dominate parts in atten-
tional and perceptual processing. As for perceptual processing,
however, this dominance does not imply a specific processing
order. In fact, the central Gestalt idea is that the dominance in
perceptual processing is not so much due to a specific processing
order but rather emerges from interactions between stimulus parts
resulting in perceived wholes. As we discuss next, this raises the
question of how perceptual processing might be modeled such that
it complies with the empirical evidence.

Interim Evaluation: New Foundations Needed

The conceptual clarifications and operational definitions of key
Gestalt notions—such as holism, emergence, dominance of the
whole over the parts, global precedence, and configural superior-
ity—have been useful in making further theoretical and empirical
progress. For instance, the distinctions between global versus local
in terms of relative size and levels of representation in a hierar-
chical context and between holistic/configural versus simple/
component properties—the former depending on relations between
the latter but not vice versa—have been important in shedding
light on an extensive and muddled literature. Extending this work
significantly, Townsend and colleagues have developed a rigorous
framework for the investigation of holistic perception (e.g., per-
ceptual dependence of parts on wholes) in terms of information

Figure 2. Four sets of four stimuli each, produced by the orthogonal combination of type of property and level
of structure. Adapted from “The Role of Wholistic/Configural Properties Versus Global Properties in Visual
Form Perception,” by R. Kimchi, 1994, Perception, 23, p. 498. Copyright 1994 by Pion Ltd.
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processing, making use of systems factorial technology (e.g., Fifić
& Townsend, 2010; Townsend & Wenger, 2004). Moreover, the
distinction between characteristics of stimulus properties and their
representations, on the one hand, and temporal relationships in
their course of processing has allowed for innovative ideas about
possible neural mechanisms. For instance, Hochstein and Ahissar
(2002) proposed reverse hierarchy theory, in which they argued
that a fast feedforward sweep quickly activates global percepts
(e.g., the overall gist of a scene) in high-level areas with large
receptive fields, whereas feedback from these higher areas to lower
areas and recurrent processing in the low-level areas with small
receptive fields is necessary for fine-grained processing of local
details. Hence, this theory distinguishes the anatomical, structural
aspects of the hierarchy of the visual system (low- vs. high-level
representations) from the temporal, functional aspects of it (early
vs. late stages of processing). In this context, it is not unusual to
find that some Gestalts might emerge gradually along the visual
system’s hierarchy, for instance, CSEs being reflected in neural
activity in early retinotopic regions (Alexander & van Leeuwen,
2010), as well as high-level object areas (Kubilius, Wagemans, &
Op de Beeck, 2011; Liu, Plomp, van Leeuwen, & Ioannides,
2006), whereas other Gestalts seem to be encoded in low-level
areas based on feedback from higher order regions (e.g., Kourtzi,
Tolias, Altmann, Augath, & Logothetis, 2003; Murray, Boyaci, &
Kersten, 2006).

Despite this progress on the conceptual and empirical front, we
are still in need of stronger theoretical frameworks to provide solid
foundations to the Gestalt approach’s major principles. Gestalt
psychology led to a proliferation of hundreds of laws (or, more
accurately, principles) of perceptual organization, such as group-
ing by proximity, similarity, and good continuation. Thus, con-
cerns arose that there were more explanations being proposed than
the number of phenomena they could explain. Could these highly
specific principles be reduced to just one or two? Two such general
explanations emerged: Prägnanz (also known as the simplicity or
the minimum principle), which holds that perceptions are struc-
tured into the simplest organizations possible, and the likelihood
principle, which holds that percepts are structured to conform to
the most likely stimulus that could have given rise to the sensory
information registered on the retina (Pomerantz & Kubovy, 1986).
Consider Necker’s (1832) well-known wire-frame image of a
cube, its parallel edges drawn as 12 parallel lines of the same
length allowing for two alternative in-depth interpretations. Do we
see it as a cube because doing so simplifies the percept or because
a cube is the most likely distal stimulus consistent with the retinal
image resulting from this stimulus? Similarly, do we perceive the
trapezoidal Ames window as rectangular because this is simpler or
because it is more likely?

The simplicity principle is most closely associated with the
Gestalt school. The core idea was that percepts are organized
automatically into simple, global structures, perhaps through pro-
cesses analogous to physical mechanisms at work with magnetic
fields and soap bubbles. In the absence of complicating factors
such as wind or acceleration, a soap bubble will shape itself into a
sphere, which is the simplest of all 3-D shapes in that it is fully
described by one parameter (its diameter). Correspondingly, the 12
line segments constituting the Necker cube pattern are seen as a
cube because a cube has only one parameter (edge length). In
doing so, all its edge lengths become the same and all angles

become 90°. The likelihood principle is most closely associated
with von Helmholtz (see also Rock, 1983). It holds that the
perceptual system determines the most likely distal stimulus that
could have given rise to the proximal stimulus (the retinal image).
It holds that we see the 12 line segments as a cube because
historically (in either phylogenetic or ontogenetic terms) a cube
has been the most frequent distal stimulus consistent with the
proximal stimulus of the Necker cube image.

Distinguishing between the simplicity and likelihood principles
has proven challenging because of difficulty unconfounding the
simplicity and the likelihood of test stimuli. Controlled rearing
studies might answer this question but they are not feasible.
Kanizsa (1979) created demonstrations arguing forcefully against
simplicity but there is a complication here too: Simplicity usually
only refers to the perceived objects as such, whereas his demon-
strations also required the inclusion of positional complexity in
terms of coincidence avoidance (see Rock, 1983, and below,
particularly Figure 8).

From a functional, evolutionary viewpoint, the likelihood prin-
ciple would be more appealing because the veridicality of percep-
tion is a primary factor in determining natural selection: An
organism is less likely to survive and reproduce if its perception of
the physical environment is erroneous in important respects. A
potentially serious problem for the likelihood framework, how-
ever, is that the organism does not actually have access to veridical
properties of the physical world, but only to its imperfect sensory
information about them (i.e., the brain-in-a-vat argument). How
can the organism compute likelihoods of external circumstances
without knowing their prior probabilities? The simplicity hypoth-
esis suggests an answer: Perhaps evolution has built into the
organism’s perceptual system a surrogate for likelihood via sim-
plicity, which is internally accessible (Palmer, 2003). Mach (1906/
1959) and Attneave (1982), therefore, suggested that both princi-
ples may be two sides of the same coin.

In the next four sections, we review recent progress regarding
simplicity and likelihood, extending these principles far beyond
the sterile conflict between the Gestaltists and the Helmholtzians.
First, we show how the intuitive notion of Prägnanz or simplicity
can be further substantiated in terms of the intrinsic dynamics of
the brain as a self-organizing, adaptive system. Then, in three
consecutive sections, we discuss how simplicity and likelihood
may be connected in a deep and meaningful way, in views derived
from (a) measurement principles in a system of sensors, (b) a
Bayesian approach, and (c) structural information theory.

A Dynamical Systems Approach

Introduction

As noted above, traditional Gestalt psychology envisaged the
many laws of perceptual organization to be manifestations of a
common principle: the law of Prägnanz. Persistently, the Ge-
staltists sought to elucidate this principle by relying on metaphors
involving static equilibria of field forces. But equilibrium field
forces are inert; they change only when external conditions
change. At the same time, Gestaltists emphasized the active, spon-
taneous character of perceptual organization. The tension between
inert and active aspects of perception constitutes a puzzle that is
pervasive beyond Gestalt psychology, and has persisted to date.
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Here, we discuss how more recent developments in nonlinear
dynamical systems theory may eventually resolve this conundrum.

Dynamical systems theory describes equilibria in terms of at-
tractors (e.g., Hopfield, 1982). The strength of attractors could be
equated with a measure of Prägnanz (van Leeuwen, 1990). Attrac-
tors are a desirable concept for perception, as they offer robustness
against variation in stimulation. For instance, Luccio (1999, p. 91)
wrote,

The principle of organization acts as precise laws to which the process
is forced to obey, overall in the sense of maximum economy and
simplicity. Its result is a perfect balance of the forces at play and thus
has also a maximum of stability and resistance to change.

However, this comment emphasizes only the inert aspect of dy-
namics.

Resistance to change may not adequately characterize the visual
system. Consider the two alternative in-depth interpretations of the
Necker cube. Prolonged exposure typically leads to switching
between these interpretations (e.g., Attneave, 1971; Einhäuser,
Martin, & König, 2004; Nakatani & van Leeuwen, 2005, 2006;
Peterson & Gibson, 1991; van Dam & van Ee, 2006; for a review,
see Long & Toppino, 2004). To a large extent, this behavior is
involuntary. We can try to deliberately hold on to an orientation;
this will reduce the overall switching rate, but does not stop our
perception from switching (Strüber & Stadler, 1999; Toppino,
2003). Interference with the organism’s activity, such as focusing
attention on a biased region (Peterson & Gibson, 1991; Toppino,
2003) or eliminating eye movements by retinally stabilizing the
image (Pritchard, 1958) cannot prevent it either. Switching occurs
even in the afterimage, when the stimulus has been removed
(McDougall, 1903). Perceptual switching, therefore, is illustrative
of an intrinsic tendency to actively move on from established
interpretations (Leopold & Logothetis, 1999). We must conclude
that there are mechanisms within the visual system that provide a
degree of flexibility. These mechanisms involve spontaneous ac-
tivity that offsets the resistance to change, which is a by-product of
the system’s robustness.

Noise-Driven Models

A classical Gaussian noise component added to its activity can
drive the system out of an otherwise stable attractor. An accumu-
lation of noise events can drive it sufficiently far away to enable a
transition to another one. Consider a system with two roughly
equivalent attractors (a double-well model). Let these correspond
to two alternative interpretations of an ambiguous figure. Noise
could be effectuating the switching back and forth between them.
The concept of an internal noise source has gained wide accep-
tance in the study of sensory processes due to signal detection
theory (Green & Swets, 1966). Empirical evidence suggesting that
noise is responsible for perceptual switching is found in the ob-
served distributions of dwell times (Levelt, 1967). These are the
durations with which a certain interpretation is maintained. Dwell
times are believed to follow a positively skewed distribution called
gamma distribution (Borsellino, Marco, Allazetta, Rinesi, & Bar-
tolini, 1972). These distributions are characterized by a parameter
that can take real values. In dwell-time distributions, however, it
typically takes whole values, consistent with models in which
switching depends on a whole number of independent chance

events (Taylor & Aldridge, 1974). Although these models produce
the right kind of distribution, other models, including ones that
have no stochastic noise component whatsoever, can produce such
a distribution just as well (van Leeuwen, Steyvers, & Nooter,
1997). Moreover, noise-based models predict zero correlation be-
tween subsequent dwell times. In fact, the correlations are consis-
tently above zero and decrease with lag (Bassingthwaighte, Liebo-
vitch, & West, 1994; van Ee, 2009). Such sequential dependencies
suggest that dynamics are contributing to the behavior.

As an alternative, therefore, we might consider systems far from
equilibrium (Maturana & Varela, 1980), in which a small pertur-
bation may have large consequences over time (the butterfly
effect). Such systems would show the observed patterns of corre-
lation but they would clash with the desirability of stable, robust
perceptual representations. We can solve this problem if we con-
sider systems that cycle between approach and avoidance of equi-
libria, in other words, between being governed by stability and
flexibility. In olfactory perception, Skarda and Freeman (1987)
described transitions between stability and flexibility as coordi-
nated with the breathing cycle; upon inhalation the system is
geared towards attracting states and thereby responsive to incom-
ing odor, upon exhalation the attractors are annihilated for the
system to be optimally sensitive to new information. Freeman and
van Dijk (1987) envisaged a similar system for visual perception;
we might consider a system becoming instable and thus ready to
anticipate new information in preparation for what was dubbed a
visual sniff (Freeman, 1991). We may envisage taking a visual
sniff whenever new information is expected, for instance, when
moving our eyes to a new location.

Dynamical Models

Cycles of approach and avoidance of equilibria provide double-
well models with an internal, driving force of change. Suppose that
the well in which the system is residing becomes gradually shal-
lower due to mechanisms such as adaptation or competition. This
means that fewer noise events suffice to drive the system out of its
state. This assumption has been embedded into macroscopic mod-
els of the dynamics of switching behavior as a phase transition
(Ditzinger & Haken, 1989, 1990). In such models, the fast noise
and a slow dynamic cycle work together to produce switching and
its characteristic gamma distributions.

Köhler and Wallach (1944) proposed this slow mechanism to be
neural fatigue or satiation. There is no direct evidence of neural
fatigue of active configurations, as Köhler (1940) envisaged it.
There is, of course, the well-established phenomenon of neural
adaptation—the reduced neural response to prolonged or repeated
stimulation, for instance, to light intensities in the retina of the rat
(Dowling, 1963) or to patterned stimuli in the retina (for a review,
see Graham, 1989) or in the ventral visual system responsible for
human form perception (Noguchi, Inui, & Kakigi, 2004). How-
ever, neural adaptation takes place at the local level of ion currents
conductivity in the membrane of the neuron (Sanchez-Vives,
Nowak, & McCormick, 2000), and is therefore unable to provide
selectivity in adaptation at the level of global perceptual patterns
(Barlow & Földiák, 1989). According to these authors, adaptation
to patterns occurs through a mechanism of anti-Hebbian decou-
pling between cells that are simultaneously active; this generally
serves to make neural population codes sparser with extended
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presentation. It might thus be supposed that there is a continuous
sparsification in population activity selective to patterns.

This slow mechanism could be useful to explain the steady,
continuous increase in switching rate with prolonged presentation
of a stimulus. Correlations between subsequent dwell times could
be explained by fluctuations in adaptation rate (van Ee, 2009).
Kim, Grabowecky, and Suzuki (2006) induced stochastic reso-
nance in switching by periodically alternating the stimulus, thereby
demonstrating the presence of macroscopic noise in the system.
This means there are at least two switching mechanisms possible
according to the double-well model: One is high-frequency, mi-
croscopic noise in sensory channels and the other is macroscopic
noise in adaptation rates.

Can we attribute these two mechanisms to brain regions? Func-
tional magnetic resonance imaging reveals that switching is ac-
companied by activation in ventral occipital and intraparietal
higher order visual areas, and deactivation in primary visual cortex
and the pulvinar (Kleinschmidt, Büchel, Zeki, & Frackowiak,
1998). Electrocortical activity recording (electroencephalography
[EEG]) shows transient synchronizations of activity between fron-
tal and parietal areas, sometimes accompanied by occipital activity
(Nakatani & van Leeuwen, 2006). On the other hand, suppression
of frontal activity using transcranial magnetic stimulation did not
eliminate switching (de Graaf, de Jong, Goebel, van Ee, & Sack,
2011). This leaves us with occipital areas as the (noise) source of
switching and parietal areas as the putative locus of adaptation,
responsible for sequential dependencies in switching.

Still, in these models, robustness and flexibility remain oppos-
ing regimes. Is it possible for a system to be robust at one time and
flexible at another without having to cycle through a macroscopic
loop? Consider the property called meta-stability as illustrated in
Figure 3 (loosely based on the theory of Kelso et al., 1995), which
shows a return plot of a system. On the x-axis the state of the

system is specified by the value of a single variable x at time t (xt).
The system evolves in time, according to a function F, the red
curve. Follow the arrows to see how the system evolves over time.
For simplicity, the system depicted here evolves in discrete time,
such that xt � 1 � F(xt). The y-axis plots xt � 1 against xt. The green
line specifies the values where xt � xt � 1. Should the system reach
the green line, all changes would come to a halt. However, for the
current F it will never reach such states. There are two intervals of
x, �A� and �B�, where the red line almost touches the green
line. Here, changes to system state x are minimal. Thus, it can
dwell in the neighborhood of A or B for a certain time interval.
When approaching these states, the system is apparently stable.
The system will get caught in one of these states, and free itself
only to get caught after a while in the other one. In this manner, the
system continues to swing back and forth between A and B. This
simple model would perform perceptual switching, for instance, if
the apparent stability in approaching A or B corresponds to reach-
ing an alternative orientation of the Necker cube.

Were F actually to touch the green line in A and B, the system
approaching A or B would actually stay there. This is where noise
would come back into the picture. Small fluctuations could move
the system beyond these points, such that x is allowed to roam until
it eventually gets caught again. The difference with Figure 3 is that
small-scale fluctuation, rather than fine tuning of the function to
obtain a gap with the green line, is responsible for corrupting the
attractor. The difference is moot. In both cases, we are dealing with
a corrupted fragile attractor—that is, an attractor with a built-in
escape route. Corrupted fragile attractors thus have built-in flexi-
bility.

Dynamic Synchronization and Complex Adaptive
Systems

Fragile attractor models of switching are generically in accor-
dance with the empirical distributions of dwell times, and their
dynamical character leads readily to the prediction of nonzero
serial correlations in the dwell times (Fürstenau, 2010; van Leeu-
wen et al., 1997). To distinguish the two, we should look at
long-range dependencies between dwell times (Wagenmakers,
Grünwald, & Steyvers, 2006). Consider a series of dwell times:
Clearly they fluctuate irregularly from one time to the next. With
long-range dependency, nonoverlapping running means of these
data fluctuate in a similarly irregular manner (Beran, 1992; Man-
delbrot & Wallis, 1969). Because of these similarities across
scales, these data are said to have fractal characteristics. Recently,
Gao et al. (2006) presented experimental evidence for the fractal
nature of dwell times in the Necker cube. This suggests that
switching is best considered as a process governed by fragile
attractors. These naturally occur in complex adaptive systems
consisting of coupled oscillators. As the number of oscillators
grows large, corrupted fragile attractors increasingly become pre-
dominant in their dynamics, due to a phenomenon called attractor
crowding (Tsang & Wiesenfeld, 1990; Wiesenfeld & Hadley,
1989). This may be nature’s solution to the problem of how to
combine flexibility and robustness in a perceptual system.

This perspective was embodied in an early model of perceptual
organization, in which meta-stability along the lines of Figure 3 of
the system’s synchronized activity is responsible for switching in
ambiguous figures (van Leeuwen et al., 1997). The model consists

Figure 3. A simple dynamical system model for perceptual switching
characterized by two meta-stable states.
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of several layers of nonlinear neural mass oscillators. Ongoing
activity in this model synchronizes and breaks down spontane-
ously; the patterns of synchronization are modulated by stimula-
tion. For ambiguous stimuli, the system shows two alternative
patterns of synchrony, and switches rapidly between them. This
model was never tuned to empirical data and lacks a plausible
large-scale neural architecture. Despite these shortcomings, the
model may still have some theoretical value to date as an early
application of complex adaptive systems in psychology. More
recent applications of the model have addressed the self-
organization of modular, connected networks in functional archi-
tecture (Gong & van Leeuwen, 2003; Rubinov, Sporns, van Leeu-
wen, & Breakspear, 2009). Further along these lines, the more
recent model by Fürstenau (2010) has a layered structure that takes
into account the global architecture of the thalamo-cortical loop,
and it accommodates the fractal nature of dwell times in accor-
dance with Gao et al.’s (2006) observations.

Complex adaptive systems show long-term dependencies be-
cause their behavior exhibits self-organized criticality. Self-
organized criticality has been observed in the spontaneous syn-
chronization and desynchronization of EEG activity (Gong,
Nikolaev, & van Leeuwen, 2007). Long-term dependencies are
found in a large variety of tasks, such as mental rotation, lexical
decision, speeded visual search, estimation of distance, estimation
of rotation, estimation of force, estimation of time, simple reaction
time, and word naming (Gilden, 1997, 2001; Gilden, Thornton, &
Mallon, 1995; Van Orden, Holden, & Turvey, 2003), as well as in
recordings of human EEG (Ito, Nikolaev, & van Leeuwen, 2007).
It seems, therefore, that a dynamic characterization is appropriate
for a much wider range of behaviors other than switching. This
underlines the general relevance of dynamic models for psychol-
ogy and the illustrative value of switching for understanding
perception and cognition.

Complex adaptive systems imply a new perspective on the
perceptual sniff. Generally, more stable and instable periods like
those in Figure 3 (Ito et al., 2007) alternate in the brain. Unstable
periods are characterized by transient patterns of synchrony in
short-range, high-frequency activity. According to an influential
point of view, this is when collective representations are bound
together through synchronization of oscillatory activity (Milner,
1974; von der Malsburg, 1981). Binding-related neural oscillations
have been observed in the gamma range (roughly 40–70 Hz)
within as well as between local brain regions (Eckhorn et al., 1988;
Gray, König, Engel, & Singer, 1989; Singer & Gray, 1995). It is
possible that these episodes do not necessarily reflect binding, but
rather the breakdown of global stability of interpretation in a stage
in which the system is exploring competing new representations.
Accordingly, brief episodes of synchronous activity in the gamma
band occur prior to perceptual switching (Nakatani & van Leeu-
wen, 2006).

The more stable periods show oscillatory activity in lower
frequency ranges, specifically in the beta range of EEG (Nikolaev,
Gepshtein, Gong, & van Leeuwen, 2010). Gamma and beta activ-
ities are generally believed to have complimentary functions (Don-
ner & Siegel, 2011). Intervals of beta synchronization, called
coherence intervals (van Leeuwen, 2007), last longer when evoked
by less ambiguous stimuli than by more ambiguous ones (Nikolaev
et al., 2010). The less ambiguous the stimulus, the more informa-
tion contained in it. Thus, coherence intervals reflect broadcasting

of information across brain areas (van Leeuwen & Raffone, 2001;
van Leeuwen et al., 1997). In such a perspective, our brain activity
patterns reflect competition between representations, as well as the
resolution of the competition, followed by global broadcasting;
this qualifies as the mechanism by which our visual system pro-
ceeds autonomously from one experience to the next (van Leeu-
wen, 2007).

Conclusion

A dynamical systems approach can explain how the brain’s
capacities for self-organization are ideally suited to balance ro-
bustness and flexibility. Combining both is essential for perception
to be tuned to stimuli impinging from the environment, without
being overloaded by them, with just enough variation in perceptual
states to lead to proper cognitive interpretations and functional
actions. Different sources of change (stochastic and deterministic),
different types of noise (microscopic and macroscopic), and dif-
ferent kinds of attractors and dynamics were considered. More-
over, some of these were shown to correlate well with known
behavioral effects (e.g., dwell times) and recently discovered spe-
cific neural signatures (e.g., coherence intervals and self-organized
criticality of synchronization of neural oscillations). Although the
review above was aimed at understanding the dynamics of per-
ceptual switching, the theoretical concepts and neural aspects
discussed in this context, characterizing the brain as a complex
adaptive system, may readily be extended to deal with other
aspects of Gestalt formation such as perceptual grouping and
object formation (e.g., Hock, Kelso, & Schöner, 1993; Hock &
Nichols, 2012; Hock, Schöner, & Giese, 2003).

Hence, there are clearly modern counterparts to Köhler’s notion
of Prägnanz and self-organization that are also empirically fruitful.
In addition, as alluded to before, there also modern counterparts to
Helmholtz’s notion of likelihood and unconscious inference (e.g.,
the Bayesian approach to perception) and contemporary syntheses
of simplicity and likelihood, which also have a strong empirical
basis. We discuss these in the next three sections.

Principles of Measurement in a System of Sensors

Introduction

The Berlin school of Gestalt psychology tended to emphasize
properties of the system above properties of system elements. They
assumed a one-way global-to-local determination, on which prop-
erties of elements could be understood only by knowing their
places within the system. We now consider a modern view of the
determination of systems and their elements in service of visual
perception. On the modern view, the determination is two-way:
Properties of the system can be traced from properties of elements,
and also properties of elements depend on their places in the
system.

Elementary versus system processes. Key developments in
the sensory physiology of the 20th century had a strong flavor of
sensory atomism. Properties of individual sensory neurons came to
the fore (Barlow, 1972; Parker & Newsome, 1998), as painstaking
studies revealed a great variety and complexity of their receptive
fields (Hartline, 1940; Hubel & Wiesel, 1962, 1968; Kuffler, 1953;
Maunsell & Newsome, 1987). Indeed, the entire visual system was
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conceived from the perspective of single cell as a hierarchy of
receptive fields of increasing sophistication, from the relatively
simple ones, serving early vision (e.g., Adelson & Bergen, 1991),
to the more complex, serving mid-level vision (e.g., perceptual
organization; Nakayama, 1999) and high-level vision (e.g., object
recognition; Gross & Mishkin, 1977; Ullman, 1996). Yet, as
methods of neuronal recording matured and basic facts about
neural activity were settled, it became increasingly clear that a
theory that rested on single cells alone was incomplete (see also
Spillmann, 1999). Antiatomist tendencies started to emerge toward
the end of the last century, often appealing to the Gestalt legacy
(e.g., Albright, 1994; Albright & Stoner, 2002; Allman, Miezin, &
McGuinness, 1985; Gilbert, Ts’o, & Wiesel, 1991; Zhou, Fried-
man, & von der Heydt, 2000). It is important to note, however, that
the resurgent antiatomism of modern neuroscience is synthetic. It
rests on the growing understanding of how the function of indi-
vidual neuronal cells is modulated by these cells’ neuronal context,
and how the neuronal effects of stimulation are modulated by
stimulus context. In other words, the (atom-like) single cells are
studied as integral parts of a (holistic) system. The theory devel-
oped below is a manifestation of the same synthetic tendency.

Just as with sensory physiology, mainstream behavioral studies
of perception were dominated by atomist tendencies for much of
the century. Elementary sensory processes, such as detection and
discrimination of simple stimuli, were emphasized and often
viewed as the sole foundation of sensory science. The increasing
rigor of this work was helped by mathematical ideas imported
from the theory of linear systems, the theory of communication,
and probability theory. At first, these advances appeared foreign to
the antiatomist Gestalt ideology. In particular, the linear-system
approach to sensory processes is only tenable when stimulus
components exert their effects independently of one another, in
stark contrast to the Gestalt view of perception. Yet the increas-
ingly rigorous inquiry into elementary sensory processes created a
foundation from which new perspectives opened up on how the
tension between atomistic and holistic views of perception may be
reconciled without suppressing either side. The theoretical outlook
presented below rests on a dualistic view of sensory measurement,
whose formal manifestation is Gabor’s uncertainty principle. As

we show, the dualistic view helps to approach the elementary and
system processes within a unified picture.

Intrinsic versus extrinsic processes. The Berlin school of
Gestalt psychology focused almost exclusively on processes intrinsic
to the perceiving organism. Effects of environmental changes, such as
visual aftereffects, were studied to advance understanding of the
intrinsic processes (e.g., Köhler & Wallach, 1944). The environment
itself did not interest the Berlin Gestaltists beyond the phenomeno-
logical analysis of the perceived (behavioral) environment, in contrast
to the geographic environment—the source of stimulation (Koffka,
1935). It was the Graz school of Gestalt psychology that addressed the
question about structure of geographical environment. Fritz Heider, a
philosophically minded offspring of the Graz school, dedicated his
early work to the environmental causes of perception (Heider, 1926,
1959). Heider concentrated on the part–whole structure of the chain of
physical events that lead to perception, anticipating and influencing
the ecological thread in perceptual science advanced by Brunswik
(1955) and Gibson (1979). Egon Brunswik, in particular, is credited
with the first studies of how perceptual organization depended on
regularities of the physical environment (Brunswik & Kamiya, 1953),
a theme that flourishes today (see Wagemans et al., 2012, Section 4).

Modern studies of Gestalt phenomena that emphasize statistical
regularities of the environment tend to lean on these regularities at
the expense of other factors. The environmental bias makes per-
ceptual theory as incomplete as a theory that ignores environmen-
tal structure. The framework presented below embraces both the
internal and external aspects of perception. This unity is attained
by taking an economic perspective. Sensory measurements are
ranked by their utility, which depends both on capacities of indi-
vidual sensors (intrinsic to sensory systems) and on how useful the
sensors are in the current environment (extrinsic to the system). To
explain this modern synthetic view, we first need to introduce
recent results from studies of apparent motion.

Unity of Apparent Motion

An elementary case of apparent motion is illustrated in Figure 4.
Two lights (represented in Figure 4A by the unfilled circles) are
flashed one after another at different spatial locations s1 and s2, at

Figure 4. A: Space-time graph (t, s). Two lights are flashed at distinct locations represented by two circles at
coordinates t and s. B: Distance graph. The same stimulus is represented by a filled circle in a graph of distances
(T, S) � (�t, �s). C–D: Regimes of apparent motion. Two stimuli (represented by filled circles 1 and 2) are
shown in each distance graph: one at (T, S) and the other at (2T, nS). In Stimulus 2, the temporal distance is twice
longer and the spatial distance is n times longer than in Stimulus 1. What is the magnitude of n (n � 0) at which
the two stimuli are equally strong? The answer has been inconsistent. According to some studies, the answer is
n � 1 (distance coupling in Panel C); by others, it is n � 1 (distance tradeoff in Panel D). Adapted from “Two
Psychologies of Perception and the Prospect of their Synthesis,” by S. Gepshtein, 2010, Philosophical Psychol-
ogy, 23, pp. 244–245. Copyright 2010 by Taylor & Francis. Adapted with permission.
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instants t1 and t2, respectively. Motion is seen only for some spatial
and temporal distances between the lights. The quality (or
strength) of apparent motion depends on the combined effect of
spatial and temporal distances between the lights (as shown in the
distance graph of Figure 4B). Two regimes of apparent motion can
be distinguished. In the regime of space-time coupling (see Figure
4C), the strength of motion is conserved by increasing both spatial
and temporal distances between the lights (Koffka, 1935; Korte,
1915). In the regime of space-time tradeoff (see Figure 4D), the
strength is conserved by opposite changes of spatial and temporal
distances: Increasing one distance must be accompanied by de-
creasing the other distance (Burt & Sperling, 1981).

Later work showed that the two regimes of apparent motion are
special cases of a general pattern. Gepshtein and Kubovy (2007)
found that the regime of tradeoff holds at low speeds of apparent
motion, and the regime of coupling at high speeds, with one
regime changing smoothly into another as a function of speed. The
authors derived equivalence contours of apparent motion, which
were consistent with the shapes of isosensitivity contours mea-
sured at the threshold of visibility (Kelly, 1979; reviewed in
Nakayama, 1985). Figure 5 illustrates this idea using a contour plot
of spatiotemporal contrast sensitivity. Each contour represents an
isosensitivity set of stimulus conditions, at which the same amount
of luminance contrast makes the stimuli just visible. The condi-
tions marked by warm colors require less contrast to reach the
threshold of visibility than the conditions marked by cool colors. If
conditions of isosensitivity were similar to conditions of equiva-
lently strong apparent motion, the different regimes of apparent

motion were expected in different parts of distance graph, indi-
cated in Figure 5 by the two pairs of connected circles (as in
Figures 4C–4D). The results of Gepshtein and Kubovy were
consistent with this prediction. A monotonic relationship held
between the isosensitivity contours and the equivalence conditions
of apparent motion, indicating that the perception of motion is
controlled by similar factors at the threshold of visibility and above
the threshold. The fact that regimes of apparent motion occur
where they are expected from the threshold measurements indi-
cates that common principles govern perception in both cases.

These results undermine the accepted view of perceptual group-
ing. They indicate that human vision favors sometimes short and
sometimes long spatiotemporal distances, which is inconsistent
with the proximity principle (Gepshtein, Tyukin, & Kubovy,
2007), a cornerstone of Wertheimer’s (1923) conception of per-
ceptual organization. In other words, the proximity principle does
not generalize to dynamic scenes. There is no spatiotemporal
proximity principle. Elements of a dynamic display separated by
short spatiotemporal distances are not more likely to be perceived
as parts of the same object than elements separated by longer
spatiotemporal distances. The traditional view needs revision. One
direction for such a revision is a theory from principles more
general than the empirically observed tendencies. In the following
sections, we review such a theory, which explains how the unity of
experimental findings about apparent motion, on the one hand, and
consistency of these results with results on spatiotemporal sensi-
tivity, on the other, are expected from basic properties of measure-
ment.

Principles of Measurement

Gabor (1946) formalized a fundamental result in the theory of
communication that had been increasingly appreciated by engi-
neers early in the 20th century (Hartley, 1928; Gabor, 1952). It is
the uncertainty principle of measurement. The principle applies to
simultaneous measurements of two aspects of any signal: its loca-
tion and content. At the performance limit of any measuring
device, the precision of measuring the location is constrained by
the precision of measuring the content, and vice versa. We briefly
review this principle in one dimension (see Figure 6) before we
turn to its consequences for measurement of motion:

• To measure signal location on dimension x is to determine
interval �x that contains the signal. The smaller the interval, the
higher the precision (the lower the uncertainty) of measurement.

• To measure signal content on x is to determine how the signals
varies over x, that is, to measure signal variation. The variation is
evaluated by decomposing a signal to its elementary variations:
harmonic functions of different frequencies. Because the elemen-
tary variations are each characterized by a single frequency, the
result of this measurement is called the frequency content of the
signal (fx in Figure 6A).

• Measuring signal location and frequency content at the same
time presents a challenge. Measurement of location is most precise
(least uncertain) when the signal is contained in a very small
interval but small intervals cannot capture information sufficient
for identifying the (frequency) content of signals precisely. Mea-
surement of signal content is precise on large intervals. In effect,
there is a tradeoff in precision of measuring signal location and
content.

Figure 5. Equivalence contours. The colored curves are the contours of
contrast sensitivity reproduced in the distance graph from the spatiotem-
poral frequency graph of Kelly (1979), using methods explained in Gep-
shtein and Kubovy (2007). Contour slopes vary across the graph, consistent
with the regimes of coupling and tradeoff of apparent motion in different
parts of the graph. The two pairs of connected circles are two examples of
where different regimes of apparent motion are expected if strength of
apparent motion was predicted by contrast sensitivity. Adapted from “The
Lawful Perception of Apparent Motion,” by S. Gepshtein and M. Kubovy,
2007, Journal of Vision, 7(8), Article 9, p. 6. Copyright 2007 by the
Association for Research in Vision and Ophthalmology. Adapted with
permission.
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Gabor gave this tradeoff a formal expression—his uncertainty
principle—as follows. At the limit of precision of any measuring
device, the uncertainties associated with measuring signal location
and frequency content are related. Gabor represented the joined
measurements using information cells (logons) in (x, f), shown as
rectangles in Figure 6. He proposed that the number of information
cells that contain a representation of signal in (x, f) is a measure of
the information contained in a signal. Spatial precision of this
device can only be increased by decreasing precision of measuring
frequency content, and vice versa. To precisely measure both the
location and content of a stimulus, visual systems might employ

specialized sensors, tuned to x or f. But biological systems are
likely to prefer a compromise to the utter specialization, for two
reasons. First, both location and content of a signal often need to
be measured by the same sensor at the same time, to avoid the
problem of matching content to location. Second, biological sys-
tems have limited resources. An economical design, in which the
same resource (the same sensory neuron or neuronal circuit) per-
forms several functions, has an advantage. According to these
considerations, the sensors represented by the information cell in
the middle of Figure 6A must be preferred over the specialized
sensors. A measuring device that implements this compromise
optimally is a Gabor filter.

Physiological studies of visual perception have shown that vi-
sual cortical neurons are optimized for measuring the location and
frequency content of the stimulus in a manner consistent with
Gabor’s filter (Daugman, 1985; Glezer, Gauzelman, & Yakovlev,
1986; Kulikowski, Marcelja, & Bishop, 1982; D. M. MacKay,
1981; Marčelja, 1980). The similarity of visual receptive fields and
Gabor filters is well established (Jones & Palmer, 1987). Also well
established is the interpretation of this similarity, that the particular
weighting functions facilitate the joint measurements of the loca-
tions and contents of stimuli.

In the following, we review several consequences of the uncer-
tainty principle beyond individual sensors. In particular, we show
how the extension of this approach to a system of sensors helps to
reveal a unity of results from the statistical and phenomenological
traditions in perceptual science.

Systems of Sensors

To understand effects of Gabor’s uncertainty principle for per-
ception of motion, we must study interactions of four uncertainties:
two spatial and two temporal, represented by the spatial and
temporal logons on the side panels of Figure 7A. Next, we make
the same step as in Figure 6B: We combine all uncertainties to a
single function in Figure 7B:

• First, recall that increasing the interval of measurement in one
dimension has two effects: increasing uncertainty about signal
location and decreasing uncertainty about signal content, repre-
sented by functions B1 and B2 in Figure 7B. The two effects are
summarized by joint uncertainty function B3 (the thick curve).

• Now, we use the same approach, first separately, within the
spatial and temporal domains. The spatial and temporal uncertainty
functions are represented by the thick curves in Figure 7B.

• Next, we add the spatial and temporal uncertainties for every
point in the distance graph. The result is a spatiotemporal uncer-
tainty function rendered in Figure 7B as a surface.

The structure of this surface is revealed in a contour plot on the
bottom of Figure 7 (a distance graph). The contours are projections
of the level curves of the surface, such that each contour is an
iso-uncertainty set containing (T, S) conditions of the same uncer-
tainty. These conditions are equally suitable for measuring stimu-
lus location and content in space and time. The closer a contour to
the point of smallest uncertainty (red disk in Figure 7B), the lower
the uncertainty.

Figure 6. A: Information cells and uncertainty tradeoff. The three rect-
angles are the information cells. Their projections on dimensions x and fx
represent, respectively, the precision of measuring signal location and
content: the larger the projection, the lower the precision (higher uncer-
tainty) of measurement. The cells have the same area (product of intervals
on x and fx) but their shapes vary. B: Uncertainty functions in one
dimension. Curves B1 and B2 are the uncertainty functions associated with
measuring signal location and content, by a sensor of size �x. The values
of B1 and B2 are proportional to, respectively, the horizontal and vertical
extents of the information cells in Panel A. B3 is a joint uncertainty
function. It represents the uncertainty of simultaneous measurement of
stimulus location and content. Low values of B3 at intermediate magnitudes
of �x indicate that sensors of intermediate size are most suitable for jointly
measuring signal location and content. Adapted from “Two Psychologies
of Perception and the Prospect of Their Synthesis,” by S. Gepshtein, 2010,
Philosophical Psychology, 23, p. 250. Copyright 2010 by Taylor & Fran-
cis. Adapted with permission.
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Economics of Measurement by a System of Sensors

We have reviewed how properties of individual spatiotemporal
measurements vary across the stimulus space. This analysis allows
us to draw several interesting conclusions about characteristics of
motion sensitivity. In particular, it helps to explain why different
regimes of apparent motion are observed using different stimuli,
and why the proximity principle fails in perception of motion.

The distance graph at the bottom of Figure 7 contains iso-
uncertainty contours. If measurement uncertainty was the only
force that determined the quality of perceived motion, all stimuli
on an iso-uncertainty set would be perceived equally well. Then,
the different slopes of these contours in different parts of the graph
indicate where different regimes of apparent motion are expected:
space-time coupling where the slopes are positive, space-time
tradeoff where the slopes are negative. For example, the regime of
coupling is expected at high speeds, in the top left region of the
graph, and the regime of tradeoff is expected at intermediate
speeds, in the top right and bottom left regions.

This way, the empirical inconsistency about combination of
spatial and temporal distances in apparent motion is resolved not
only empirically but also theoretically. The different regimes of
apparent motion occur because the expected quality of sensory
measurements varies across the stimulus space. We observe that
one of the regimes (coupling) is inconsistent with the proximity
principle, but it is consistent with predictions from the uncertainty
principle, as it is consistent with empirical observations that space-
time coupling holds at some stimulus conditions. This suggests
that the uncertainty principle should replace empirical observa-
tions as the foundational fact for perceptual theory.

To summarize, the inquiry into basic properties of measurement
suggested how an inconsistency in studies of apparent motion can

be resolved. This approach has also helped to understand aspects
of perception associated with lower level perceptual processes.
Gepshtein et al. (2007) pursued the approach summarized in Fig-
ure 7 and also considered the uncertainty associated with relation
of the two dimensions of distance graph: speed of motion. They
found that the shapes of iso-uncertainty contours that incorporated
speed uncertainty were similar to the shapes of isosensitivity
contours plotted in Figure 5. That is, they showed that basic
considerations of sensory measurement can explain more intricate
details of visual sensitivity than the fact that different regimes of
apparent motion occur under different conditions of stimulation.

The predictions of equivalent conditions of sensory measure-
ment serve as a prescription for optimal allocation of the limited
neural resources. The lower the measurement uncertainty, the
more useful these conditions are for the perception of motion. If
the visual system allocated its resources according to this expected
utility of measurement, then better sensory performance (e.g.,
higher sensitivity) would be expected at conditions where the
predicted uncertainty of measurement is low, and equivalent per-
formance would be expected when the uncertainty is the same.

Using this economic framework, it is easy to see how aspects of
sensory measurement intrinsic to the sensory system relate to its
extrinsic aspects—that is, those of the sensory environment. Evi-
dently, the utility of sensors that are stimulated infrequently is
lower than the utility of sensors stimulated very often. This ob-
servation suggests how the intrinsic utility of sensors ought to be
modulated in view of the statistics of stimulation, and how equiv-
alent conditions of measurement ought to change as the environ-
ment changes. The distribution of motion sensitivity across the
entire distance graph is expected to change, causing increments or
decrements of sensitivity in different parts of the stimulus space.

Figure 7. A: Interaction of spatial and temporal uncertainties. The gray panel on the bottom is a distance graph.
Each point of it corresponds to two information cells: temporal and spatial. Some of the corresponding logons
are shown in the temporal and spatial (x, f) planes in the left and right planes. B: Spatiotemporal uncertainty
function. The curves in the side panels represent one-dimensional uncertainty functions: temporal and spatial.
The functions describe uncertainties of jointly measuring signal location and signal content (as in Figure 6B),
separately in space and time. Summing the spatial and temporal uncertainties for every combination of spatial
and temporal distances yields a bivariate uncertainty function, shown as a surface. The circular contours in the
distance graph on the bottom are projections of level curves of this surface. Each contour represents a set of equal
uncertainty. The central dot in the bottom panel is a projection of the minimum of uncertainty. Panel A is adapted
from “Two Psychologies of Perception and the Prospect of Their Synthesis,” by S. Gepshtein, 2010, Philo-
sophical Psychology, 23, p. 256. Copyright 2010 by Taylor & Francis. Adapted with permission. Panel B is
adapted from “The Economics of Motion Perception and Invariants of Visual Sensitivity,” by S. Gepshtein, I.
Tyukin, and M. Kubovy, 2007, Journal of Vision, 7(8), Article 8, p. 4. Copyright 2007 by the Association for
Research in Vision and Ophthalmology. Adapted with permission.
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This argument helps to explain why previous studies of adap-
tation produced puzzling results. Visual sensitivity was found to
sometimes increase and sometimes decrease in response to expo-
sure to adapting stimulus (e.g., Clifford & Wenderoth, 1999; De
Valois, 1977). Such results, obtained in different studies that used
stimuli at different parts of our distance graph, again become
special cases of a larger picture, in which adaptation induced a
redistribution of sensitivity across the entire range of stimulation.
The question of whether adaptation should increase or decrease
visual sensitivity at an individual point in the distance graph can
only be answered when we know the distribution of sensitivity in
the entire system (Gepshtein, Lesmes, Tyukin, & Albright, 2009).

Conclusion

From this perspective, properties of individual sensors, as well
as their contributions to perception, must depend on the place the
sensors occupy in the system. This outlook allows one to explain
phenomena of motion perception that may appear unrelated to one
another, or even contradictory, including the phenomena of appar-
ent motion, spatiotemporal sensitivity, and motion adaptation. The
theory of sensory processes that we outlined, although based on
experimental findings broader than classic Gestalt phenomena, is
very much in line with the Gestalt claim that properties of system
elements—the parts—are determined by intrinsic properties of the
system—the whole (cf. Wertheimer’s fundamental formula of
Gestalt theory cited in Section 2). At the same time, however, this
synthetic framework allows one to investigate how extrinsic fac-
tors (such as the statistics of natural stimulation) affect visual
sensitivity, helping to resolve the tension between simplicity and
likelihood principles in perceptual science. Two other synthetic
frameworks that address this tension are reviewed next.

A Bayesian Approach

Introduction

In traditional Gestalt psychology, the foundation of all different
phenomena of perceptual organization lies in the minimum or
simplicity principle. A potentially useful alternative synthesis of
many aspects of grouping and object formation is provided by
Bayesian theory and associated computational mechanisms. The
Bayesian approach may be viewed as competing with traditional
approaches, but is perhaps better viewed as a comprehensive
mathematical framework in which existing principles are unified
and placed on a more principled foundation.

In Bayesian approaches to perception (Kersten, Mamassian &
Yuille, 2004; Knill & Richards, 1996), all fixation of perceptual
belief is assumed to be connected to the calculation of Bayesian
posterior probability. Bayesian inference is a provably rational
procedure (see Cox, 1961; Jaynes, 1957/1988) that results in an
optimal combination of the available evidence with prior beliefs.
In perception, generally, this approach entails a rational estimate of
the structure of the scene that combines fit to the available image
data with the mental set of the perceiver (background knowledge,
context, etc.). In this sense, the Bayesian approach exemplifies a
principle-based approach to perception (in contrast to a bag of
tricks; Ramachandran, 1985), postulating that one coherent ratio-
nal procedure underlies a wide range of perceptual phenomena,

ranging from visual illusions (Geisler & Kersten, 2002) to motion
(Weiss, Simoncelli, & Adelson, 2002) to shape (Feldman & Singh,
2006).

As applied to perceptual grouping in particular, the Bayesian
approach entails the selection of an optimal organization of the
image elements into groups, including contours, surfaces, whole
objects, and entire scenes. In this context, the organization to be
estimated is an emergent feature or holistic property par excel-
lence. In its reliance on one unifying principle, namely, Bayes’
rule, the goal of Bayesian perceptual grouping is to explain con-
ventional grouping principles, such as Gestalt rules, as entailments
of its central principle, rather than to assume them as axioms. In
this way, the Bayesian approach aims to reinterpret Gestalt rules as
epiphenomena of a more fundamental unifying principle.

The main challenge in formulating Bayesian accounts of per-
ceptual grouping is to develop appropriate likelihood models for
objects (and contours, surfaces, etc.), which can be thought of as
probabilistic generative models of image structure. Bayesian the-
ory does not directly provide such models, but merely requires that
they have the form p(I|Hi) for some set of candidate models H1 . . .
HN, where I is some representation of image data. This expression
quantifies the conditional probability of those particular image
data under each hypothetical organization. The particular form of
such likelihood models then becomes the main focus of inquiry,
and may have very different answers in each setting in which it
arises. In many cases, the likelihood models adopted implicitly
import what amount to familiar Gestalt preferences. An example is
when the generative model for contours (see below) presumes
approximately collinear paths, which seems to smuggle in the
Gestalt conception of good continuation in all but name. Never-
theless, the Bayesian framework allows such biases to be coher-
ently formalized so that (a) their strength can be quantified, (b)
predictions about what percepts they engender can be substanti-
ated, and (c) rules of combination can be developed using all the
tools of modern statistical theory.

In what follows, (a) we apply the Bayesian approach to grouping
principles such as proximity and good continuation, (b) we offer a
Bayesian foundation for core concepts from Gestalt theory such as
object formation and Prägnanz, and (c) we discuss relationships to
other frameworks (simplicity vs. likelihood, minimal model the-
ory, and Bayesian network models).

A Bayesian Approach to Grouping Principles

Proximity. A simple example is the principle of proximity,
which was among the earliest Gestalt cues to enjoy careful empir-
ical quantification (e.g., Hochberg & Silverstein, 1956; Oyama,
1961). More recent work by Kubovy, Wagemans and coauthors
(Claessens & Wagemans, 2005; Kubovy, Holcombe, & Wage-
mans, 1998; Kubovy & van den Berg, 2008; Kubovy & Wage-
mans, 1995) has carefully measured the preference for one dot
organization over another as a function of interelement distances,
generally finding data consistent with a pure distance law in which
grouping strength decays exponentially as a function of interele-
ment distance (see Wagemans et al., 2012, Section 3). This ap-
proach (a) explicitly establishes a finite set of alternative organi-
zational hypotheses, and then (b) weighs probabilistic evidence in
favor of one hypothesis over another. Hence, though not originally
formulated in explicitly Bayesian terms, this finding sets the
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stage for a Bayesian interpretation mechanism, involving a gener-
ative model of dot clusters as foci from which visual elements are
generated with probability monotonically decreasing with distance
from their centers (Claessens & Wagemans, 2008).

Good continuation. Another example is collinearity, which
Wertheimer (1923) identified as a Gestalt organizing principle
under the admittedly vague phrase good continuation (durchge-
hende Gerade or continuing direction). In a Bayesian context, the
expectation that contours tend to continue approximately straight
can be realized as a likelihood model assigning probabilities to
specific magnitudes of deviation from perfect collinearity (Feld-
man, 1996, 1997a; Feldman & Singh, 2005; Singh & Fulvio, 2005,
2007). This likelihood distribution can take several forms, such as
a Gaussian (normal) distribution centered at collinear, or a von
Mises distribution, which is both more mathematically appropriate
(Fisher, 1993) and is supported by neurophysiological data
(Swindale, 1998). Whatever the choice, the nature of the likelihood
distribution constitutes the system’s tacit assumptions about ex-
actly how smooth contours are likely to behave in the environment.
The connection between the statistical structure of contours and
the empirical statistics of naturally occurring object boundaries has
been made more explicit by Elder and Goldberg (2002) and by
Geisler, Perry, Super, and Gallogly (2001). In this connection, the
Bayesian approach to perceptual organization can be regarded as
sharing an essential premise with an older tradition of justifying
perceptual biases via arguments from ecological validity
(Brunswik & Kamiya, 1953), in that both connect perceptual
principles to statistical regularities of the world. More broadly,
likelihood models can be developed that are tuned to the charac-
teristics of specific natural object categories (see Wilder, Feldman,
& Singh, 2011). But again, placing this argument in a Bayesian
framework enormously clarifies the mathematical substance of this
connection, showing exactly in what sense, and under what as-
sumptions, perceptual hypotheses are justified by assumptions
about the world.

A Bayesian Foundation for Core Concepts From
Gestalt Theory

Object formation. Perceptual grouping is sometimes de-
scribed as the formation of objects or units from the initially
disparate element of the visual array—that is, groups large enough
to be considered whole. Like many aspects of the conventional
Gestalt account, this somewhat vague idea can be given a more
precise meaning in a Bayesian framework (Feldman, 2007). By its
nature, Bayesian theory presumes data-generating stochastic mod-
els, here meaning object models whose boundaries and surface
properties are generated in a well-defined way that involves a
well-defined random component. Such a generative model can
(and in complex situations usually does) contain multiple distinct
data sources—that is, sources that are generated independently but
whose outputs combine to form the ultimate image configuration.
A simple example is a mixture model, a probability distribution
that is formed from the combination of some number of distinct
sources each with its own mean and variance (McLachlan &
Basford, 1988). Estimation of mixture models is a statistically
challenging problem because of the need to estimate the correct
separation of the data into component sources—that is, to estimate
which component was actually responsible for generating each

datum. The problem of perceptual organization can be thought of
as a particularly complex mixture estimation problem, in which the
distinct sources have not only distinct means and variances but
also distinct geometric properties, surface properties, colors, tex-
tures, and so forth. In this view, the objects are the distinct
generative sources, but estimating them correctly—solving the
perceptual organization problem—is beyond the capacity of con-
temporary theory.

Prägnanz. Perhaps the most subtle connection between Ge-
stalt and Bayesian approaches to perceptual grouping arises in
connection with the term Prägnanz, used to encompass a wide
range of Gestalt organizational preferences involving harmony,
coherence, or simplicity (Kanizsa, 1979; Koffka, 1935; Metzger,
1953). In a Bayesian framework, this admittedly vague and dis-
junctive term corresponds to a single unifying principle: Bayes’
rule. Given appropriate generative models (i.e., assuming that the
image configuration was generated stochastically by a model
within the assumed model class), the maximum posterior interpre-
tation is, in fact, the optimal interpretation. In particular, it has
often been noted that Bayesian models tend to incorporate a
preference for simpler interpretations (sometimes referred to as
Bayes’ Occam), essentially because larger families of hypotheses
(involving more parameters, and in this sense inherently more
complex) must assign a lower prior probability to each individual
hypothesis (Jeffreys, 1961; D. J. C. MacKay, 2003; Tenenbaum &
Griffiths, 2001). This observation is part of a larger fabric of
connections between simplicity and probability that has been de-
veloped in the statistical learning literature, including the principle
of minimum description length (Rissanen, 1978), which connects
the maximization of the Bayesian posterior to the minimization of
the data encoding, and the theory of Kolmogorov complexity (see
Li & Vitányi, 1997), which connects the inherent complexity of
models to their probability via a universal prior (Solomonoff,
1964a, 1964b). This theme is taken up again below.

Relationships to Other Frameworks

Simplicity versus likelihood. In a Bayesian framework, the
central unifying principle of Gestalt theory—Prägnanz—may be
identified with the central unifying principle of Bayesian theory—
maximization of the Bayesian posterior. The question then is
where a Bayesian visual system might get its prior and conditional
probabilities from, so to speak. According to the likelihood prin-
ciple, these probabilities relate to frequencies of occurrence in the
world, and according to the simplicity principle, they are derived
from the simplest stimulus descriptions (i.e., simpler is more
likely). Chater (1996) and Feldman (2009) argued that these
stances can be reconciled (but see also below). In any case, a
Bayesian visual system using simplicity-based probabilities would
be in line not only with Bayes’ Occam but also with the intuitive
workshop metaphor of Adelson and Pentland (1996), who analo-
gized scene interpretation to the construction of a physical model
in which total costs (fees to carpenters, painters, and lighting
designers) are minimized. Maximizing the posterior minimizes
these costs, thus yielding the most economical solution—as long as
the costs have been correctly calibrated, that is, as long as the
assumptions underlying the generative model are correct.

Minimal model theory. The Bayesian preference for simpler
perceptual interpretations over more complex ones defines an
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implicit qualitative ordering of interpretations in the model space
(Feldman, 2009), which can be made explicit in a lattice or other
partial order (Feldman, 1997b, 2003b; Jepson & Mann, 1999;
Jepson & Richards, 1992; Richards, Jepson, & Feldman, 1996).
This point of view suggests a logical rendition of Bayesian per-
ceptual interpretation, in which Bayes’ rule is replaced by a logical
operation that selects an extremal interpretation from a structured
space of qualitative alternatives. This framework is sometimes
termed minimal model theory because it entails the selection of a
logically minimal model from this partially ordered set. This
framework relates closely to Rock’s (1983) avoidance-of-
coincidence principle. This principle holds that interpretations
should be preferred in which as few image properties as possible
are coincidences, such as accidents of viewpoint or configuration.
By this argument, reliable scene representations should be built
upon properties that are unlikely to be accidental consequences of
viewpoint, sometimes called nonaccidental properties (Witkin &
Tenenbaum, 1983; see also below for a different model along the
same lines). An example is collinearity, which is unlikely to arise
accidentally in the image unless it actually occurs in the 3-D scene.
Minimal model theory orders interpretations by subset inclusion
over the set of accidental configurations. The interpretation that is
minimal in this order, among all interpretations consistent with the
image, is thus the interpretation that leaves the fewest coincidences
unexplained.

Selection of the minimal model discards many of the niceties of
a full-blown Bayesian approach, such as a complete quantitative
evaluation of the likelihood, in favor of a qualitative evaluation of
consistency between each interpretation and the image data. But it
is broadly consistent with Bayesian inference in that each addi-
tional coincidence entails a decrease in the likelihood, so mini-
mizing the coincidences also maximizes the likelihood (see Feld-
man, 2009). At the same time, this point of view opens the door to
the kind of qualitative inference familiar from much of the per-
ceptual organization literature, which often entails selecting among
a finite set of distinct alternatives (orderings of surfaces, qualita-
tive classifications of junctions, qualitative classifications of parts,
etc.). Moreover, consistent with the discussion above, minimal
model theory provides an elegant definition of objects, which are
viewed as subtrees of the minimal interpretation bearing a certain
type of logical independence from other subtrees (Feldman,
2003a).

Bayesian network models. In its application to perception,
Bayesian theory may be regarded as a pure computational theory
in Marr’s (1982) sense, in that it identifies defining attributes of a
solution to be selected from the space of possible stimulus inter-
pretations, but does not provide concrete mechanisms for comput-
ing it. But a burgeoning literature has taken up this challenge,
proposing computationally feasible procedures for approximating
the Bayesian posterior. Prominent among these are the many
variants of Bayesian belief propagation pioneered by Pearl (1988).
In principle, such models may be thought of as models for neural
networks because (like real neural networks) they involve strictly
local communication between nodes connected by pairwise links.
The application of Bayesian network models to perceptual orga-
nization is still in its infancy, notwithstanding some promising
initial steps in the area of figure–ground organization (Froyen,
Feldman, & Singh, 2010; Weiss, 1997). But the broader problem
of perceptual grouping constitutes a particularly challenging case

for network architectures because of the need to consider global
qualities of the image in order to arrive at the perceived interpre-
tation—that is, the very aspect emphasized in the term Gestalt.
Most neural network models, by design, consider evidence only
across the span of local receptive fields—not the entire image at
once—so adapting them to find global optima may require the
development of new techniques. Still, this direction may be
uniquely promising as a way of combining a neural-like architec-
ture with a well-motivated global objective function.

Conclusion

The Bayesian approach, which has proven to be useful in many
areas of perception and cognition, has offered additional insight
into classic Gestalt phenomena such as perceptual grouping and
object formation, and it has provided a foundation to core concepts
from classic Gestalt theory such as Prägnanz. It also establishes a
bridge between likelihood and simplicity, which is expanded fur-
ther in the next section.

Structural Information Theory

Introduction

In order to understand simplicity, we need to understand de-
scription complexity, and for that, we need a valid notion of
information. In the aftermath of Shannon’s (1948) breakthrough in
communication theory, psychologists started to rethink the concept
of information (e.g., Attneave, 1954; Garner, 1962; Hochberg &
McAlister, 1953; D. M. MacKay, 1950; Miller & Frick, 1949;
Quastler, 1955). This led to the rise of representational coding
approaches, which did not quantify the information in a message
by the probability of occurrence of the message (as Shannon did)
but by the number of parameters needed to specify its content. In
other words, applied to perception, they focused on the informa-
tional content of Gestalts (for a review, see Hatfield & Epstein,
1985). To this end, they postulated (a) that incoming stimuli are
perceptually organized by operations that capture regularity and
(b) that Gestalts are reflected by codes that specify the simplest
organization (Simon, 1972). Later, in the 1980s and inspired by an
increased understanding of the brain’s neural network, connection-
ism began to focus on the flow of information, postulating (a) that
this flow is reflected by activation spreading in a network and
(b) that Gestalts are reflected by stable patterns of activation
(McClelland & Rumelhart, 1981). Still later, in the 1990s, dynam-
ical systems theory (DST) started to focus on the dynamic transi-
tions from any one neural state to the next, postulating (a) that
these transitions can be described by nonlinear differential equa-
tions and (b) that Gestalts are reflected by attractors in the brain’s
state space, that is, by relatively stable states towards which the
brain can be said to be attracted (Eliasmith, 2001; see also above).

These three approaches (information theory, connectionism, and
DST) use different formal tools to model different aspects, which
does not mean that they are mutually exclusive. In fact, in the spirit
of Marr’s (1982) three levels of explanation (computation, algo-
rithm, and implementation), they may provide complementary
insights that—together—may explain how percepts are the result
of cognitive processes implemented in the brain. In the sections
below, this multidisciplinary and typically Gestaltist perspective is
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sketched starting from the representational coding approach of
structural information theory (SIT).

Central to SIT is the simplicity principle, which holds that
percepts correspond to the simplest descriptive codes, that is,
codes that specify stimulus organizations by capturing a maximum
of regularity. The simplicity principle is a descendant of Hochberg
and McAlister’s (1953) minimum principle, and both are
information-theoretic translations of the law of Prägnanz. In the
1960s, Leeuwenberg (1969, 1971) initiated SIT as a representa-
tional coding model of visual pattern classification. Nowadays, it
also includes a theoretically sound and empirically successful
quantification of pattern complexity and empirically successful
quantitative models of amodal completion and symmetry percep-
tion (e.g., van der Helm, 1994; van der Helm & Leeuwenberg,
1991, 1996; van der Helm, van Lier, & Leeuwenberg, 1992; van
Lier, 1999; van Lier, van der Helm, & Leeuwenberg, 1994). To
avoid a persistent misunderstanding, it is true that SIT’s formal
model applies to symbol strings to code patterns and that relatively
much attention in the SIT literature is paid to how symbol strings
might represent visual stimuli. This does not mean, however, that
SIT assumes that the visual system converts visual stimuli into
symbol strings. The symbolic representations (which are not dis-
cussed here) merely serve to indicate how SIT’s information-
processing principles might be applied to visual stimuli to attain
testable quantitative predictions.

In the sections below, we review how SIT deals with three
fundamental questions concerning perceptual organization. First,
we address the question of how veridical simple stimulus organi-
zations are; to this end, we specify the relationship between sim-
plicity and likelihood again by means of Bayes’ rule but in a
different conceptual framework than the one used in the preceding
section. Second, we address the question of what should be the
nature of the visual regularities to be captured to arrive at simple
organizations. Third, we address the question of how simple or-
ganizations might be computed; this issue has led to a represen-
tational picture of cognitive architecture, which includes connec-
tionist modeling ideas and which honors ideas from neuroscience
and DST about neuronal synchronization.

The Veridicality of Simplicity

As argued before, the Gestalt school’s simplicity principle con-
trasts with von Helmholtz’s (1909/1962) likelihood principle. The
latter holds that, for a proximal stimulus, the visual system chooses
the interpretation most likely to be true, that is, the one that most
likely reflects the actual distal stimulus that caused the proximal
stimulus. Hence, by definition, the likelihood principle holds that
the visual system is highly veridical with respect to the external
world. This would be nice, but to be able to assess this, one needs
access to the real probabilities of occurrence of distal stimuli in the
external world, while in fact these probabilities are unknown, if not
unknowable. The simplicity principle, conversely, holds that the
visual system chooses the simplest interpretation, that is, one that
can be specified by a minimum number of descriptive parameters.
Hence, by definition, the simplicity principle holds that the visual
system is highly efficient with respect to internal resources. This
would also be nice, but would it yield sufficient veridicality to
guide us reliably through the world? In SIT, this question has been

addressed via a line of reasoning that is reviewed next (for more
details, see van der Helm, 2000, 2011a).

In the 1950s and 1960s, not only psychologists but also math-
ematicians began to rethink the concept of information (Kolmogo-
rov, 1965; Solomonoff, 1964a, 1964b). This led to the mathemat-
ical domain of algorithmic information theory (AIT), also known
as the theory of Kolmogorov complexity or the minimum descrip-
tion length principle (see Li & Vitányi, 1997). Solomonoff (1964a,
1964b), in particular, realized that, in many domains, the proba-
bilities with which events occur are unknown, so that Shannon’s
approach cannot be applied to make reliable inferences. To cir-
cumvent this problem, he turned to descriptive codes and proposed
to use artificial probabilities derived from the complexities of these
codes (i.e., things with simpler codes get higher probabilities). He
was also the first to prove that this can be achieved irrespective of
the specific descriptive coding language that is used (see also
Simon, 1972). In other words, he showed that simplicity is a fairly
stable concept. He also conjectured that those artificial probabili-
ties are universal probabilities in that they allow for fairly reliable
inferences in many different situations (or worlds).

In the 1990s, Solomonoff’s conjecture proved to be valid in the
form of the fundamental inequality (Li & Vitányi, 1997), which
holds for an infinite number of imaginable worlds and implies that
simplicity-based inference is more reliable as the probability dis-
tribution of objects in such a world is simpler. Roughly, the
complexity of a probability distribution is given by the number of
categories to which it assigns probabilities. Hence, the fundamen-
tal inequality implies that simplicity-based inference is more reli-
able in a world that contains fewer categories to be distinguished
(e.g., human-made worlds as opposed to natural worlds). This
suggests that the simpler a world is, the more veridical the sim-
plicity principle will be in that world. This does not imply, how-
ever, that the simplicity principle is highly veridical in any specific
world, but instead, that it might be fairly veridical in many differ-
ent worlds, possibly including the actual one. (This is where this
line of reasoning deviates from the one by Chater, 1996, and
Feldman, 2009, outlined above.)

Hence, whereas the likelihood principle is a special-purpose
principle in that it is adapted to one specific world with a suppos-
edly known real probability distribution, this line of reasoning
suggests that the simplicity principle is a general-purpose principle
that promises to be fairly (possibly sufficiently) adaptive to many
different worlds without having to know their real probability
distributions. The latter is therefore a serious contender not only
because it is better quantifiable but also from an evolutionary point
of view because the survival value of adaptability to changing
environments may be higher when based on a general-purpose
principle than a special-purpose one.

Applied to perceptual organization, the discussion above can be
sharpened further. To this end, one has to make a distinction
between the prior and the conditional of a candidate stimulus
interpretation, that is, of a hypothesized distal stimulus H that fits
a given proximal stimulus D. In Bayesian terms, the prior is the
probability that H occurs independently of D, and the conditional
is the probability that D occurs if H were true. Multiplying the
prior and the conditional then yields, after normalization, the
posterior, which indicates how likely H is given D, under
the employed priors and conditionals. Thus, the likelihood princi-
ple can be formalized as holding that the visual system chooses the
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interpretation with the highest posterior probability, assuming it
uses real prior and conditional probabilities. Fair approximations
of conditional probabilities can be determined in principle, but a
fundamental problem remains that the real prior probabilities are
unknown. Alternatively, one might start from the simplicity prin-
ciple. Then, the prior is the complexity of the simplest code that
specifies H independently of D, and the conditional is the com-
plexity of the simplest code that specifies D starting from H. Then,
summing the prior and the conditional yields the posterior which
indicates how well H fits D. Thus, reflecting Occam’s razor, the
simplicity principle can be formalized as holding that the visual
system chooses the interpretation with the lowest posterior com-
plexity.

Prior and conditional complexities could be converted, as Solo-
monoff did, into artificial probabilities to model the simplicity
principle in Bayesian terms, but this does not automatically yield
compliance with the real probabilities as assumed by the Helm-
holtzian likelihood principle. Indeed, AIT’s fundamental inequal-
ity implies that the margin between such artificial probabilities and
real probabilities is roughly equivalent to the number of categories
to be distinguished. In fact, this suggests an interesting difference
between priors and conditionals in vision. Priors apply to
viewpoint-independent categories of distal stimuli, and most
worlds give rise to many different categories of distal stimuli; this
suggests that the artificial prior probabilities are not particularly
close to the real ones. Conditionals, however, apply to viewpoint-
dependent categories of views of distal stimuli, and each distal
stimulus gives rise to only a few different categories of views; this
suggests that the artificial conditional probabilities might be close
to the real ones.

This theoretically inferred difference between priors and
conditionals has been supported by van Lier et al.’s (1994)

model of amodal completion. This model treats conditionals
differently than the minimal model theory mentioned above, but
it also claims to comply with Rock’s (1983) avoidance-of-
coincidence principle, and it successfully combines prior and
conditional complexities to predict whether, and if so how,
patterns are amodally completed (see Figure 8). While it is
impossible to know if the prior complexities after conversion
are close to the real prior probabilities, by all accounts the
conditional complexities seem to be close to the real conditional
probabilities (van der Helm, 2000, 2011a). This is relevant in
everyday situations in which a moving observer gets a growing
sample of different views of the same distal scene. It allows the
visual system to update its interpretation with each new view in
a process that can be modeled by a recursive application of
Bayes’ rule. During this recursive process, the effect of the first
priors fades away as the priors are updated continuously on the
basis of the conditionals that then become the decisive entities.
Because the simplicity-based artificial conditional probabilities
seem to be close to the real conditional probabilities, simplicity
seems to provide sufficient veridicality in such everyday situ-
ations. Thus, a Gestaltist visual system that focuses on internal
efficiency seems to yield external veridicality as a side effect.

The Nature of Visual Regularity

The veridicality finding discussed above is based on the com-
plexity of the simplest codes and holds virtually independently of
which specific regularities are chosen to be captured to obtain the
simplest codes. However, the primary purpose of such simplest
codes in vision is to yield perceptual organizations, and in this
respect, it is crucial to capture visually relevant regularities (Si-
mon, 1972). Empirically, it is clear that regularities such as mirror

Figure 8. The proximal pattern in Panel A is readily interpreted as a parallelogram partly occluding the shape
in Panel B rather than the shape in Panel C. By the likelihood principle, this could be explained by arguing that
Panel C would have to take a more coincidental position to yield Panel A; this argument relies on real conditional
probabilities and ignores real prior probabilities that are unknown but that, if included, might well undermine this
argument. By the simplicity principle, the prior complexities (of the objects as such) and the conditional
complexities (of the objects’ relative positions in the pattern) converge on a predicted preference for the shape
in Panel B. Adapted from “Simplicity Versus Likelihood in Visual Perception: From Surprisals to Precisals,” by
P. A. van der Helm, 2000, Psychological Bulletin, 126, p. 771. Copyright 2000 by the American Psychological
Association.

20 WAGEMANS ET AL.



symmetry and repetition are visual regularities (i.e., regularities the
visual system is sensitive to), but it is less clear how to distinguish
visual from nonvisual regularities. The traditionally considered
transformational formalization of regularity (advocated most
prominently in perception by Garner, 1974; Palmer, 1983), which
proposes a criterion for distinction, seems suited for object recog-
nition but not for object perception. For instance, it cannot account
well for human detection of perturbed regularities or for the
classical phenomenon that symmetry is generally much better
detectable than repetition (e.g., Bruce & Morgan, 1975; Corballis
& Roldan, 1974; Julesz, 1971; Wagemans, Van Gool, Swinnen, &
Van Horebeek, 1993; for reviews, see Wagemans, 1995, 1997). In
SIT, this led to a rethinking of the concept of visual regularity,
which resulted in the formalization and implications sketched next
(for more details, see van der Helm & Leeuwenberg, 1991, 1996,
1999, 2004; for discussion, see also Olivers, Chater, & Watson,
2004; Wagemans, 1999).

Considering the purpose of regularity detection, visual regular-
ities must meet two general demands. First, they must allow for an
easy build-up of internal representations, and second, they must
allow for the specification of hierarchical organizations of the
input. These two demands are met by the formal properties of
holographic regularity and hierarchical transparency, respectively.
A holographic regularity is a regularity with substructures that all
reflect the same kind of regularity; this implies that its represen-
tation can be built up easily from its substructures (see Figure 9).
Furthermore, a hierarchically transparent regularity is a regularity
such that any other regularity nested in it is a regularity in its own
right (i.e., does not depend on this nesting); this ensures that codes
specify proper hierarchical organizations. Together, the formal
properties of holographic regularity and hierarchical transparency
single out three regularities, namely, repetition (or iteration), (mir-
ror and broken) symmetry, and alternation (which covers, among
others, the regularity in so-called Glass patterns; see Glass, 1969;
Glass & Perez, 1973). Hence, these are the only regularities that
meet the general demands mentioned before (van der Helm &
Leeuwenberg, 1991), and in SIT, these regularities are therefore
proposed to be captured to obtain the simplest codes. In other

words, this formalization provides a theoretical foundation for
SIT’s coding scheme.

Whether this formalization also captures the nature of visual
regularity was addressed by testing a regularity-detection model
derived directly from this formalization. The formalization sug-
gests that amounts of regularity are to be quantified by the number
of nonredundant holographic identity relationships between stim-
ulus parts (E) that give rise to a regularity. Applied to symmetry,
E equals the number of symmetrically positioned pairs of identical
elements (mirror symmetry is therefore said to have a holographic
point structure), and applied to repetition, E equals the number of
repeats minus one, independently of the number of elements in
each repeat (repetition is therefore said to have a holographic block
structure). The model now quantifies the detectability of a regu-
larity in a stimulus by the weight of evidence (W) for this regu-
larity, where W � E/n with n the total number of elements in the
stimulus (van der Helm & Leeuwenberg, 1996). A converging
body of evidence showed that this holographic model W � E/n
provides a fairly comprehensive account of the detectability of
single and combined regularities, whether or not perturbed by
noise (for reviews, see van der Helm, 2010, 2011b). This suggests
that the formalization described above indeed captures the nature
of visual regularity. In other words, a Gestaltist visual system that
focuses on internal efficiency not only seems to yield external
veridicality as a side effect, but if it achieves this efficiency by
capturing transparent holographic regularities, then it also com-
plies with human regularity detection, which is believed to be an
integral part of the perceptual organization process that is applied
to every incoming stimulus.

Cognitive Architecture

The two findings discussed above establish a viable Gestaltist
approach to perceptual organization. Notice, however, that both
findings apply mainly to the question of what is to be processed
rather than how. In fact, any stimulus may give rise to a superex-
ponential number of candidate interpretations, so that evaluating
each of them separately to select the simplest one (or one of them,

Figure 9. Holographic regularity. A symmetry (at the left) can be expanded by one symmetry pair at a time
(dashed arc) preserving its symmetrical nature, and a repetition (at the right) can, independently of the number
of elements in each repeat, be expanded by one repeat at a time preserving its repetition nature. Adapted from
“Holographic Goodness Is Not That Bad: Reply to Olivers, Chater, and Watson (2004),” by P. A. van der Helm
and E. L. J. Leeuwenberg, 2004, Psychological Review, 111, p. 262. Copyright 2004 by the American
Psychological Association.
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in case of several equally simple simplest interpretations) would
require more time than is feasible. As we discuss next, this issue
has been addressed in SIT by solving the problem of computing
the simplest SIT codes of symbol strings, in a way that also
suggests how the brain might arrive at the simplest interpretations
of visual stimuli (for more details, see van der Helm, 2004, 2012).

In standard connectionist modeling, one fixed neural network is
assumed to deal with all possible inputs, and for a specific input,
an output is assumed to be selected by activation spreading in this
fixed network (see, e.g., McClelland & Rumelhart, 1981). In
contrast, although SIT assumes that an output is selected in a
computationally comparable way, it also assumes that, preceding
this selection, regularity-capturing operations create flexible cog-
nitive networks representing all possible outputs for only the input
at hand. For symbol strings, this idea has been implemented in an
algorithm whose essence is sketched next.

For an input string, SIT’s formal model applies coding rules to
extract transparent holographic regularities that have to be recoded
in a hierarchically recursive fashion to compute the simplest code.
In theory, a string may contain an exponential number of these
regularities, and recoding each of these regularities separately
would require a superexponential amount of processing time.
However, transparent holographic regularities provably group by
nature into special distributed representations called hyperstrings,
each representing an exponential number of similar regularities.
Hyperstrings are special in that they allow this exponential number
of similar regularities to be recoded in one go, that is, simultane-
ously, as if only one regularity were concerned (see Figure 10).
Thus, there is no need to recode these similar regularities in a serial
or parallel fashion, but instead they can be recoded in a transpar-
allel fashion. Such a transparallel method has been implemented in

an algorithm (van der Helm, 2004), which is neurally plausible in
that it incorporates the three intertwined but functionally distin-
guishable subprocesses that are believed to occur in the brain’s
visual hierarchy: feedforward feature encoding (an initial tuning of
the visual system to features to which it is sensitive), horizontal
feature binding, and recurrent feature selection.

Notice that horizontal feature binding applies to binding of
similar features (in the algorithm, these are similar transparent
holographic regularities gathered in hyperstrings). It does not
apply to integration of different features into percepts, which is
taken to result from recurrent feature selection within the visual
hierarchy. This is not to be confused with recurrent attentional
processing starting from beyond the visual hierarchy, which selects
features from already integrated percepts. This functional distinc-
tion is somewhat controversial and not that clear-cut, but it seems
to explain the primacy or dominance of holistic stimulus features
in experimental tasks (see Section 2 above).

Furthermore, the method of transparallel processing by hyper-
strings seems to provide a computational explanation of synchro-
nization in the visual hierarchy. Neuronal synchronization is the
phenomenon in which neurons temporarily synchronize their ac-
tivity in transient assemblies. As indicated in the section on the
dynamical systems approach, there are various ideas about its
cognitive meaning, but both theoretically and empirically, it has
been associated with cognitive processing, and 30–70 Hz gamma-
band synchronization in particular has been associated with feature
binding in perceptual organization. In fact, such temporarily syn-
chronized neural assemblies in the visual hierarchy seem to be
horizontal assemblies that also seem involved in binding similar
features (Gilbert, 1992). The model discussed above now suggests
that hyperstrings can be seen as formal counterparts of these

Figure 10. The 15 strings at the top are such that they can be represented each by a path from Vertex 1 to
Vertex 9 in a distributed representation. This distributed representation is a hyperstring: Every pair of subgraphs
(here, e.g., the gray ones) represents substring sets that are either completely identical or completely disjoint—
never something in between. This property implies that the 15 strings can be searched for regularities in a
transparallel fashion, that is, in one go, or in other words, simultaneously as if only one string were concerned.
Adapted from “Transparallel Processing by Hyperstrings,” by P. A. van der Helm, 2004, PNAS: Proceedings of
the National Academy of Sciences, USA, 101, p. 10864. Copyright 2004 by the National Academy of Sciences.
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transient horizontal assemblies of synchronized neurons. Thereby,
it also suggests that synchronization in these assemblies can be
seen as a manifestation of transparallel processing of similar
features (van der Helm, 2012).

In the model, the intertwined subprocesses of feature encoding
and feature binding yield an input-dependent hierarchical network
consisting of hyperstrings, and the subprocess of feature selection
(which is also intertwined) then backtracks this hierarchical net-
work to obtain the simplest code of the input. Thus, all in all,
the model suggests that hyperstring-like neural assemblies are the
constituents of flexible cognitive architecture implemented in the
relatively rigid neural architecture of the brain. For one thing, this
picture of flexible cognitive architecture constituted by
hyperstring-like neural assemblies performing transparallel feature
processing does justice to both the high combinatorial capacity and
the high speed characterizing the perceptual organization process.
Furthermore, just as connectionism does, it relies on interactions
between pieces of information in distributed representations, and it
relates plausibly to neuronal synchronization whose dynamics are
a typical topic in DST. In other words, this picture of cognitive
architecture opens a pluralist and truly Gestaltist perspective by
which complementary insights from representational theory, con-
nectionism, and DST may be combined to obtain a comprehensive
account of perceptual organization.

Conclusion

SIT offers another perspective on the relationship between sim-
plicity and likelihood, arguing that a Gestaltist visual system that
focuses on internal efficiency yields external veridicality as a side
effect. In addition, it specifies the nature of the visual regularities
that must be extracted to achieve this efficiency (i.e., transparent
holographic regularities) as well as the nature of the cognitive
architecture that explains how the simplest organizations are com-
puted (i.e., transparallel processing by hyperstrings).

General Discussion and Conclusion

Gestalt psychology took phenomenal experience as the starting
point of its theoretical considerations. We reviewed perceptual
grouping and figure– ground organization in the first article
(Wagemans et al., 2012) and included a large number of Gestalt
phenomena in the present article (configural superiority, global
precedence, switching between multistable organizations, apparent
motion, object formation, and regularity detection). Such Gestalt
phenomena are real and reliable, and they are still the subject of
intense investigations to date, independently of the framework in
which they arose. In a way, the parts are less than the whole: The
theoretical endeavors of the Gestaltists did not similarly stand the
test of time. They failed to provide a thorough specification of
the concepts of Gestalts as configurations of parts and wholes,
and the mechanisms underlying the law of Prägnanz as based on a
neural isomorphism did not work out. This does not mean that we
should reject their intuitions. They protect us from falling back on
a naı̈ve mechanistic view, in which perception begins with isolated
sensations, thereby denying that phenomenal experience is popu-
lated by Gestalten—integrated, coherent structures or forms.

The traditional Gestalt notions have been given fresh blood and
a solid backbone by several modern perspectives, reviewed in the

present article. The conceptual and theoretical foundations of
Gestalt psychology have been reconsidered in both descriptive and
explanatory frameworks.

Descriptive Frameworks

Theories may be discarded but the phenomena do not go away.
Many researchers sympathetic to the Gestalt intuitions from a
variety of different theoretical convictions have, therefore, made
efforts to specify the description by importing theoretical con-
structs from a variety of external sources. In Section 2, we have
shown how the initially vague notion of a holistic Gestalt can be
translated into a well-defined concept that allows precise opera-
tional definitions and experimentation.

The first operationalization we discussed is grafted onto a notion
of representation as a feature space, where features occupy dimen-
sions. In this representation, Gestalts are emergent features of
which the characteristics are based on but not expressed by the
dimensions. Emergent features are characterized as integral, con-
figural, or separable, based on how strongly the featural compo-
nents subsist. Whereas integral means that the whole is indepen-
dent of its dimensional components and separable means that
dimensional components subsist as independent perceptual units,
configural dimensions occupy a middle ground that is closest to
the original Gestalts: differentiated part–whole structures. Note
that this notion is more systematic but at the same time more
restricted than the original notion of Gestalt because it is tied to the
dimensional representation of its components. The notion of di-
mension can be taken literally or it can be extended into the
domain of the metaphorical. Neither way does it offer a connota-
tion of globality that is characteristic of true Gestalts. Any arbitrary
emergent property qualifies, in principle, as configural, separable,
or integral.

A second idea—even further removed from the original, con-
ceptually speaking—is that of part–wholes being grafted onto the
notion of a hierarchical tree, in which a Gestalt is the top-level
superstructure, and its substructures are levels of a branching tree.
This is the concept underlying the “forests before trees” studies
that have helped to establish empirically the primacy of the whole
in processing, independently of its size or visibility. Here, the
notion of a whole is rigid and well defined conceptually, but the
connotation of a whole being a force that binds, shapes, and resists
external influences on the configuration of its parts is entirely
missing from this account. There is a difference between the whole
having priority in processing and the Gestalt observation that the
whole determines the appearance of its parts.

In sum, the notion of Gestalt has taken different shapes in these
two descriptive frameworks: as configurations in a feature-space
versus top-level or superstructures in hierarchical trees. Both de-
scriptions are well defined and capable of suggesting experiments.
Each of them captures an aspect of Gestalts but neither of them
captures the concept in its entirety. Yet that may have been too
much to expect to begin with: Concepts developed closely to
experience are not easily expressed in any formalism.

Explanatory Frameworks

We may have answered the need to specify the phenomena to a
certain extent, but we are even further removed from answering the
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question of how to explain the phenomena. Here again, Gestalt
theory has intuitions to offer that are worthy of pursuing with
today’s instruments: Gestalts emerge spontaneously from self-
organizational processes in the brain. Lacking today’s advanced
nonlinear dynamics and probabilistic and symbolic machinery, the
Gestaltists borrowed their explanatory principles from the only
source available at the time: the theory of global electrostatic field
forces. These are systems residing at equilibria of least energy
expenditure, which is at the same time also the simplest possible
organization, given the available stimulation (i.e., the law of Präg-
nanz). With the dismissal of global field theory as a principle for
brain organization, the Gestalt concept fragmented, and self-
organization, economy, the simplest possible, and “given the avail-
able stimulation” each became the starting point for four quite
divergent approaches, each of which has been brought in to specify
the Gestalt intuition further from a modern perspective.

In Section 3 we saw the aspect of self-organization highlighted
in a dynamical systems approach to perceptual organization. It
claims a solution to the problem of the previous approach: What
are the neural mechanisms by which the system achieves optimal-
ity? The answer is provided, at least in principle, by the complexity
of the neural dynamics that help configure the global architecture
of the system, given simple mechanisms of neural growth and
adaptation (Gong & van Leeuwen, 2003; Rubinov et al., 2009; van
den Berg, Gong, Breakspear, & van Leeuwen, 2012). In addition,
this approach does justice to perception as part of an ongoing
process instead of a delineated process going from static inputs to
static outputs, as in naı̈ve mechanistic approaches. As a counter-
weight to its potential, however, there are also challenges. For
instance, how do we explain the functionality of the system at the
level of its behavior? Provided that the system dynamics explain
that we perceive Gestalts, which principle governs the selection of
those Gestalts that are functional to the system “given the available
stimulation” rather than arbitrary others? This could be a matter of
selection at an evolutionary level (van Leeuwen, 2007) but how
this selection interacts with the proposed mechanisms of neural
growth and adaptation remains to be clarified.

The principle of economy was given a specification in terms of
the optimization of available resources in Section 4. We observed
that a system of sensors that work independently at the neural
level to minimize its uncertainty is collectively responding opti-
mally to the available patterns of stimulation. It remains an open
question whether the proposed mechanism is implemented at the
neural level as proposed, and whether it generalizes beyond the
realm of motion sensitivity, where it was developed. Clearly,
however, these are sophisticated empirical questions, hinting at the
great versatility and potential of addressing modern neuroscience
from a Gestalt-inspired, holistic perspective. Such questions can
now be asked because the general framework has been spelled out,
and the necessary tools are now available to be able to test the
psychophysical and neural predictions and to model the results,
extracting principles, and formulating them quantitatively.

Section 5 specified the conditional “given the available stimu-
lation” in terms of likelihood, which motivated a Bayesian ap-
proach to perception. In general, the Bayesian approach has been
successful in explaining grouping principles such as proximity and
good continuation, and it has provided a solid basis for typical
Gestalt notions such as objecthood and Prägnanz. Yet, ultimately,
all Bayesian theories face the same problem: How to select their

priors? Simply put: We may perceive patterns in accordance with
the Gestalt law of symmetry because the more symmetrical ar-
rangement is most likely, but why is symmetry relevant to begin
with?

This question is addressed in Section 6, where the aspect of
simplicity is considered within the context of SIT. This approach
has seen substantial development but has retained is roots as an
essentially symbolic theory. It states that patterns are preferred
according to the greatest simplicity of their symbolic description.
The operators used in the symbolic description, such as symmetry,
are not arbitrary according to SIT, but based on principled prop-
erties of its description language. Over the past decades, SIT has
successfully formalized the principles of the language, and solved
the problems relating to the computational complexity of their
encoding framework. It could be shown that a Gestaltist visual
system focusing on internal efficiency yields external veridicality
as a side effect, extracting visual regularities in a way that seems
to characterize perceptual organization as applied to every incom-
ing stimulus. However, it shares one problem with all symbolic (or
even all formal) theories of perception: It must indicate (as van der
Helm, 2012, recently began to do) how SIT’s encoding algorithms
can be mapped onto the way in which the visual system encodes
visual information. Real scenes do not consist of discrete, static
features, but of continuous and cluttered presentations, in which—
over time—various parts are revealed and occluded. What are the
units of the visual system’s coding language then? In some visual
stimuli, we perceive symmetries and other regularities that are not
even supported by features in the input (e.g., illusory contours).
We cannot understand the Kanizsa triangle as simply a result of
binding the features of the visual input, since the features of the
triangle are not actually present in the display. This means that the
visual system plays an active role in the very constitution of
features that it assumes to be given. That insight in turn may help
us understand Köhler’s (1929/1947) key notion of the experience
error, wherein we mistakenly attribute our sensory experience to
the proximal stimulus activating our receptors.

Conclusion

In sum, the various diverging theoretical approaches that have
been motivated by Gestalt problems have all made considerable
progress at certain aspects of the conceptual problems, yet none of
them has solved the conundrum of Gestalt in its entirety. However,
each individual approach, from its own internal consistency, mo-
tivates additional detailed research questions that can now be
addressed fruitfully. Most importantly, the further specification of
the connections between the frameworks, as we have started to do
here, will be essential for a synthesis into the conceptually coher-
ent framework that Gestalt theory once was. As the proverbial
blind men and the elephant, only together will they make progress
in addressing the problem that, a century after its origination, is
still in the frontier of scientific exploration: Why do things look as
they do? Koffka (1935, p. 98 claimed, “Things look as they do
because of the field organization to which the proximal stimulus
distribution gives rise. This answer is final and can be so only
because it contains the whole problem of organization itself.”
Contemporary vision scientists will not rest until they have ad-
dressed all the aspects of this final answer to everyone’s satisfac-
tion: the laws of perceptual organization, faithful to perceptual
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experience, yet formulated in precise quantitative terms, fully
explained in terms of their internal dynamics and ecological va-
lidity, spelled out at an algorithmic level and linked to its neural
mechanisms, from single neurons to neuronal cell assemblies and
whole systems.
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Appendix

Overview of the Article With Section Numbers and Headings, Questions and Issues
Raised, Answers Provided, and Some Remaining

Table A1

Section number Section title Questions, issues, answers, remaining challenges

1. General Introduction We summarize the key ideas of Gestalt theory (Gestalts as wholes being different from
the sum of the parts, emergence, self-organization, the law of Prägnanz) and define
the challenge of specifying these notions in ways that are satisfactory in light of
modern science.

2. Holism
2.1. Holism in Traditional Gestalt Psychology We briefly review holism as the “fundamental formula” of traditional Gestalt

psychology.
2.2. Modern Approaches to Holism We clarify core Gestalt notions such as holistic properties, emergent features,

configural superiority, and global precedence by providing operational definitions
that fit into a more contemporary information-processing framework.

2.2.1. Garner’s dimensional integrality We discuss Garner interference and separable versus integral dimensions.
2.2.2. Emergent features and configural

superiority
We discuss emergent features, configural superiority effect, and the theory of basic

Gestalts.
2.2.3. Global precedence We discuss Navon’s global precedence hypothesis, hierarchical patterns, and the

global–local paradigm.
2.2.4. The primacy of holistic properties We discuss holistic properties, configural properties, emergent properties, and global

properties.
2.3. Interim Evaluation: New Foundations

Needed
—The conceptual clarifications and operational definitions of key Gestalt notions have

been useful in making further empirical and theoretical progress (e.g., dissociating
attention, perception, decision components), but

—We still need stronger theoretical frameworks to provide solid foundations to the
Gestalt approach’s major principles.

3. A Dynamical Systems Approach
3.1. Introduction We discuss how recent developments in nonlinear dynamical systems theory can solve

the tension between inert (equilibrium field forces) and active aspects of perception
(spontaneous perceptual organization), between stability (attractors) and change
(switching).

3.2. Noise-Driven Models We discuss the double-well model (two equivalent attractors), internal noise, dwell
times, the gamma distribution, sequential dependencies, systems far from
equilibrium, cycles of approach and avoidance, and the “visual sniff.”

3.3. Dynamical Models —We discuss two switching mechanisms:
(1) High-frequency, microscopic noise in sensory channels (in occipital areas).
(2) Macroscopic noise in adaptation rates (in parietal areas).
—We discuss the dynamics of switching behavior as a phase transition (fast noise with

slow dynamics) and neural adaptation.
(table continues)
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Table A1 (continued)

Section number Section title Questions, issues, answers, remaining challenges

3.4. Dynamic Synchronization and Complex
Adaptive Systems

—We review long-range dependencies between dwell times and discuss their
implications for dynamic synchronization and complex adaptive systems.

—We discuss switching governed by fragile attractors in complex adaptive systems
consisting of coupled oscillators; self-organized criticality; alternating unstable and
stable periods, corresponding to synchronization of high-frequency (gamma range)
and low-frequency (beta range) oscillations (coherence intervals).

3.5. Conclusion —Different sources of change (stochastic and deterministic), different types of noise
(microscopic and macroscopic), and different kinds of attractors and dynamics were
considered.

—Some of these were shown to correlate well with known behavioral effects (e.g.,
dwell times) and recently discovered specific neural signatures (e.g., coherence
intervals and self-organized criticality of synchronization of neural oscillations).

—In sum, a dynamical systems approach can explain how the brain’s capacities for
self-organization are ideally suited to balance robustness and flexibility.

4. Principles of Measurement in a System of
Sensors

4.1. Introduction —The original Gestalt notion that perception is mediated by properties of a global
neural field was rejected by empirical evidence and was replaced by an atomistic
trend in neurophysiology with a focus on single cells.

—The original attempt to provide a foundation to the many Gestalt principles in terms
of a single general principle (such as the simplicity principle or the law of Prägnanz)
failed because of its vagueness.

—The focus on simplicity as an autonomous principle intrinsic to the perceiving
organism did not allow theorists to capture the important perceptual role of
regularities in the natural stimulation.

—These limitations are resolved in a new framework, which combines elemental and
systemic outlooks on perception, taking into account both intrinsic and extrinsic
utility of sensory measurement.

4.1.1. Elementary versus system processes The (atom-like) single cells are studied as integral parts of a (holistic) system.
4.1.2. Intrinsic versus extrinsic processes From an economic perspective, sensory measurements are ranked by their utility,

which depends both on capacities of individual sensors (intrinsic to sensory systems)
and on how useful the sensors are in the current environment (extrinsic to the
system).

4.2. Unity of apparent motion The apparently contradictory findings on apparent motion are unified in a framework
derived from basic properties of sensory measurement.

4.3. Principles of Measurement We discuss the uncertainty principle of measurement (i.e., tradeoff of uncertainty
between measuring signal location and signal frequency content) and Gabor’s notion
of optimal measurement.

4.4. Systems of Sensors We review the consequences of the uncertainty principle beyond individual sensors to
the systems level, revealing a unity of results from the statistical and
phenomenological traditions in perceptual science.

4.5. Economics of Measurement by a System
of Sensors

—We explain that the different regimes of apparent motion (tradeoff vs. coupling)
occur because the expected quality of sensory measurements varies across the
stimulus space.

—We propose how the visual system may allocate its resources according to the
expected utility of measurement, determined jointly by the intrinsic utility of sensors
and properties of the extrinsic stimulation.

4.6. Conclusion The theory based on the distribution of the expected utility of sensory measurements
across multiple sensors is a modern incarnation of the Gestalt claim that properties
of system elements (the parts) are determined by properties of the system (the
whole).

5. A Bayesian Approach
5.1. Introduction The Bayesian approach is presented as a comprehensive mathematical framework in

which existing principles are unified and placed on a more principled foundation;
specifically:

(1) We apply the Bayesian approach to grouping principles such as proximity and good
continuation.

(2) We offer a Bayesian foundation for core concepts from Gestalt theory such as
object formation and Prägnanz.

(3) We discuss relationships to other frameworks (simplicity vs. likelihood, minimal
model theory, and Bayesian network models).

(table continues)
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Table A1 (continued)

Section number Section title Questions, issues, answers, remaining challenges

5.2. A Bayesian Approach to Grouping
Principles

We discuss proximity and good continuation.

5.3. A Bayesian Foundation for Core Concepts
From Gestalt Theory

We discuss object formation and Prägnanz.

5.4. Relationships to Other Frameworks
5.4.1. Simplicity versus likelihood In a Bayesian framework, the central unifying principle of Gestalt theory—Prägnanz—

may be identified with the central unifying principle of Bayesian
theory—maximization of the Bayesian posterior.

5.4.2. Minimal model theory The avoidance-of-coincidence principle holds that interpretations should be preferred in
which as few image properties as possible are coincidences, such as accidents of
viewpoint or configuration.

5.4.3. Bayesian network models
5.5. Conclusion The Bayesian approach has

—Offered additional insight into classic Gestalt phenomena such as perceptual
grouping and object formation,

—Provided a foundation to core concepts from classic Gestalt theory such as Prägnanz,
and

—Established a bridge between likelihood and simplicity.
6. Structural Information Theory

6.1. Introduction —Information theory, connectionism, and dynamical systems theory (DST) use
different formal tools to model different aspects but together they may explain how
percepts are the result of cognitive processes implemented in the brain.

—Starting from the representational coding approach of structural information theory
(SIT), such a synthetic, multidisciplinary and typically Gestaltist perspective is
sketched.

—Specifically, we review how SIT deals with three fundamental questions concerning
perceptual organization:

(1) How veridical are simple stimulus organizations? (We again specify the
relationship between simplicity and likelihood by means of Bayes’ rule but in a
different conceptual framework than before.)

(2) What should be the nature of the visual regularities to be captured to arrive at
simple organizations?

(3) How are simple organizations computed? This leads to a representational picture of
cognitive architecture, which includes connectionist modeling ideas and which
honors ideas from neuroscience and DST about neuronal synchronization.

6.2. The Veridicality of Simplicity We discuss how the likelihood and simplicity principles deal with the veridicality of
perception: A Gestaltist visual system that focuses on internal efficiency yields
external veridicality as a side effect.

6.3. The Nature of Visual Regularity We argue that
—Visual regularities must allow for an easy build-up of internal representations

(holographic regularity) and for the specification of hierarchical organizations of the
input (hierarchical transparency).

—Three regularities satisfy these conditions: repetition, symmetry, and alternation.
—A holographic model of regularity detection based on this formalization captures

human regularity detection.
6.4. Cognitive Architecture —Complementing the two preceding sections addressing what needs to be processed in

perceptual organization, we now address how.
—Specifically, the way SIT solves the problem of computing the simplest SIT codes

of symbol strings also suggests how the brain might arrive at the simplest
interpretations of visual stimuli.

—Transparallel recoding of hyperstrings of transparent holographic regularities has
been implemented in a neutrally plausible algorithm that incorporates three
subprocesses in the brain’s visual hierarchy: feedforward feature encoding,
horizontal feature binding, and recurrent feature selection.

6.5. Conclusion —SIT offers another perspective on the relationship between simplicity and likelihood,
arguing that a Gestaltist visual system that focuses on internal efficiency yields
external veridicality as a side effect.

—SIT specifies the nature of the visual regularities that must be extracted to achieve
this efficiency (i.e., transparent holographic regularities) as well as the nature of the
cognitive architecture that explains how the simplest organizations are computed
(i.e., transparallel processing by hyperstrings).

(table continues)
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7. General Discussion and Conclusion —The Gestaltists failed to provide a thorough specification of the concepts of Gestalts
as configurations of parts and wholes, and the mechanisms underlying the law of
Prägnanz as based on a neural isomorphism did not work out.

—However, their intuitions protect us from falling back on a naı̈ve mechanistic view, in
which perception begins with isolated sensations, thereby denying that phenomenal
experience is populated by Gestalten as integrated, coherent structures or forms.

—The conceptual and theoretical foundations of Gestalt psychology have been given
fresh blood and a solid backbone in both descriptive and explanatory frameworks.

7.1. Descriptive Frameworks —The initially vague notion of a holistic Gestalt can be translated into a well-defined
concept that allows precise operational definitions and experimentation, in two ways:

(1) As configurations in a feature space.
(2) As superstructures in hierarchical trees.
—Both descriptions are well defined and capable of suggesting experiments, but

neither of them captures the Gestalt concept in its entirety; hence, there are clearly
remaining challenges:

(1) It does not have the connotation of globality that is characteristic of true Gestalts; any
arbitrary emergent property qualifies, in principle, as configural, separable, or integral.

(2) It does not have the connotation of a whole being a force that binds, shapes, and
resists external influences on the configuration of its parts; there is a difference
between the whole having priority in processing and the Gestalt observation that the
whole determines the appearance of its parts.

7.2. Explanatory Frameworks —Gestalt theory’s intuition about Gestalts emerging spontaneously from self-
organizational processes in the brain was specified by the theory of global
electrostatic field forces: systems residing at equilibria of least energy expenditure,
which is at the same time also the simplest possible organization, given the available
stimulation (i.e., the law of Prägnanz).

—With the dismissal of global field theory as a principle for brain organization, the
Gestalt concept fragmented: Economy, self-organization, the simplest possible, and
“given the available stimulation” each became the starting point for four divergent
approaches, each specifying the Gestalt intuition further from a modern perspective:

(1) Section 3 specified self-organization in a dynamical systems approach to perceptual
organization, explaining how the system achieves optimality by the complexity of
the neural dynamics that help configure the global architecture of the system, given
simple mechanisms of neural growth and adaptation; in addition, this approach does
justice to perception as part of an ongoing process instead of a delineated process
going from static inputs to static outputs, as in naı̈ve mechanistic approaches.

(2) Section 4 specified the principle of economy in terms of the optimization of
available resources; we observed that a system of sensors that work independently at
the neural level to minimize its uncertainty is collectively responding optimally to
the available patterns of stimulation.

(3) Section 5 specified the conditional “given the available stimulation” in terms of
likelihood, which motivated a Bayesian approach to perception; this allowed a
synthetic view on simplicity and likelihood, a coherent explanation of grouping
principles such as proximity and good continuation, and a solid basis to typical
Gestalt notions such as objecthood and Prägnanz.

(4) Section 6 specified simplicity within the context of SIT, stating that patterns are
preferred according to the greatest simplicity of their symbolic description, using
operators that are based on principled properties of its description language,
formalizing the principles of the language, and solving the problems relating to the
computational complexity of their encoding framework.

—At the same time, each of these explanatory frameworks is also confronted with
remaining challenges:

(1) It remains an open question whether the mechanism is really implemented at the
neural level as proposed, and whether it generalizes beyond the realm of motion
sensitivity, where it was developed.

(2) How do we explain the functionality of the system at the level of its behavior?
Which principle governs the selection of those Gestalts that are functional to the
system “given the available stimulation” rather than arbitrary others? How does
selection at an evolutionary level interact with the proposed mechanisms of neural
growth and adaptation?
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(3) It remains to be seen how fruitful this Bayesian synthesis of likelihood and
simplicity will be in the long run; moreover, all Bayesian theories face the problem
of explaining how to select the priors.

(4) It remains to be studied further how SIT’s encoding algorithms can be mapped
onto the way in which the visual system encodes visual information.

7.3. Conclusion —The various theoretical approaches that have been motivated by Gestalt problems
have all made considerable progress at certain aspects of the conceptual problems,
yet none of them has solved the conundrum of Gestalt in its entirety; hence, there
are important remaining challenges:

—Each individual approach motivates additional detailed research questions which can
now be addressed fruitfully.

—The further specification of the connections between the frameworks, as we have
started to do here, will be essential for a synthesis into the conceptually coherent
framework that Gestalt theory once was.

—Only together will these frameworks make progress in answering Why do things look
as they do? in sufficient detail, regarding all of its aspects: the laws of perceptual
organization, faithful to perceptual experience, yet formulated in precise quantitative
terms, fully explained in terms of their internal dynamics and ecological validity,
spelled out at an algorithmic level and linked to its neural mechanisms, from single
neurons to neuronal cell assemblies and whole systems.
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