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Abstract According to classical signal detection theory
(SDT), in simple detection or discrimination tasks, observers
use a decision parameter based on their noisy internal
response to set a boundary between “yes” and “no” responses.
Experimental paradigms where performance is limited by
internal noise cannot be used to provide an unambiguous
measure of the decision criterion and its variability. Here,
unidimensional external noise is used to estimate a criterion
and its variability in stimulus space. Within this paradigm, the
criterion is defined as the stimulus value separating the two
response alternatives. This paradigm allows the assessment of
interactions between criteria assigned to different targets in
dual tasks. Previous studies suggested that observers’ criteria
interacted or even collapsed to one (hence, nonoptimal) crite-
rion. An alternative interpretation of those results is that
observers equated their false alarm (FA) rates. The external-
noise method enables the confrontation of the two hypotheses.
It is shown that the variability of observers’ criterion in stim-
ulus space is about 1.6 times their measured sensory threshold,
suggesting that the presence of external noise increases deci-
sion uncertainty. Observers’ stimulus criterion settings are
close to SDT predictions in single tasks, but not in dual tasks
where the two criteria tend to “attract” each other. Observers
maintain distinct FA rates even when SDT predicts equal
rates. Observers trained in psychophysics or provided with

basic notions of SDTexemplified with the present experimen-
tal design manage to better separate their criteria in some
conditions.
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Introduction

Signal detection theory (SDT; Green & Swets, 1966;
Macmillan & Creelman, 2005) is the best known normative
approach to assessing human’s sensitivity (d′) and decision
behavior instantiated by this system’s decision criterion (c).
Both indices are expressed in units of the internal noise of the
system, σIN. While the standard application of SDT provides a
means of estimating the system’s noise when responding to an
external stimulus, relative to its noise in the absence of stimu-
lation, via the assessment of this system’s receiver operating
characteristic (ROC), it cannot be used to compare noise levels
across different stimuli and tasks. As a consequence, the mean
internal response evoked by any given stimulus and the asso-
ciated decision criterion (i.e., the internal response level serv-
ing as the decision boundary) are expressed in these arbitrary
units. The estimation of these internal parameters, as well as of
d′ and c, relies on some critical assumptions regarding the
statistics of the internal events and the dynamics of the associ-
ated decision mechanism. Thus, not surprisingly, the validity
of the assumptions made and their associated consequences for
the obtained measure of sensitivity are under extensive
research (Balakrishnan, 1998a, 1998b, 1999; Balakrishnan &
MacDonald, 2002, 2008; Treisman, 2002; Weidemann &
Mueller, 2008).

Previous results of dual detection and dual discrimination
tasks (Gorea & Sagi, 2000, 2001, 2002) provided evidence

I. Zak :M. Katkov :D. Sagi (*)
Department of Neurobiology, Weizmann Institute of Science,
Rehovot 76100, Israel
e-mail: Dov.Sagi@Weizmann.ac.il

A. Gorea
Laboratoire Psychologie de la Perception (LPP),
Université Paris Descartes & CNRS,
75006 Paris, France

Atten Percept Psychophys
DOI 10.3758/s13414-012-0269-0



for the use by observers of a unique decision criterion, uc,
even though an optimal behavior requires (and the experi-
mental design permits) the use of distinct criteria as actually
observed in single (detection or discrimination) tasks. In
Gorea and Sagi’s (2000, 2001) terminology, this uc is
defined as a value on the sensory continuum, measured
in σIN units referenced to the mean of the noise, μIN 0 0.
This number is but the z-score of observers’ false alarm
(FA) rate, zFA 0 c/σIN. However, as was pointed out by
Kontsevich, Chen, Verghese, and Tyler (2002), Gorea and
Sagi’s experimental design could not discriminate between the
use by observers of a uc (i.e., σIN × zFA) or of a unique FA
rate, inasmuch as the actual σIN is unknown and arbitrarily set
to 1. The main purpose of the present work is to disambiguate
the uc versus unique FA rate dilemma. To do this, we override
σIN, with an experimentally controlled external noise σEX >>
σIN in a task where observers have to classify a stimulus
(Gaussian luminance blob) as belonging to one of two over-
lapping distributions varying along a single dimension (Lee &
Janke, 1964)—here, luminance (or contrast). The use of
unidimensional external noise with well-defined statistical
properties allows for the assessment of decision criteria in
stimulus space (stimulus criterion) as the stimulus level at
which observers switch from one response alternative to the
other, thus largely avoiding the above-mentioned limitations
inherent in the standard SDT analysis.

In the present experiments, the displayed luminance levels
were drawn from normal distributions with standard devia-
tions (σEX; i.e., external noises) at least twice observers’ just
noticeable (luminance) difference (JND) as assessed in sepa-
rate experiments. Hence, most flashed blobs, whether they
belonged to the noise (N) or signal (S) distributions, were
highly suprathreshold. Because of the overlap of the N and
S distributions, a given stimulus cannot be unequivocally
attributed to either one of them. An ideal observer (with
no internal and decisional noise) will make its decision
according to the most likely distribution associated with this
stimulus level. For the present experimental formats, this
amounts to picking out a specific stimulus level whose likeli-
hood of belonging to either of the two distributions is the same
(a likelihood ratio of 1) and assigning any given flashed blob
to either N or S depending on whether its luminance is lower
or higher, respectively, than the reference one. This reference
value is the observer’s decision criterion c expressed in known
stimulus intensity units, rather than in unknown internal-noise
units—thus, here termed stimulus criterion. For a noisy
observer (nonideal), it is the stimulus level yielding an equal
number of responses assigned to both distributions—namely,
the inflexion point of the psychometric function fitted to the
proportion of “S” responses for each presented stimulus level.
The standard deviation of the fitted cumulative distribution
function is a measure of observer’s decision criterion var-
iability over trials (here, in luminance units). This criterion

variance must be the sum of internal noise associated with
the internal response evoked by the corresponding lumi-
nance level and decision noise. Inasmuch as decision noise
does not depend on experimental conditions, the presently
assessed criterion variability should match the discrimina-
tion threshold (JND) between two luminance levels around
the criterion measured in luminance units. Importantly, the
direct estimation made here of the stimulus criterion and of
its variance (in stimulus space) avoids the dependence on
questionable SDT tools and assumptions (see Balakrishnan,
1998a, 1998b, 1999; Balakrishnan&MacDonald, 2002, 2008).
Given that the internal response is monotonically related to
stimulus contrast (for contrast > 0), a comparison between
criteria expressed in stimulus luminance units maps onto the
comparison of the corresponding internal evoked responses.
Hence, in contrast to previous experiments that could not
discriminate between criteria equality being due to a uc or to
an FA equality (Gorea & Sagi, 2000, 2001; Kontsevich et al.,
2002), the present external-noise paradigm does permit such a
distinction. This is so because the performance-limiting noise,
σEX, is known and can be manipulated; given that, in the
present conditions, c 0 zFA × σEX (assuming σEX >> σIN)
observers cannot equalize at the same time their FA rates and
c when facing two tasks with a different σEX.

More specifically, the present study consists of a series of
dual-task experiments where observers decide from which
luminance contrast distribution (S or N) a marked target—that
is, one of two simultaneously flashed Gaussian luminance
blobs—was drawn. In one class of experiments, the two
stimuli (presented at two symmetrical locations about fixa-
tion) were drawn from the same N and S distributions. This
configuration will be hereafter referred to as dual-same (DS;
see Fig. 1a); it was meant to serve as a reference baseline since
it should (and actually does) yield identical d′ and c values for
the two simultaneously flashed blobs. The DS configuration
was also used to assess putative decisional biases (relative to
the ideal observer) under external-noise conditions where no
such biases are to be expected. The critical experiments
involved two classes of dual-different (DD) tasks. The first
class (DD1) differed from the DS experiments in that the two
S distributions had different means (but an equal σEX), thus
entailing different d′ and optimal c values (Fig. 1b). In the
second class (DD2), the two S distributions differed in both
their μEX and σEX (with σEX being equal for paired N and S
distributions) so that each N–S pair entailed identical d′ values
but different optimal c values (Fig. 1c). The critical difference
between DD1 and DD2 is that in DD1 equal criteria entail
equal FA rates, while in DD2 criteria and FA rates are
dissociated. The main empirical question asked is whether,
as in Gorea and Sagi’s (2000, 2001) threshold experiments
involving only internal noise, the present external-noise
DD experimental format will also reveal a uc decisional
behavior.
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Method

Stimuli and experimental conditions

Stimuli were two Gaussian luminance blobs I x; yð Þf ¼
Aexp � x2 þ y2ð Þ=2σ2½ Þ�; σ 0 0.28°, x and y are relative to
stimulus location, and amplitude A set per trial according to
the experimental condition as described below} presented
on the left and on the right of fixation at ±1.9° eccentricity
(Fig. 2), on a linearized 19-in. Philips Brilliance 109p4
monitor (85-Hz raster rate) with a GeForce 8600GT adapter
at 1 m from observers’ eyes. The Gaussian blobs were added
to a screen of uniform luminance (29 cd/m2). We here refer
to stimulus amplitude as the intensity difference between the
Gaussian peak intensity and the background and to contrast
as the ratio between amplitude and background intensities.
The amplitude of the Gaussian blobs was drawn randomly
across trials from a normal distribution with parameters
defined according to the stimulus specification in the experi-
mental conditions. Colored cues (red and green) were pre-
sented at the two stimuli locations to mark the task assigned

Fig. 1 Illustration of the noise (N; solid Gaussians) and signal (S;
dashed Gaussians) normal distributions used in the paired tasks of all
experiments. A luminance blob was presented on each side of fixation,
one within a red circle, the other within a green circle (shown here with
continuous and dashed outlines, respectively; see Fig. 2). The ampli-
tude of each blob was drawn with equal probabilities from either the S
or the N distribution. For any given dual task in Experiments DD1 and

DD2, the red (continuous)/green (dashed) circle let the observer know
that the blob within could have been drawn from the S distribution with
the highest/lowest mean (green/red Gaussians), respectively, or from
the associated N distribution. The means (μ) and standard deviations
(σ) of each of the four distributions follow the rules shown in the insets
and are detailed in Tables 1, 2 and 3

150 ms

400 ms

400 ms

80 ms

1000 ms

i. Fixation

ii. Pre-cues

iii. Targets

iv. Delay

v. Post-cues

Fig. 2 Spatio-temporal display of one trial in Experiments 1–3: The
left stimulus sequence includes the fixed signal (marked by a red
circle), while the right stimulus sequence includes the variable signal
(marked by a green circle), with the postcue pointing to the latter
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to each location (see below). Within each of these colored cues
in any experimental condition stimuli were drawn randomly
from either the “noise” or “signal” distribution: N (black
Gaussians in Fig. 1), with zero mean (equal to the screen
luminance), and S (red and green Gaussians in Fig. 1), with
mean varied across conditions.

In the DS experiment (DS; Fig. 1a), stimuli from the same
N and S distributions were used for both tasks—hence, its DS
tag. The mean of S as well as the standard deviation (σEX) of
both N and S were varied across sessions so as to yield
theoretical d′ values in between 1 and 3.35 (Appendix,
Table 1). These manipulations defined 14 distinct experi-
mental conditions.

In the DD1 experiment (Fig. 1b), there were two different
S distributions, S1 and S2 (hence, its DD tag), characterized
by a fixed and a variable mean, respectively, with all S and
N distributions having equal standard deviations (σEX).
Theoretical d′ values were 1 for S1 and in between 1.25
and 3.35 for S2 (Appendix, Table 2). There was a total of six
experimental conditions in Experiment DD1, corresponding
to the six levels of S2.

In the DD2 experiment (Fig. 1c), N1 and S1 param-
eters were kept constant, but the mean and σEX of S2
(with σEX of N2 equal to σEX of S2) covaried so as to
keep a roughly constant d′ ≈ 1.7 (Appendix, Table 3).
The design of this experiment is such that an ideal
observer would use different criteria across the paired
tasks but equal FA rates. There were a total of 6 exper-
imental conditions in Experiment DD2, corresponding to
the six levels of S2.

While draws from the paired N and S distributions were
randomly presented on the left and right of fixation, these
specific pairings were consistently tagged by one red and one
green “precue” circle (radius 1.15°) whose onset preceded by
400 ms the Gaussian blobs (80-ms presentation) and persisted
for 400 ms after their offset, with one of them (randomly
chosen) persisting for yet another 1,000 ms (Fig. 2). This extra
duration indicated which of the two simultaneously presented
blobs was the target to be reported as belonging to the respec-
tive (i.e., as tagged by the color of the persistent cue circle) N
or S distribution.1 This experimental design is of the partial
report type and was chosen to prevent the onset and offset
transients of the cues from interfering with the stimulus to be
judged. With the exception of Experiment DS, where the
stimulus blobs on the left and right of fixation were drawn
from the same paired N and S distributions, the color of the
cue circles denoted the fixed S1/N1 (red circle) and the vari-
able S2/N2 (green circle) distributions.

Procedure

The three main experiments (DS, DD1, DD2) and the pre-
liminary one (JND) were run in the following order: JND,
DD1, DD2, DS for observers O.G. and N.E. and JND, DS,
DD1, DD2 for observers O.T., D.H., and I.Z. A second JND
assessment was run at either halftime or at the end of all
experimental sessions.

Main experiments Observers were told that on each side of
fixation, a Gaussian luminance blob would be drawn random-
ly and independently from either a low (N) or a high (S) mean
luminance distribution of which they were shown samples
during an initial training phase (10 trials/condition). For each
of the three distinct experiments, observers were informed that
the N and S distributions were either identical across sides, so
that the color of the circles was irrelevant (DS), or that the S
blobs, drawn within the green circle, were to be, on average,
more intense than those drawn within the red circle (DD1,
DD2). They were prompted to pay attention to the colors of
the circles so as to calibrate their responses accordingly. The
notion of “on average” was stressed and exemplified during
the initial training trials. Observers were instructed to report,
by left/right clicking the mouse, whether the blob presented in
the persistent circle belonged to the N or the S distribution
tagged by the persistent circle color. They were asked to
maximize the number of correct responses and received audi-
tory feedback for the incorrect ones. It was also made clear to
them that the same intensity blob might belong to either the N
or the S distribution, so that feedback might occasionally
sound inconsistent with respect to their memory of past trials.
Observers were also told that the alphabetical order of the
letter presented on the screen before each DD1 and DD2
session indicated the mean contrast rank of S2 distributions
tagged by the green circle. For the DD2 experiment (always
run after DD1), observers were told that the distribution of
luminances within the green circle might appear different
from that in DD1 but were not given further information
(i.e., that the luminance variability (σEX) of the blobs pre-
sented in the green circles was larger than that in the
red circles). Finally, since the external-noise method entails
trials with lower blob amplitudes than the background
(contrast < 0), observers were made aware of the dark appear-
ance of such amplitudes and were instructed that, on such
trials, they should always classify the blobs as belonging to the
N distribution. On such trials, they were warned that feedback
would be partly inconsistent, since such darker than back-
ground blobs could belong to either N or S distributions.
These trials were used to estimate the frequency of finger
errors (see the Data Analysis section). Sessions were limited
to 1 h a day.

The 14 distinct conditions (mean S intensities) in Ex-
periment DS were repeated 4 times each (56 blocks

1 Note that this timeline does not compel observers to make their
decision while the two cue circles are present (i.e., 400 ms). Decision
can be (and typically is) made well after the offset of the stimulus.
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total), with each repeat/block consisting of 100 trials,
totaling 400 trials per condition. One experimental session
consisted of 8 blocks. Each of the first 8 conditions was
repeated 4 times before continuing with the next condition.
The remaining 6 conditions were randomized within and
across sessions.

The six distinct conditions of Experiments DD1 (fixed
σEX) and DD2 (variable σEX) were repeated 8 times each
(100 trials per repeat/block), totaling 400 trials for each
(“red”/“green”) task. One session consisted of eight blocks
(800 trials), randomly drawn from the six different conditions,
with a new random draw for each session.

Each block of trials started with 12 training trials whose
ending was announced by a beep. Since the three main
experiments were not mixed, the instructions above were
given at the beginning of an experiment and only occasion-
ally repeated to the naive observers, who described their
impressions between blocks.

Just noticeable difference JNDs were measured before the
main experiments with a standard yes/no procedure using
the same Gaussian blobs as in the main experiments, but this
time set at a fixed reference (pedestal) luminance of one of
three values (31, 34.5, 38.5 cd/m²) tested in independent
blocks. Each of these three values was paired with four
luminance increments (in the range of 4–8.5 cd/m²). Pedes-
tal only and pedestal + increment stimuli were presented
with equal probability (.5). The d′ values were computed
from at least 100 trials per pedestal and per increment value
(at least 1,200 trials total per observer), yielding three
psychometric functions per observer. The JND increment
values yielding d′ 0 1 were derived from the linear
regressions fitted to each set of data. These three values
(one per pedestal) were fitted with a “threshold versus
contrast” function (e.g., Gorea & Sagi, 2001) to allow
the interpolation/extrapolation of the JNDs corresponding
to the randomly drawn target luminances in the main
experiments. Five out of 6 observers repeated all JND
measurements after gaining some experience in the main
experiments.

Training naive observers Three observers who were naive as
to the experiments were subsequently given a detailed explana-
tion of the experimental design and a short SDT tutorial bearing
on the internal representation of signals, on the ideal placement
of criteria, and on how external noise may influence their
decisions (a related procedure was used by Lee & Janke,
1964). The experiments’ goals were also revealed, and they
were informed about their observed inability to separate
their criteria (as naive observers) in the paired tasks (see the
Results section). They were then given four to seven sessions
of 800 trials each under condition C or D of experiment DD1
(Appendix, Table 2). Two of these observers showed an

improvement in their decisional behavior (with respect to
optimality), were considered “informed observers,” and were
run once again through all conditions of Experiments DD1
and DD2.

Observers

Six observers participated in the experiments (2 additional
observers were discarded once they had completed Experi-
ment DS on the basis of their finger error rates being higher
than 10% or of too slow and unreliable responses). Two
observers (E.S. and author I.Z.) were trained psychophysi-
cists and were considered as informed. The remaining
4 observers were either undergraduate students or staff
of the Weizmann Institute, 22–43 years of age, with normal
or corrected-to-normal vision. Five observers were ran
through all experiments (4 naive and the author), and
1 informed observer (E.S.) ran only the DD1 experiment.
Two of the originally naive observers ran the DD1 and
DD2 experiments once again after being given a de-
tailed account of the experimental design and a short
SDT tutorial.

Data analysis

Ideal observer Since observers’ internal noise was overrid-
den by the external noise, we posit an ideal observer in the
sense of SDT, but with no internal or decision noise. For every
experimental condition, the ideal observer uses a fixed crite-
rion for all trials so as to minimize the expected number of
errors. It provides a “high” (S) response for all targets with
contrasts higher than the criterion and a “low” (N) response
otherwise. It is in this sense that we refer hereafter to any
deviation from optimality.

Due to finite sampling, it is possible that the d′ of the
ideal observer may differ from the one predicted based on
the theoretical stimulus parameters (expected ΔμEX/σEX).
Therefore, d′ values were computed on the basis of the
statistics of the actually presented stimuli. More specifically,
ROC functions [i.e., p(Hit) vs. p(FA)] were constructed
(Fig. 3), and d′ was computed as the area under the ROC

curve, multiplied by
ffiffiffi
2

p
(Green & Swets, 1966).

Estimating observers' criterion and criterion noise Observers'
criteria and associated noises were estimated from fitting a
psychometric function—namely, the function relating the
proportion of “high” (S) responses to targets' contrast (see
example in Fig. 4). The proportions of S responses were
corrected according to each observer’s finger error rate (see
the Finger Errors section below). On the assumption of
a locally linear transducer (the function relating input
and output signals within the contrast range defined by
the psychometric function) and of a normally distributed
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internal noise (perceptual and decisional), the proportion of
S responses for a stimulus of contrast X will be

p S Xjð Þ ¼ 1� Φ
c� X

σ

� �
¼ Φ

X � c

σ

� �
;

where Φ is the standard normal cumulative distribution
function, σ is the standard deviation of combined perceptual
and decision noise, and c is the criterion (both measured in
stimulus contrast units). However, the observed results were
better fit by the logistic function

eb0 þ b1x

1þ eb0 þ b1x
;

where -b0/b1 is the criterion c and 1/b1 is the criterion noise
(i.e., the s1ope of the psychometric function). Fitting was
done using MATLAB's generalized linear model fit, also
known as logistic regression (Sokal & Rohlf, 1995). A
simulation was performed to evaluate the goodness of fit
of the logistic regression model. The model could not be
rejected for any of the 6 observers (all ps > .25).

The standard error (SE) of each estimated criterion was
computed using inverse regression (Neter, Wasserman, &
Kutner, 1983):

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

b21
1 þ 1

n
þ ðc� X Þ2P ðX � X Þ2

" #vuut ;

where n is the number of trials. Criteria were also indepen-
dently computed with an alternative method that yielded
practically identical (not statistically different) results.2

Finger errors Finger error is a term that includes several
types of errors that are assumed to be independent of stim-
ulus strength: clicking the wrong button, answering to the
wrong target, guessing when failing to attend a trial. In the
present external-noise experiments, finger error rates could
be estimated directly, since observers were informed that all
targets darker than the background should be given an “N”
(“low”) response. Therefore, an “S” (“high”) response on
such trials is a finger error. Observers’ finger error rates (fe)
were estimated as the proportion of “dark” trials on which
they answered “S”:

fe ¼ number of 00dark 00 presentations reported as 00S 00

total number of 00dark 00 presentations
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Contrast

p(
H

ig
h)

IZ
fit

Fig. 4 An example of a criterion psychometric function (observer I.Z.,
Experiment DD1, condition A, 400 trials). The blue (solid) line shows
the proportion of “high” (or S) responses for each stimulus contrast
bin, with error bars showing ±1 binomial SE. The red (dotted) curve is
the fitted logistic function (see the Data Analysis section)

2 Criteria were computed with an algorithm that maximizes the number
of consecutive trials (the criterion patch) with a stable criterion (i.e.,
one whose estimate did not change for at least 10 trials). First, for every
trial, a criterion was selected that accounted for the largest number of
consecutive trials (i.e., lower and higher than all the following contrasts
classified as signal and noise, respectively). Second, all such patches
were gathered in a set of conflicting criterion patches. A dynamic
programming algorithm (Cormen, Leiserson, Rivest, & Stein, 2001)
was used to find the subset of nonconflicting criterion patches that
included the largest amount of trials. The mean criterion was obtained
by averaging the criteria over those patches, with each such criterion
weighted by the number of trials included in the corresponding patch.
The mean difference between criteria estimated with the two methods
was 0.62% (SE 0 0.1) of the mean screen luminance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.9
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pFA

pH
IT

Observer IZ

Ideal actual

Ideal expected

Fig. 3 ROC curves, an example: Experiment DD1, condition A. The
star mark represents observer I.Z.’s performance (pHit, pFA). The con-
tinuous (red) ROC curve is based on the actual luminance samples
presented in the experiment, assuming an ideal observer. The blue
(dashed) curve is the theoretical ROC curve based on Gaussian dis-
tributions with the predefined μ and σEX parameters of the N and S
distributions used in this particular condition
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These rates were less than .02 for all observers but O.T.
(.08) (1 observer with fe > .1 was excluded). The probability
of an “S” response (pi) can be derived from the percentage
of “S” responses observed (pobs) and the fe rate:

pobs ¼ pið1� feÞ þ ð1� piÞfe ¼ pi þ fe� 2pife )

pi ¼ pobs � fe

1� 2fe
:

Results

Optimal and nonoptimal criteria placing

Figure 5a displays the estimated observers’ criteria versus
optimal criteria in Experiment DS, with different symbols
for the different observers. Criteria are shown in units of
stimulus contrast, thus corresponding to the stimulus contrast
level that is classified in equal proportion as noise and as
signal (see Fig. 4). Ideal criteria are the luminance values (or
contrasts) where the N and S luminance distributions cross
over. For equal σ N and S distributions (σN 0 σS, Experiment
DD1), the crossover point equals half of the theoretical d′
(here derived from the actual means of the N and S samples
presented in the experiments). The slope of the regression
(red/continuous) line is close to unity (slope 0.92) and is not
significantly different from 1 (p > .2), indicating that, aside
from a constant positive (conservative) bias, (indicated by
the positive intercept at the origin: 0.13) observers’ decision

behavior is close to optimality (dashed straight line). Figure 5b
displays measured versus optimal criteria for the variable
signals in Experiments DD1 and DD2, together with the
regression line yielding now a slope of 0.41, significantly
different from 1 (p < .0001). Hence, observers do not place
their criteria optimally when handling two different tasks. This
decisional behavior in the DD tasks replicates the behavior
observed in previous studies with close to threshold stimuli
(i.e., where performance was limited by internal noise only;
Gorea & Sagi, 2000, 2001), thereby generalizing the notion of
“criteria attraction” to the case where performance is limited by
external noise.

To verify that these criteria shifts are due to decisional
processes per se and not to responses to the unprobed blob,
we measured linear correlations between P(“High”) and the
unprobed blob amplitude, finding r < .09 across all condi-
tions and observers (see the Appendix, Fig. 11). Such
responses, if due to confusion between target and nontarget
blobs, are independent of target amplitude and are captured
by the finger errors parameter in our data analysis, thus
having no effect on the estimated criteria (see the Finger
Errors section).

Nonoptimal criteria placing under dual-different conditions

Figure 6 displays all observers’ criteria (symbols) as derived
from the psychometric function fits (see the Data Analysis
section), together with ideal observer criteria (i.e., as predicted
by SDT; solid lines) in Experiments DD1 and DD2 (as
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Fig. 5 Estimated observers’ versus ideal criteria in the a dual-same
(Experiment DS) and b dual-different (Experiments DD1 and DD2)
conditions. Different symbols are for different observers (all naive
except I.Z.: ×). Straight continuous lines are linear regressions over
all data in the DS experiment (slope 0.92; not significantly different
from the identity line; p > .2) and for the variable mean signal tasks in the

DD experiments (slope .41; significantly different from the identity line;
p < .0001). Dashed straight lines denote ideal-measured identity (slope 1).
These results show that criteria in DS are slightly shifted from the ideal,
reflecting a small constant response bias, but spread across an equal
range, while in DD, observers’ criteria are narrowly distributed as com-
pared with the ideal. Criteria are given in units of stimulus contrast
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indicated by the tags adjoined to the observers’ initials) as a
function of themean contrast of the variable signal. Red crosses
and red/dotted lines show criteria for the fixed signal tasks, and
green squares and green/continuous lines show criteria for the
paired variable signal tasks. The first two columns show data
for the naive observers (D.H., O.G., N.E., and O.T.). The
remaining two rightmost columns show data for the “in-
formed” observers, considered so either because they were

given training after having completed a first round of experi-
ments [DH(T) and OG(T)] or because they were trained
psychophysicists familiar with SDT (including one author,
I.Z.). The main observation is that naive observers, with
the exception of O.G.–DD2, tended to use very similar and
sometimes identical criteria across the paired tasks (sym-
bols at the same location on the x-axis) in both DD experi-
ments. Note that an optimal behavior requires that the
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Fig. 6 Criteria for the paired tasks in Experiments DD1 and DD2
(signaled by the tags between parentheses adjoined to each observer’s
initials) as a function of the varying signal mean contrast. Symbols and
lines show observers’ and ideal observer’s criteria, respectively, for the

fixed-mean-signal task (red crosses, dotted lines) and for the variable-
mean-signal task (green squares, solid lines). The first two (left) and
last two (right) columns show data for naive and “informed” observers,
respectively. Error bars are ±1 SE
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difference between these criteria increase with the contrast
of the variable signal (compare dotted and solid lines). The
observed criteria “attraction” appears to be more or less
symmetrical, since the paired criteria tend to meet at the mid-
range between the optimal criteria. The decisional behavior
of the “informed” observers is substantially closer to that
prescribed by the optimal observer in Experiment DD1, but
not in Experiment DD2.

Comparing criteria and zFA differences

In Experiment DD1, the external-noise variance was the
same across the two N and the two S distributions. As a
consequence, the “equal c” and the “equal zFA” hypotheses
cannot be dissociated (see the Introduction). In Experiment
DD2, this dissociation was made possible by assigning
different variances to the two N and S pairs. More specifi-
cally, the ratio between σEX and the mean S–N contrast
difference was kept equal across the two S and N pairs
and constant across the different mean S2 values (see
Fig. 1c and Table 3 in the Appendix), thereby yielding equal
ideal zFA and d′ values but distinct ideal criteria (c).

Figures 7 (Experiment DD1; fixed σEX) and 8 (Experi-
ment DD2; variable σEX) display measured (red/horizontal
stripes and green/vertical stripes bars for naive and informed
observers, respectively) and ideal observer3 (blue/dotted
bars) criteria (panel a) and zFA (panel b) differences be-
tween the two paired tasks. In Experiment DD1, the deci-
sion behavior of informed observers is close to that of the
ideal observer, with deviations from it increasing with mean
S2 contrast (compare vertically striped and dotted bars in
Fig. 7a, b). Instead, naive observers (red/horizontally striped
bars) show close to zero criterion differences and hence,
given the experimental design, also close to zero zFA differ-
ences for all conditions. In contrast, for the three conditions
with the highest mean S2 (and σEX) in Experiment DD2,
observers show significant differences between their zFAs
(t tests yielding p < .02; Fig. 8b) and, accordingly, given the
experimental design, reduced criteria differences relative to
the ideal observer (Fig. 8a). In fact, the measured criteria
differences are almost constant across conditions, unlike the
ideal observer differences that increase with the mean S
contrast difference by up to ~3.5 times the experimentally
observed difference for the naive observers. As is shown in
Fig. 9, for uninformed naive observers (except I.Z.), these
criterion differences were stable across the eight testing
sessions.

Efficiency and criterion noise

Efficiency, defined as

d
0
observed

d
0
ideal

� �2

;

was calculated to evaluate observers’ performance relative
to an ideal observer (see Footnote 3), with performance
limited only by the external noise used in the experiment
(Burgess, Wagner, Jennings, & Barlow, 1981). It should be
noted that efficiency is not affected by the criterion setting
that determines the percentage of correct responses. The
efficiency measure allows us to examine whether the detected
criteria changes are accompanied by an increase in internal
noise (sensory and/or decisional). Averaged across the 5
observers that performed all the DS, DD1, and DD2 condi-
tions, it was found to be .65 (.77, .68, .61, .72, and .44, for
observers D.H., I.Z., N.E., O.G., and O.T., respectively).
Observers’ efficiency was stable across conditions: .64, .58,
.59 for DS, DD1, and DD2, respectively (averaged across
observers), with no significant difference between naive and
trained observers (pairwise t-test). Efficiency increased with
external-noise level from ~0.5 at σEX 0 0.1 to ~0.8 at σEX 0

0.3–0.4 (Fig. 10). Since the ideal observer is assumed to be
limited by external noise only, inefficiencies must be due to
observer-related noise, such as internal (coding) noise and
decision noise, here estimated by criterion noise (σc; see the
Method section and Fig. 4; note that all measurements were
corrected for finger errors). Criterion noise was found to
correlate with the measured criterion (linear regression, all
observers: σc 0 0.40 c + 0.36, r2 0 .12, p < .004), possibly
reflecting the well-known increase of JND with increasing
stimulation level (Weber law). On average, σc was 1.57 times
larger than observers’ JND (2.09, 1.51, 1.1, 2.47, 1.2, and
1.63, for observers D.H., I.Z., N.E., O.G., O.T., and E.Z.,
respectively).

Assuming linear transduction and statistical indepen-
dence of criterial and external noises, the total noise in the
system is (σ2EX + σ2c). Therefore, efficiency is given by
σ2EX/(σ

2
EX + σ2c). Taking into account the observed corre-

lation found between criterion noise and external noise
means (linear regression, all observers: σc 0 0.48σEX + 0.04,
r2 0 .17, p < .001), it is possible to calculate the predicted
efficiencies. The results show that the predictions match the
mean measurements quite well—thus, since the model con-
tains no free parameters, demonstrating a consistency between
the different calculations and approximations made (Fig. 10).

The present data and analyses show that, at least for cases
where external noise significantly exceeds internal noise
(σEX > 0.2; see Fig. 10), external noise is the main limiting
factor in observers’ performance. At these noise levels,
criterion noise (σcrit) is approximately proportional to external

3 Ideal observer performances are computed from the actual luminance
distributions (i.e., as drawn for each observer and experiment); see the
Method section.
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noise (σEX), leading to a constant efficiency of ~.8. The
observed correlation between criterion noise and external
noise may reflect a direct or indirect dependency. This is so
because external noise in Experiment DD2 correlates by
design with mean signal amplitude, which is found to correlate
with the measured criteria (Fig. 6), which, in turn, correlate
with criterion variability.

Discussion

The present study focused mainly on the causes of observ-
ers’ nonoptimal decisional behavior when faced with two
simultaneous tasks involving equally probable signal and
noise trials. On the basis of their results obtained with
fixed, close to threshold stimulations (where performance
is exclusively limited by internal noise), Gorea and Sagi
(2000, 2001, 2002) concluded that observers use a close
to identical criterion across the two tasks. This conclusion
was challenged by Kontsevich et al. (2002) inasmuch as
Gorea and Sagi’s criteria equality could not be dissociated
from an FA rate equality. This is indeed so inasmuch as
the standard deviation of the internal noise, σIN, is not
directly accessible, so that criteria equality—that is, σIN1 �
zFA1 ¼ σIN2 � zFA2—is verified only to the extent that
σIN1 0 σIN2. If this were not the case, Gorea and Sagi’s

equality could be explained by positing that observers equate
their FA rates. The basis on which this could be achieved
remains, however, obscure. The use of a known external noise
significantly larger than the internal noise bypasses this prob-
lem, since it allows direct access to the performance-limiting
noise. Moreover, the use of external noise also allows the
direct assessment of the noise limiting observers’ criterion
placement, which consists of an unknown combination of
internal and decision noise.

Most important, the direct assessment of criterion values
in stimulus space precludes the resort to assumptions on the
internal-noise distribution required by the standard (internal-
noise-based) SDT analysis. There are indeed claims in the
literature that the criterion shift observed in standard SDT
experiments, where the internal noise is dominant, could in
fact reflect an internal-noise dependence on the base rates of
(or payoffs associated with) the two alternatives (Balakrishnan
1998a, 1998b, 1999; Balakrishnan & MacDonald, 2002,
2008). In our experiments (where the base rate is always
0.5), the ideal observer’s criterion is at the crossover of the
external-noise (signal and noise) distributions, but our results
clearly show this not to be the case for the measured criteria
that show deviations from optimality of up to a factor of 4 (at
the higher external-noise levels). Assuming a monotonic rela-
tionship between stimulus intensity and internal response, we
can conclude that, in our experimental setup, response criteria
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are not always situated at the intersection of the two distribu-
tions corresponding to the two available stimulus sets.

The use of a dual task with identical S and N external
distributions in Experiment DS (dual-same conditions) first
confirmed that observers do, indeed, use close to optimal
criteria when they deal with identical concurrent stimuli.
Experiment DD1 (dual-different conditions with equal exter-
nal noise across the two paired tasks) generalized Gorea and
Sagi’s results (for “naive” observers; see below) under
external-noise conditions. By design, however, Experiment
DD1 could not dissociate between observers equalizing their
criteria or their FA rates. Experiment DD2 (dual-different
conditions with unequal external noises across the two paired
tasks) was designed to this end, with the rather clear outcome
that observers tended to equalize their criteria, rather than their
FA rates. This was so even though this experiment was
designed to yield optimal performance for equal FA rates
across the paired tasks.

The results of Experiment DD1 show marked differences
between “informed” and “naive” observers. The distinction
between the two subpopulations was based on their being or
not being trained psychophysicists (2 observers, including one
author) or on having or not having been introduced to the
experimental design and to general SDT principles. Both
groups were highly experienced with the task, having carried
out hundreds of trials in the experiments. Observers were able

to set a close to optimal criterion in the DS condition, but while
naive observers practically equalized their criteria (and FA
rates) throughout the S contrast range used in this experiment
(DD1), “informed” observers used distinct, close to optimal
criteria. In contrast, prior psychophysical experience or train-
ing of originally naive observers only marginally helped them
keep their criteria apart in Experiment DD2, with 1 observer
(O.G.) actually worsening his decisional performance.

The case of Experiment DD1, where experts’ decisional
behavior was close to optimal, is to be contrasted with
Gorea and Sagi’s (2000, 2001, 2004) results showing non-
optimal behavior even for trained psychophysicists. If crite-
ria are represented as internal response values separating the
two (yes/no) behavioral responses, and if these values are
separated by more than, say, one unit of internal noise
(which was not the case in Gorea and Sagi’s threshold
experiments), they should be easily categorized and, hence,
kept apart. This should have been the case for both DD
experiments insofar as observers explicitly used such a
rule-based response strategy (e.g., Ashby & Maddox,
1998, 2005; Spiering & Ashby, 2008). On this logic, trained
observers’ failure to keep apart their response criteria in
Experiment DD2 (even though an optimal behavior requires
that these criteria be significantly more separated than observ-
ers’ internal noise) suggests that the limiting factor in keeping
criteria apart is criterion noise per se (i.e., a combination of
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internal and decision noise). Because criterial noise was found
here to depend on external noise (i.e., σEX) that was larger in
Experiment DD2 (for the three largest σEX conditions) than in
Experiment DD1, one would expect, indeed, that observers be
less capable of keeping their criteria apart.

An alternative although not exclusive account of the fact
that, overall, observers are less efficient in keeping track of
separate criteria in larger external-noise environments is based
on the scaling property of the presently used normal distribu-
tions: A given criterion shift (in stimulus units) entails fewer
percent correct losses with larger than with lesser σEX. For
example, the largest mean signal contrasts in Experiments
DD1 and DD2 were associated with external noises of 0.2 and
0.34, respectively. For these two cases, a shift from the optimal

criterion departure from optimality of 0.15 entails a correct
response loss of 5% and 2.4%, respectively. Inasmuch as keep-
ing track of more than one criterion has its own cost, subjects
might more easily give up with this extra effort for a lesser cost.

The use of externally distributed stimulus samples from
bivariate distributions allows the direct assessment of criterion
noise (i.e., the slope of the “yes” response function of stimulus
contrast). Criterion noise includes internal (or coding) noise
and decisional noise per se. In the present experiments, the
measured criterion noise was 1.6 times the observers’ JNDs. A
JND yielding a d′ of 1 (as derived from yes/no experiments)
represents, in theory, the sum of the internal and decision noise
variances. Inasmuch as the present JND and the external-noise
classification experiments have been run at similar adaptation
levels, it can be assumed that they were associated with equal
internal-noise levels. If so, the notable difference between the
presently assessed JNDs and criterial noise should be attrib-
uted mainly to a decision noise increase in the external-noise
classification experiments. This is most likely due to the
spread of the external noise per se, which correlates negatively
with one’s capacity of extracting its statistical properties (e.g.,
Lee & Janke, 1964).

Conclusion

The presently used external-noise method offers a direct means
of estimating observers' criteria and their associated noise in
binary classification tasks. The method reveals a close to opti-
mal decision behavior in single but not in dual classification
tasks designed so as to entail different optimal criteria across
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Fig. 9 Criteria differences of the 5 observers (different colors) across
the eight sessions for the largest target contrast conditions (condition F
in Tables 2 and 3 in the Appendix) in Experiments DD1 and DD2.
Black solid circles and lines show the mean (across observers) criteria
differences. The straight horizontal line denotes the expected criteria
differences had observers used optimal criteria. Data for naive observers
are shown before the training stage; observer I.Z. is one of the authors
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tasks. In the latter case, the method revealed that observers tend
to minimize the distance between their concurrent internal-
response criteria, rather than between the respective FA rates.

Prior psychophysical training, as well as information given
to naive observers on the experimental design and on SDT
principles, entails a decisional behavior closer to optimal
under some experimental conditions. This suggests that
observers can take advantage of explicit rules for placing
multiple criteria in concurrent tasks.
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Appendix

A. Parameters used in the different experiments: signal
means and standard deviations relative to background intensity
(contrast units) and theoretical d′ values.

B. Dependence of observers’ responses to the test stimulus
(cued location) on the contrast of the “distracting” stimulus
(noncued location).
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