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ABSTRACT

The a contrario theory is a mathematical formalization of the
so-called non-accidentalness principle of perception, which
states that an observed configuration is relevant only when
it is unlikely to appear just by chance. It has been success-
fully applied to several image processing and computer vi-
sion problems. In this paper, human vision is compared to an
a contrario based algorithm in a simple perceptual task. For
this aim, a psychophysical experiment was set up, in which
subjects and the algorithm were asked to detect alignments of
Gabor patches. We found that the proposed algorithm pre-
dicted accurately the subjects’ responses, therefore providing
an interpretation to perceptual thresholds.1

Index Terms— A-contrario detection, Psychometric test-
ing, Computer vision, Detection algorithms.

1. INTRODUCTION

Psychophysical studies can help computer vision researchers
by suggesting general principles for the design of their algo-
rithms [1]. Early statistical models of vision were formulated
in the 1950s [2]. Since the late 1990s, the Bayesian formal-
ism has proved relevant to model simple perceptual grouping
[3] or much more complex and general mechanisms [4, 5, 6].

The non-accidentalness principle was introduced inde-
pendently in the computer vision [7, 8] and perception [9]
literature. The idea is that features that are probable to appear
just by chance are not relevant, and should be rejected by
setting thresholds accordingly. In the words of Lowe, “we
need to determine the probability that each relation in the
image could have arisen by accident, P (a). Naturally, the
smaller that this value is, the more likely the relation is to
have a causal interpretation.” [8, p. 39].
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The a contrario framework is a mathematical formulation
of the non-accidentalness principle [10]. Instead of comput-
ing the probability that an observation arises by accident, the
focus is placed on the total number of accidental detections
per image. An a contrario detection algorithm estimates for
each observed feature of interest its expected number of oc-
currences under a background probability model. If this num-
ber is low, the feature is termed non-accidental (in the back-
ground model) and therefore significant.

A whole family of unsupervised algorithms in computer
vision are based on the a contrario theory. The framework is
used to detect line segment and curves [10, 11, 12], vanish-
ing points [13], aliasing [14], shots in videos [15], as well as
to perform shape matching [16], change detection [17, 18],
image segmentation [19], feature point matching [20], ho-
mographic registration [21], clustering [22], mirror symmetry
detection [23]. Our hypothesis is that the success of these un-
supervised algorithms is due to the a contrario theory’s con-
sistency with certain perceptual grouping mechanisms, and
the present work is meant to test this hypothesis.

A few experimental studies have confronted computer
vision theories to human perception [24]; among them, [25]
centered on the a contrario theory. The latter study already
proved that a quantitative definition of non-accidentalness
gives an interpretation and quite accurate predictions of the
perceptual thresholds. Its most remarkable insight is to trans-
late several detection-affecting parameters into one unique
measure of rareness, the Number of False Alarms (NFA),
which correlates well with the subjects detection perfor-
mance. Yet the psychophysical protocols in [25] had several
limitations that also limited the strength of its conclusions.

First, the experimental set-up in [25] relied on “yes-no”
questions to assess the detection by subjects. Here, we used a
refined protocol in which subjects indicate where, instead of
whether, a structure is seen. We also recorded reaction times,
providing an additional measure of confidence to the subjects’
responses, and followed a paradigm that is commonly used in
psychophysical studies of good continuation [26, 27].

Second, [25] did not compare directly human subjects to
an algorithm. In contrast, we took inspiration from the inno-
vative work by Fleuret et al. [28] where human and machine
performed the same visual categorization task, “side by side”,
on each stimulus. In a nutshell, the algorithm became an ar-



Fig. 1. Gabor arrays like those displayed during the experi-
ment. The coordinates of the elements are the same in both
images, and only their orientations change; the level of angu-
lar jitter added to the 10 aligned elements varies from 0 rads
(left), to π

2 rads (right), which corresponds to the model of the
random Gabor array (defs. 1 and 2).

tificial subject. Similarly, our experiment compared human
and machine vision in a simple perceptual task: the detection
of line patterns among a set of Gabor patches (Fig. 1(left)).

Arrays of Gabor patches are a classic tool in perceptual
grouping to study good continuation [26, 27]. Gabor func-
tions ensure a control on the spectral complexity of the stim-
uli and on the spatial scale of the contours. They provide a
flexible and easy way of generating a great variety of stimuli.
Additionally, they are a good model for the receptive field of
simple cells in the visual cortex [29]. It has been verified that
human vision is better at grouping oriented elements when
they are roughly tangent to a smooth contour [26, 24, 27].

However, these studies were limited to measuring the de-
tection performance as a function of parameters, without test-
ing a theoretical and interpretative model. Our aim is to ex-
plain such measurements and we will show that the a con-
trario theory gives a quantitative answer.

This paper is organized as follows: Sect. 2 describes the
perceptual task, including the experimental set up. Our de-
tection algorithm is presented in Sect. 3. We discuss the re-
sults of the comparison between subjects and the algorithm in
Sect. 4, and draw conclusions in Sect. 5.

2. PERCEPTUAL TASK

We measured the detectabilty, for human vision, of a struc-
ture embedded in an image, as a function of the parameters
used to generate it. We then compared this data to a detection
algorithm’s output to assess whether the detection thresholds
of perception and the a contrario theory match. In this study,
we only tested the detection of line-segments.

The stimuli displayed in the experiments were Gabor ar-
rays like those of Fig. 1, and were generated with the software
GERT (v1.1) [30]. The N oriented blobs contained in an ar-
ray are called Gabor elements or patches. Each patch rep-
resents a symmetrical Gabor function, which is a zero-phase
sinusoid convolved with a Gaussian. Each array includes n

Fig. 2. These dots have the same coordinates as the Gabor
patches of Fig. 1. It is almost impossible to detect the ten
aligned elements without the orientation information.

aligned elements, regularly spaced by a distance ra. Their
orientations were chosen as follows: given the line’s direc-
tion θl, the n angles were uniformly and independently sam-
pled in [θl − α, θl + α], with α ∈ [0, π2 ]. This is equivalent
to adding uniform noise, also called angular jitter, to orienta-
tions equal to θl. The alignment position and direction θl were
selected randomly in each image. The N − n non-aligned el-
ements, called background elements, were randomly placed
but respected a minimal distance rb from each other and from
the aligned patches. Their orientations were uniformly and
independently sampled in [0, π).

Distances ra and rb were set as functions of N to fulfill
two requirements. First, rb was tuned so that all N elements
fit into the image and fill it homogeneously, avoiding clus-
ters and empty regions. Second, we chose ra larger than rb
to make the alignment almost impossible to detect from the
coordinates of the elements only, that is to say from the prox-
imity and width constancy cues only (Fig. 2). Then the dif-
ficulty to detect the aligned Gabors was essentially ruled by
their number n, and by the angle α. The larger n and the
smaller α, the more conspicuous the alignment.

Each experimental session counted 126 trials divided into
three blocks of 42, with pauses after the first and the second
block. In each trial, the subject was shown on a screen a Ga-
bor array of 496× 496 pixels, containing N = 200 elements,
n of which were aligned (n ∈ {4, . . . , 9}) and affected by an
angular jitter of certain intensity α ∈ {0, π12 ,

π
8 ,

π
6 ,

π
4 ,

π
2 }. For

this value of N and this image size, we had ra = 34.5 and
rb = 22.5 pixels. Four trials were conducted for each couple
of conditions (n, θ) with θ ≤ π

4 , and one trial per maximal
jitter conditions (n, π2 ). The subjects knew that every stim-
ulus contained an alignment, but did not know where, how
long and how jittered it was. They were asked to click on an
element they perceived as part of the alignment, and just to
give their best guess in case they did not see any clear align-
ment. We wanted the task to be attentive. Thus, the stimulus
remained on the screen until an answer was given, although
subjects were advised to spend at most 20 seconds per stimu-
lus. The coordinates of the click and the response time were
recorded. After the subject’s click, a transition gray image



was displayed for 500 ms and then the next stimulus appeared.
Twelve subjects, six women and six men, took the ex-

periment through a web interface (http://bit.ly/ac_
alignments). They were all naive to the purpose of this
study. Each subject used their own computer device. Thus,
the monitor properties, the distance to the screen and the illu-
mination conditions could vary from one subject to the other.
Our bet was that, for the scope of our study, such variabil-
ity would not have significant inter-subject effects. To help
understand the task, subjects were first shown two training
sequences of 5 and 10 trials, with the corresponding ground-
truths at the end of each sequence.

3. ALGORITHM

This section defines the alignment detection algorithm to be
matched to human perception. Without loss of generality, in
our model we take [0, 1]2 as the domain of the images.

Definition 1. We call N -Gabor array a set g = {(xi, θi), i =
1 . . . N} where N is an integer, xi ∈ [0, 1]2 and θi ∈ [0, π).
Each element γi = (xi, θi) is called Gabor element.

Definition 2. A N -Gabor array G = {(Xi,Θi), i =
1 . . . N} where Xi and Θi are random variables, and the
Θi are independently and uniformly distributed in [0, π), is
called random N -Gabor array in the remaining of the paper.

Fig. 1 shows two representations of Gabor arrays. Whereas
the right hand image is a realization of a random Gabor array,
the left hand one clearly deviates from the a contrario model
for its 10 elements with constrained orientations. Note that
in Def. 2, no assumption is made on the Gabor elements’
coordinates, since we tried to minimize their influence by
constructing stimuli as explained in Sect. 2.

Definition 3. Let a 6= b ∈ [0, 1]2, w > 0. We call w-wide
rectangle associated to {a, b}, and note R(a, b, w), the rect-
angle going from a to b, of width w (Fig. 3).

The input to the algorithm is a N -Gabor array g. The first
step is to compute the average Euclidean distance davg(g) of
the elements of g to their nearest neighbor. Then, for each
pair {γi, γj} of g, the rectangle r = R(xi, xj ,

davg(g)
10 ) is

considered. The number nobs of elements of g belonging to
r, is compared to an ideal number nth =

⌊
|xi−xj |
davg(g)

+ 1
2

⌋
+ 1.

If nobs < 0.7 × nth, then the rectangle r is rejected be-
cause it is not considered to be dense enough to contain a
visible alignment. Otherwise, the rectangle is further exam-
ined. The algorithm computes the difference between the
orientation θk (1 ≤ k ≤ nobs) of each Gabor element in
r, to the one of the rectangle, noted θr. Dividing these an-
gular errors by π

2 yields normalized errors ek ∈ [0, 1] such
that ek = 0 when θk − θr = 0 mod π and ek = 1 when
θk − θr = π

2 mod π (Fig. 3). The maximal error for the
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Fig. 3. An example of rectangle; nobs = 5 and emax = 1.

NFA = 0.0045 NFA = 0.0045

NFA = 20 NFA = 268

Fig. 4. Detections by the algorithm (Sect. 3). Center: input.
Left: output. Right: ground truth.

rectangle emax=̇ max {e∗, e1, . . . , enobs} is measured up to a
minimal precision e∗ = 1

10 . Finally, the Number of False
Alarms associated to the pair {γi, γj}, is defined as:

NFA({i, j},g) =
N(N − 1)

2
· (emax)

nobs .

As usual [10], a large NFA value corresponds to a likely
(and therefore insignificant) configuration in the a contrario
model, whereas a small one indicates a rare and interesting
event. The algorithm’s output is the set of Gabor elements
that belong to the rectangle associated to the pair of small-
est NFA (Fig. 4). The following proposition shows that this
method satisfies the non-accidentalness principle.

Proposition 1. Let ε > 0, and G = {(Xi,Θi)}i=1...N a
random N -Gabor array. Then the expected number of pairs
{i, j} such that NFA({i, j},G) < ε, is less than ε.

4. RESULTS AND DISCUSSION

Each click made by a subject is associated to the nearest Ga-
bor element in the image, and counted as a valid detection
when that element belongs to the ground truth. The same is
done for the algorithm, by selecting a random element among
the returned ones. This count permits to define the detection
rate for humans and for the algorithm. Figs. 5 (a) and (b) plot
the detection rate as a function of the jitter level and the num-
ber of aligned elements. Figs. 5 (c) and (d) plot the detection
rate and the reaction time as a function of log10(NFA) of the



(a) (b)

(c) (d)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jitter (normalized)
4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−5 −4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−5 −4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

log10(NFAtruth) log10(NFAtruth)

R
e
a
ct

io
n
 t

im
e
 (

s)

D
e
te

ct
io

n
 r

a
te

D
e
te

ct
io

n
 r

a
te

D
e
te

ct
io

n
 r

a
te

Num. of aligned elements

group A

group B

algorithm

Fig. 5. Detection rate as a function of: (a) the normalized
jitter level α

π/2 of the ground truth alignment; (b) the number
n of elements in the ground truth alignment; (c) the log10 of
the ground truth’s NFA. Plot (d) shows the reaction times, in
seconds, as a function of log10(NFA). Circles, Crosses, Tri-
angles: group A, B and algorithm’s responses, respectively.

ground truth. The abscissa is always divided into bins: ev-
ery point represents an average value for the corresponding
trials. The error bars give 95 % confidence; they are defined
as [x− 2 σ√

q , x+ 2 σ√
q ], where x, σ and q are respectively the

mean, standard deviation and number of trials of the bin.
A Kruskal-Wallis test on detection results indicates that

all 12 subjects did not give homogeneous answers (p ≈ 1.8 ·
10−5), but can be split into two significantly homogeneous
groups: on one side, group A is composed of subjects 8 and
11 (p ≈ 1), both achieving a detection rate of 80%; on the
other side, group B is formed by the remaining 10 subjects
(p ≈ 0.27), with detection rates between 52% and 67%.

Figs. 5(a) and (b) confirm a previously observed phe-
nomenon [26, 27]: the angular jitter affects the detection
performance, but this effect gets weaker when the number
of aligned elements increases (at constant number of back-
ground elements). More striking is the fact that the NFA of
the ground truth alignments is an accurate one-dimension
measure of the stimuli’s difficulty. Indeed, Figs. 5(c) and (d)
show decreasing detection rates and increasing reaction times
with respect to the NFA. This yields the following interpreta-
tion: points with log10(NFA) lower than −2 in graphics (c)
and (d) represent stimuli in which the ground truth alignment
is expected to occur less than once every 100 random Gabor
arrays. At the other end of the NFA axis, on the right of
log10(NFA) = 2 for example, stand the images whose hid-
den alignment is an event that could occur, on average, more
than 100 times in a single random Gabor array. Thus it seems
that, in our experiment, detectability and non-accidentalness

S. 1 2 3 4 5 6
τ −0.30 −0.32 −0.30 −0.21 −0.27 −0.32

pτ < 10−6 10−7 10−6 10−3 10−5 10−7

ρ 0.54 0.68 0.61 0.47 0.63 0.57

pρ < 10−10 10−300 10−13 10−7 10−14 10−11

7 8 9 10 11 12 all
−0.24 −0.26 −0.35 −0.29 −0.23 −0.30 −0.28
10−4 10−4 10−8 10−5 10−4 10−6 10−300

0.69 0.73 0.65 0.69 0.65 0.62 0.60

10−300 10−300 10−15 10−300 10−15 10−13 10−300

Table 1. Kendall’s τ between subjects’ answers and the NFA,
and Spearman’s ρ between reaction times and the NFA, for
each subject (S). The p-values were computed with a normal
approximation (for τ ) and a Student test (for ρ).

log10(NFA) (−4.7, 0] (0, 1] (1, 2] (2, 4.17]
nb. of trials 661 322 333 196

Detection rate Subj. (%) 87 71 45 17
Detection rate Algo. (%) 100 100 77 5.6

Agreement rate (%) 87 71 53 80

Table 2. Detection and agreement rates for 4 NFA intervals.

are strongly correlated.

In order to assess the significance of these behaviors, we
computed the Kendall’s rank correlation coefficient (noted τ )
between each subject’s answers and the NFA, and Spearman’s
rank correlation coefficient between each subject’s reaction
times and the NFA (Table 1). The p-values associated to
Kendall’s τ were obtained with a non parametric test based on
a normal approximation, whereas Spearman coefficient’s sig-
nificance was checked with a Student test. As Table 1 shows,
the significance of the observed trend is overwhelming.

We finally compared the subjects to the algorithm. What
appears at first glance is the similarity of shape between the
black curves and the gray one, in Figs. 5 (a), (b) and (c). The
results of group A are particularly similar to the algorithm’s
ones, and plot (d) shows that these subjects took significantly
more time than average. Furthermore, we looked at the agree-
ment between a subject and the algorithm (i.e. both detect
or both fail). Among the 1512 trials of the 12 sessions, the
agreement rate is 74.8%. Splitting the NFA range into 4 well
chosen intervals (Table 2) helps understand the strengths and
flaws of the algorithm at imitating human subjects. On the
one hand, the algorithm keeps performing well even in the in-
terval (1, 2] where the subjects’ performance is already quite
low. On the other hand, subjects are still able to find almost
20% of the alignments when log10(NFA) > 2, whereas the
algorithm’s detection rate drops down to less than 6%. This
difference is materialized by the area between black and gray
curves in graphic 5 (c). A likely explanation is that the algo-
rithm processes accurately the orientation cue whereas sub-
jects are less accurate but may use other cues, such as the
constant spacing between aligned elements.



5. CONCLUSION

Our results suggest two main conclusions. First, the NFA
provides a quantitative law linking length and jitter to align-
ments’ visibility. Second, despite its simplicity, the proposed
algorithm imitates quite well, and thus predicts, the average
behavior of human subjects. These results support the a con-
trario theory from a perceptual point of view. They suggest
that it is possible to control accurately the false alarm rates of
computer vision algorithms. In future studies, this experiment
will be held in a controlled environment, and our method gen-
eralized to more complex detection tasks.
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