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1 Lattice on the cone of semi positive definite matrices

1.1 Notations
e §,: the set of n X n symmetric real valued matrices
e S': the set of semi-positive definite (SPD) matrices
e ST: the set of positive definite matrices
e [,: the identity matrix
e 1r(M): the trace of matrix M
e MT: transposition of matrix M
e ||M||: the Euclidean norm of matrix M, for the canonical scalar product (A, B) = tr(A” B)

o VA €R, T) ={M € S,,tr(M) = A}: the set of symmetric matrices with trace A

1.2 The Loewner ordering is not a lattice ordering

Definition and geometric interpretation The Loewner ordering is defined on S, as follows: for any
A,BES,,

A>B < A—BEe€S,.
If A € S, it can be geometrically represented by an ellipsoid & = {x € R",x" Ax < 1}, the lengths of
&x’s semi-axis being 1/1/A;(A), if A1,..., 4, denote the eigenvalues of A (the ellipsoid can be degener-
ated, with infinitely long semi-axis when A; = 0). Then the Loewner ordering corresponds to a reversed
inclusion ordering on ellipsoids: for A,B € S;F,

A>B < &4 C &p.

To get a more intuitive geometrical correspondance where the ellipsoid associated to the smaller element
is included in the one associated to the bigger element, we can consider the ellipsoid whose semi-axis’s
lenghts are v/A;. When A € S, " this corresponds to &, 1, thus for A,B € S,

A>B = A" <B! = .1 C 6,

and this can also be extended for non invertible matrices!.

1T prefer not to spend more time on this since the Loewner ordering may not be what we need.



Figure 1: An example of minimal-volume enclosing ellipsoid (yellow), not comparable (in the Loewner
sense) to another enclosing ellipsoid (in purple).

S with the Loewner ordering is an anti-lattice An anti-lattice [4] is a poset in which, for any two
elements A and B, a greatest lower bound exists if and only if A and B are comparable. In [4] Kadison
shows that S, with the Loewner ordering is an anti-lattice. Moreland and Gudder [5] proved that this is
also true for S;lL (that is, a greatest lower bound exists in S,‘f if and only if A > 0 and B > 0 are comparable),
and Ando [1] generalizes the result to infinite dimension.

The misleading geometrical interpretation Despite the aforementioned results, one can argue that it is
possible to find a unique smallest (largest) ellipsoid containing (contained in) a set of centered ellipsoids.
The problem in this definition is that it refers to two different orderings: whereas the set of upper/lower
bounds is defined by the Loewner ordering (or equivalently the inclusion ordering on ellipsoids), the
smallest/biggest element of this set is defined by a volume total ordering. Unfortunately, the volume
ordering does not induce the inclusion ordering, and one can find upper/lower bounds in the Loewner
order that are not comparable with the “smallest”/“biggest” (in the volume sense) upper/lower bound -
see Figure 1.

1.3 The (questionable) proposition of [2]

The authors of [2] acknowledge that the Loewner ordering is not a lattice ordering. However, the paper
builds another ordering that is not proved to induce a lattice and that, in fact, seems to suffer from the
same problem (the new order seems to be an anti-lattice as well).

In [2], computing the sup of a set of matrices in S boils down to finding the smallest sphere covering
a set of non centered spheres. As in the case of the ellipsoids, here two orderings are mixed: the inclusion
ordering and the volume ordering. Again, we can find examples, as in Figure 2, where the resulting
“smallest upper bound” is not comparable to other upper bounds in the ordering defined by the authors.
These counter-examples seem to prove that this kind of ordering does not define a lattice. Indeed, if it
did, the two blue spheres of Figure 2 would admit a unique sup. Since inclusion implies the ordering
on volume, this sup would be the sphere of minimal volume enclosing the two blue spheres, that is the
green sphere. The red sphere shows the existence of upper bounds not comparabale to the green one, and
contradicts the existence of a unique minimal upper bound.



Figure 2: An example of minimal-volume enclosing ball (green), not comparable in the inclusion sense
to another enclosing ball (red).

In the following I give a recap and reformulation of the construction presented in[2].

Bases of S;” and their extreme points Figure 3 provides an illustration of the structure of the cone S},
with the main features used for the construction of a new ordering in [2].

For any A € R, we note Ty = {M € S,,tr(M) = A}. Then [2] recalls that %, := S," N T}, the set of
positive matrices with trace 1, is a base of the cone S}/, that is to say: for any M € S, M # 0, there exists a
unique M € %8 and a unique i > 0 such that M = uM. Indeed, here u =tr(M) and M = "(LM) Moreover,
2 is convex and its set of extreme points is known: it is the set of matrices E1 := {w! v € R" ||v|| = 1}.
For a convex set 4, extreme points ext(8) are defined as the points such that for any x € ext(%), Z\ {x}
is still convex, and they have the property to belong to the boundary of the convex set.

In this precise case, E1 has another interesting property: its elements lie on the Euclidean sphere of

centre 17, and radius /1 — 1: forany M =w! € Ey, [|[M—L1,||> = tr(M — 11,)?) =tr(M?) — 2tr(M) +
”]—ztr(l,,) =tr(M)—1=1-1

Since extreme points are always included in the boundary of the convex set, and since % is a base
of S, knowing E; = ext(%) gives a good idea of the general shape of the cone. Indeed, we can view
%, as some kind of convex polygone inscribed in the latter sphere, and then any “slice” %, = S;F N Ty,
A > 0 can be deduced from %, by homothety. We get that %, is also a base of S;/, its extremal points
are exactly A - E, and they lie on the Euclidean sphere .7 of center %In and radius A4/1 — % We note
€, = %) NT), the intersection of that sphere with T}

The new cone [2] Just as S;” = Uy>0%), a new cone C, can be defined as C, = Uy 0% . Although
this is not explicit in the paper, the new ordering defined in [2] is the one induced by C,:

A>B < A—Be(,.
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Figure 3: Illustration of the cone S;". The gray polygones represent two bases of the cone, % and an
arbitrary %, with A > 1, intersections of the cone with the hyperplanes 7} and T, . The extreme points of
the bases are marked by black dots (there are infinitely many of them in reality), and the central dashed
line indicates the span of the identity matrix I,, orthogonal to each 7,,. On each base %, the extreme

points lie on a sphere ., centered on %In (marked by a black cross) and with radius r,, = py/1— %

Whereas S,/ is the union of all the gray polygones %, the cone that defines the new ordering in [2] is the
union of the 6, = ., NTy, u > 0.



Figure 4: Examples of translated and reversed cones M — C,, for several M. The light gray cone corre-
sponds to the smallest ball (M — C,) N Ty containing all the others. Figure extracted from [2].

Readily, we have S;7 C C,, which means that the Loewner ordering implies the new ordering. Further-
more, we get an easy characterization of C,:

MeC, < ME%C,u
= M="Mp) <o) /1 -
= tr(M?) = Ltr(M)? <tr(M)*(1—

MeC, << |IM| <tr(M).

Recalling that a matrix M = [ ccl Z } is in S; if and only if @ > 0,b > 0 and det (M) > 0, we can see
that the Loewner ordering and the new ordering are equivalent for n = 2: S; =Cs.

In practice: inclusion ordering on spheres The ordering in [2] is directly defined in terms of inclusion
of spheres. Using the notations introduced above, it can be written as

A>B <~ (B—C,)NTHhC(A-C,)NTH — B—%,(B) QA—%,,(A).

(B—C,)NTy is the intersection of the “ground” plane T, and the reversed cone —C, whose vertex has
been placed in B (see Figure 4). It is therefore the sphere of Ty centered in mp = B — @In and of
radius rp = tr(B)/1— 1. Similarly, (A — C,) N T is the sphere of Tj centered in my = A — @In and of

radius rq =tr(A)4/1— % By applying a criterion on the distance between centres, we can check that this
definition of the new ordering, based on the inclusion of spheres, is equivalent to the one we gave earlier:

A>B < |lma—mg||<ra—rp
— |A-B-"AB | <ir(A-B)\/1-1
< |[A—B|| <tr(A—B)
<— A—-Be(,.



Figure 5: Example of input images.

Conclusion on [2] The paper proposes a new ordering but does not check whether it induces a lattice or
not. From simple geometrical considerations it seems clear that it does not, and [6] asserts this ordering
does not produce a lattice. I wonder if it is worth trying to show it is actually an anti-lattice.

This ordering and the definition of smallest upper bound may still be used as an approximation for
morphological methods on S,". The thesis [6] gives a quality measure of this approximation, I still need
to have a look at it. However, it is not clear how it is better than the original Loewner ordering and the
inclusion of centered ellipsoids. Therefore, if we decide to work with approximations of dilations and
erosion, [ would stay with the Loewner ordering.

2 Analysis of images of vessels based on structure tensors

2.1 Example of images

See Figure 5. In the following, we note f the image and suppose it is of size N X N.



2.2 Structure tensor
The definition and computation of the structure tensor follows G. Peyré’s numerical tour: http://www.

numerical-tours.com/matlab/pde_3_diffusion_tensor/.

Gradient The followmg centered finite difference approximation of V f is used:V f ( y) = (fx(x,), fr (6, 9)7,
where fie(x,y) = L(f(x-+ 1,y) — f(x— 1)) forany yand 2 < x < N—1, f(1,y) = L(£(2,5) - £(N,))
and f(N.y) = §((1.3) ~ F(N ~ 1.5)) (and similarly for fy(x,)

Tensor at scale zero The scale zero tensor Ty maps each (x,y) to the symmetric matrix with rank < 1

fX(xay)z fX(xay)fY(xvy)

— . X T_
To(x,y) = Vf(X,Y) Vf( ’y) fX(_x7y)fy(x,y) fY(x7y)2

It is straightforward that V f(x,y) is eigenvector of Ty (x,y) with ||V f(x,y)||? as corresponding eigenvalue,

and 0 is the other eigenvalue. Hence for any (x,y), Tp(x,y) is an extreme point of the cone of positive
semi-definite matrices S; .

Tensor 7, at scale 0 > 0 It is a smoothed version of Tp, obtained by convolving the latter with the

o-scale Gaussian kernel ( 2) ( )
Go(fx) Golfxlfy
Ts = GsTp =
¢ o70 Go(fxfy) Gol(f7)

where G is the smoothing operator. Note that, for any u = (x,y), Ts(u) is a weighted sum of tensors
Tp(v) with positive weights, and is therefore a positive semi-definite matrix.

Eigen-decomposition of 7; For each u = (x,y), T5(«) can be decomposed as

Ts(u) = Ay (u)er (u) - e1 ()" + Ao (u)ea (u) - ea(u)”

where 0 < A (1) < A1 (u) are T (u)’s eigenvalues and (e (u),ez(u)) its basis of orthogonal eigenvectors.
If we represent T (u) by its corresponding ellipse

E={X eR? XTT;(u)X <1}

then the main direction of &, is given by the second eigenvector e, (u). For 6 = 0, this vector is orthogonal
to the gradient V f (u); more generally, for small ¢, Peyré points out the Taylor expansion

To(u) = To(u) + 0°H f(u)* + 0(c?),
where H f2 is the Hessian of f2. It is not clear what €2 (u) represents for larger o, but it seems that inside
a vessel the ellipse’s main direction roughly coincides with the vessel’s main direction.
Trace and anisotropy images (Figures 7 and 8) From the tensor field 7; we can build two scalar

images: the anisotropy image I,, and the trace image I,,, respectively defined as

225 ()
tr(Ts(u))

We have 0 < I, < 1, and the closer I,,(u) to 1, the more T5(u) is anisotropic. I, can be seen as a
smoothed version of the square norm of the V f.

Ln(u)=1-— and I, (u) = tr(Ts(u)) = A () + A2 (u).



Figure 6: Structure tensors 7, for the bottom left hand image of Figure, with 6 =0.1, 60 =1 and o = 3.
The shape of the represented ellipses show their anisotropy and main direction, whereas their colors must
encode their trace (this is not clear yet).

Figure 7: Trace images corresponding to the input of Figure 5, and the tensor field 75 with ¢ = 3. They
can be seen as smoothed version of the square norm of the Vf.



Figure 8: Anisotropy images corresponding to the input of Figure 5, and the tensor field 75 with o = 3.
The closer I, («) to 1, the more T (u) is anisotropic.
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Figure 9: Left: a set of elements (p, V) co-circular to the central element (pg, v4) where py is the origin
and vy = (1,0)7; Right: the elements form the left hand image that comply with the additional constraint
that the (smaller) angle between the directions defined by lﬁ and V' is smaller than %.

2.3 Structuring elements

Here we define for each pixel u the neighboorhood to be taken into account in the computation of flat
dilation and erosion. The idea is to choose in a spatial window around u, those pixels v with for which
the main orientation of Ti(v) is consistent, in some way, with Ti(u). So far I have used co-circularity as
consistency criterion.

Co-circularity Given two points py, p» € R? and two vectors v—f, V3, we say that (pq, v—1>) and (p», v_f)
are co-circular if there is a circle tangent in p; and p; to v_1> and v_2> respectively. An infinite radius for the
circle corresponds to the case when ;Tp%, v_f and v_2> are colinear, which we consider a particular case of
cocircularity.

Additional constraint As shown on the left of Figure 9, co-circularity allows “ladder” configurations,
which we may want to discard in the following. If so, one can impose an additional constraint, namely
that the angle between p;p3 and v_f is below a certain threshold.

Neighbourhood graph From the above we define an (undirected) graph (G, E) as follows: the set of
nodes G is the set of pixels in the image {uy,us,...,uy2}; (u;,u;) € E iff uj is in a square window of fixed
size 2p+ 1, centered on u; (that is, ||u; — || < p), and (u;,e2(u;)) and (u;,e>(u;)) are co-circular up to
a certain angular tolerance, with the additional constraint described earlier to avoid ladder configurations
- see Figure 9.

2.4 Morphological filters

Max-plus convolution Building on the graph (G,E) of the previous section, let W the N> x N? ad-
jacency matrix defined by Wj; =1 <= (u;,u;) € E or i = j, and W;; = 0 otherwise. It encodes the
structuring elements for any pixel, and we can now use it to compute max-plus convolutions (dilations
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Figure 10: Illustration of the geodesic reconstruction by dilation. From left to right, top to bottom: mask
image I (in this case, the original image); marker image R (defined manually); Is, bs, I3s, Isg, final
reconstruction / = I7g; residual image 1 — 1.

and erosions) on any sclar image I of size N x N [7]:

8(1)(ws) = \/ (1)) +1og(W;j) ) and e(1)(w) = A\ (£(u)) ~log(W)).

J

In particular, / can be the original image f, the anisotropy image or the trace image (Figures 5, 7 and 8).

Geodesic reconstruction by dilation We want to reconstruct a structure in an image /, e. g. a vessel,
and possibly only this structure. If the structure is bright on a darker background, a possible strategy is
to start from a marker image R representing a small part of the structure, and dilate it recursively under
the constraint that the produced image remains smaller than /. By doing so, we hope to recover the bright
structure as it is in /, while the background should remain relatively flat and smaller than it is in /.

More formally, given a mask image / and a marker image R, both N x N, the geodesic reconstruction
by dilation consists in building recursively a sequence of images (I,,),>0,

Ip=RAI and In+]=5(ln)/\l,

and finally take the sup I = \/,~(I,. Since in our case W;; = 1, the dilation is extensive: & (I)(u;) > I(u;),
and the sequence (I,)n>0 is incr_easing. Furthermore, I, < I for any n, hence the sequence converges to its
maximal element 7, after a finite number ny,y of iterations, producing the final reconstruction 7 =1, _,. .

Figure 10 shows an example of such a reconstruction, in which the mask image / is an original
image of vessels, and the markers have been defined manually to match bright regions in the vessels.
The structuring elements (or equivalently the adjacency matrix W) was calculated on the tensor field T,

associated with the original image, with ¢ = 3.

Ideas



e In the geodesic reconstruction, the mask image could be the anisotropy or trace image as well.
Interestingly, they are independent on the contrast (it should work for bright vessels on dark back-
ground as well as for dark vessels on bright background). I have tried to work with the anisotropy
but it is quite a noisy image and the reconstruction is not very accurate with respect to the original
shape of the vessel - more work needs to be done on that. Experiments with the trace are on going
as well.

e In the definition of the structuring elements, more information can be included than the spatial and
angular consistency.I have tried to include the trace information, to avoid the existence of a path
between pixels inside a vessel and pixels outside a vessel. So far this has not really worked out.

e The good part of working with the tensor field 75 is that it provides positive semi-definite matrices,
on which we can test methods to be adapted later on diffusion tensors. However, it raises some
issues regarding the analysis of vessel images. First, it contains a scale parameter ¢, which means
that either a multi-scale approach or an automatic scale definition is required. Second, as said ear-
lier, a structure tensor 75 (u) is merely a weighted sum of (rank 1) positive semi-definite matrices.
It is not clear how this averaging behaves with respect to orientation information, especially in
bifurcations.

e [t seems that Frangi’s vessel enhancement [3], based on the analysis of the Hessian, gives accurate
segmentation of vessels. It may be interesting to figure out how our approach can add to Frangi’s.

e Assuggested in previous discussions, we should compare the results obtained with our definition of
the structuring elements, to more classic ones (non-adaptive structuring elements, sets of differently
oriented segments as structuring elements...).
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