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Abstract

This thesis deals with the problem of computing accurate digital elevation mod-
els of the Earth’s surface from optical images taken by pushbroom observation
satellites. It takes advantage of the collaboration of the defendant with CNES
(the French Space Agency) on the development of stereo vision tools for Pléiades,
the first Earth observation satellite producing quasi simultaneous stereo pairs or
triplets with small baseline.

The first chapter describes a simple pushbroom camera model for observation
satellites orbiting around the Earth and addresses the correction of the acquisi-
tion geometry by involving extrinsic information. This chapter proposes a new
algorithm to refine the orientation parameters from a set of ground control points,
applicable to all pushbroom satellites.

With the goal of testing for satellite imaging the thriving exploration of stereo
matching by the computer vision community, the second chapter explores the
adaptation of the theory of epipolar rectification to pushbroom images. Epipolar
rectification is traditionally used in stereo to reduce the matching computational
cost, and permits to test for satellite imaging the most competitive computer
vision algorithms. The next chapter discusses the effect of geometric calibration
errors on the rectification accuracy and proposes a method to cancel its impact
on stereo matching.

The fourth chapter describes and analyzes a detailed implementation of the Semi-
Global Matching (SGM) algorithm, which is currently among the top-ranked
stereo vision algorithms. Based on a recently proposed interpretation of SGM
as a min-sum Belief Propagation algorithm, a variant is proposed that allows to
reduce by a factor five the energy gap of SGM with respect to reference algorithms
for Markov Random Fields with truncated smoothness terms.

By wrapping together the algorithmic blocks described in the previous chapters,
the fifth chapter describes S2P, a complete stereo pipeline for producing digital
elevation models from satellite images. As an application, a landscape evolution
model is presented in the sixth chapter. The model is used to simulate numerically
the fine structure of the river networks on digital elevation models obtained from
Pléiades Earth observation images.

The source code of the S2P stereo pipeline1 is distributed as open source. To en-
sure reproducibility, the algorithms implemented in each block of the S2P pipeline
are submitted to the IPOL journal, with detailed descriptions and analysis, doc-
umented source codes and online demonstrations.

1https://github.com/carlodef/s2p
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Résumé

Cette thèse étudie les problèmes posés par l’estimation automatique de modèles
numériques d’élévation de la surface terrestre à partir de photographies prises par
des satellites. Ce travail a bénéficié d’une collaboration avec le CNES (Centre Na-
tional d’Etudes Spatiales) sur le développement d’outils de vision stéréoscopique
pour Pléiades, le premier satellite d’observation de la Terre capable de produire
des paires ou triplets d’images quasi-simultanées.

Le premier chapitre de la thèse décrit un modèle simplifié de caméra pushbroom
destiné aux satellites d’observation de la Terre, et aborde le problème de la cor-
rection des données de calibration en faisant intervenir des mesures externes. Ce
chapitre propose un nouvel algorithme pour affiner les paramètres d’orientation
du satellite à partir d’un jeu de points de contrôle. Il est utilisable pour tous les
satellites munis de caméras pushbroom.

Dans le but d’appliquer aux images satellitaires les nombreux algorithmes de
mise en correspondance stéréoscopique développés en traitement d’images et en
vision par ordinateur, le deuxième chapitre explore l’adaptation de la théorie
de la rectification épipolaire aux images prises par des caméras pushbroom. La
rectification épipolaire est utilisée habituellement pour réduire la complexité du
problème de mise en correspondence stéréoscopique, et permet d’appliquer les
algorithmes les plus récents à des images satellitaires. Le chapitre suivant étudie
les effets des erreurs de calibration géométrique sur la rectification et propose une
méthode pour éliminer leur impact sur la mise en correspondance.

Le quatrième chapitre décrit et analyse en détails une implémentation de l’al-
gorithme Semi-Global Matching (SGM), classé actuellement parmi les meilleurs
algorithmes de mise en correspondance stéréoscopique. En se fondant sur une ré-
interprétation récente de SGM, ce chapitre en propose une variante qui permet
de réduire d’un facteur cinq son écart en énergie par rapport aux algorithmes de
référence pour la minimisation de champs aléatoires de Markov.

En assemblant les blocs algorithmiques décrits dans les chapitres précédents, le
cinquième chapitre décrit S2P, une chaîne stéréoscopique complète qui produit des
modèles numériques d’élévation à partir d’images satellitaires. Un modèle d’évo-
lution de paysage est présenté dans le sixième chapitre comme exemple d’appli-
cation. Le modèle est utilisé pour simuler numériquement la structure fine du
réseau hydrographique sur des modèles numériques d’élévation obtenus à partir
d’images prises par Pléiades.

Le code source de la chaîne S2P2 est distribué en tant que logiciel open source.
Afin d’assurer la reproductibilité des résultats obtenus, les algorithmes implémen-
tés dans S2P sont en cours de publication dans le journal IPOL, accompagnés de
descriptions et d’analyses détaillées, de codes sources documentés et de demons-
trateurs en ligne.

2https://github.com/carlodef/s2p
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1 Introduction

1.1 Motivation

The number of optical Earth observation satellites has increased drastically over the past
decade. According to the World Meteorological Organization1, 65 civilian observation satel-
lites are currently in operation, while at the end of the Nineties they were around 30. Their
proliferation will certainly accelerate as new companies such as Skybox plan to launch dozens
of low-cost satellites in the next few years. Starting during the Fifties, the development of
the first Earth observation satellites was mostly driven by military needs related to the Cold
War, but civilian applications followed very quickly in fields such as meteorology [Gordon
1962], cartography [Michel et al. 2013], geology [Rosu et al. 2014], hydrology [Ruelland et al.
2008], forestry [Gumbricht 2012] or glaciology [Marti et al. 2014]. Nowadays, images from
Earth observation satellites are used to solve problems ranging from geographic mapping
to meteorology predictions [Joseph 2015], including applications as diverse as the measure-
ment of elevation changes for glaciers [Berthier et al. 2014] or rescue assistance for natural
disasters [Yésou et al. 2015].

Earth observation satellites produce two-dimensional images. However, mapping and
monitoring of the Earth’s surface is essentially a three-dimensional problem. Even to produce
2D maps, accurate 3D models of the ground are needed in order to correct the distortions
induced by the Earth’s relief on the 2D images acquired by remote cameras. In most of the
Earth observation use cases, both civilian and military, the crucial information is generally
not contained in a particular image but in the changes that occur between images acquired
at different times or dates. Geologists who study earthquakes, landslides, or ice flows are
more interested in measuring the ground deformations over time than in assessing the land
aspect at any given moment. In all the applications, as the displacements take place in a
three-dimensional world, 3D measurements are needed to describe them. Even if one is not
interested in measuring the changes but just in detecting them, working with 3D models
is more reliable than working with images. Indeed many factors such as changes in sun
exposure, weather or season can cause strong radiometric differences between images that do
not correspond to a real change in the scene.

Modeling the 3D geometry of real scenes is a challenging problem. The approaches that
have been developed to solve it are usually grouped in two categories: active methods [Jarvis
1983, Levoy et al. 2000] used in devices such as Kinect and Lidar, and passive image-based
methods [Scharstein and Szeliski 2002, Seitz et al. 2006, Strecha et al. 2008]. Passive image-
based methods are the cheapest. They use multiple photographs of the scene and compute
the locations of 3D points that are visible in several images. This process is commonly known

1Observing Systems Capability Analysis and Review Tool, http://www.wmo-sat.info/oscar/satellites
(accessed on 8 july 2015)
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Chapter 1. Introduction

as structure from motion, or multi-view stereo, or simply stereo matching when used with only
two views [Szeliski 2011, Furukawa and Hernández 2015]. The earliest stereo algorithms were
developed in the field of photogrammetry to automatically construct topographic elevation
maps from overlapping aerial images. In the field of computer vision, the topic of stereo
matching has been one of the most studied problems [Marr and Poggio 1976, Barnard and
Fischler 1982, Dhond and Aggarwal 1989, Scharstein and Szeliski 2002, Brown et al. 2003,
Seitz et al. 2006], and continues to be one of the most active research areas.

Back to 1986 the French space agency, Centre National d’Etudes Spatiales (CNES), laun-
ched SPOT (Système Probatoire d’Observation de la Terre). It was the first imaging satellite
to use a CCD (Charge Coupled Device) pushbroom sensor, which captures the images line
by line as the satellite moves forward by using a linear array of sensors nearly perpendicular
to the motion direction (pushbroom cameras will be presented in detail in chapter 2). It was
also the first civilian satellite to provide off-nadir viewing capabilities, enabling the acquisi-
tion of stereo images. Taking images with a resolution of 10 m per pixel, SPOT was soon
followed by other satellites with stereo capabilities and increasing spatial resolutions, such as
Ikonos, WorldView, QuickBird and Pléiades to name just a few. While the spatial resolution
of satellite images reached 30 cm per pixel on the recently launched WorldView-3 and will
continue increasing, it will always be lower than that of aerial images, leading to less detailed
3D models. But satellite imaging presents several advantages over airplane-based imaging:

• for a large-scale usage over a long time range the acquisition cost is considerably lower,
• there are no distance limitations as all regions of the Earth’s surface are quickly attain-

able by observation satellites at no cost,
• the delay between ordering and acquisition is usually shorter as observation satellites

orbit the Earth in about 90 min and have a revisit period of a few days,
• the accuracy of the camera orientation parameters is greater as the path of a satellite

does not suffer from atmospheric perturbations, hence is much more smooth.

Launched in 2011 and 2012, the Pléiades constellation is composed of two twin Earth
observation satellites, Pléiades 1A and 1B, shown on figure 1.1. They fly on the same orbit,
at about 694 km from the ground, and are phased 180° apart. Both are high resolution
satellites, able to deliver images with a ground sampling distance of 70 cm (upsampled to
50 cm before delivery to end users) and a swath width of 20 km. The images have a pixel
depth of 12 bits with a signal-to-noise ratio greater than 90 dB. The typical size of the
images is about 40 000×40 000 pixels, i.e. 1.6 gigapixels, and the image height can be larger.
The unique agility of the Pléiades satellites allows them to capture multiple views of the
same area during a single orbit. This permits the nearly simultaneous acquisition of stereo
datasets made of two or three images with a small base to height ratio, ranging from 0.15 to
0.8. As many other Earth observation satellites since SPOT, Pléiades acquire images with a
pushbroom sensor. All the Pléiades images used in the experiments presented in this thesis
were provided by CNES through the Recette Thématique Utilisateurs (RTU) program. Some
of them can be viewed online2.

The goal of this thesis is to build an algorithm to produce accurate 3D models from
satellite images in a fully automatic way. Ideally the produced 3D models would be perfectly

2http://dev.ipol.im/~carlo/ipol_demo/catalogue_of_pleiades_images
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1.2. Camera Modeling for Orbiting Pushbrooms

Figure 1.1 – Artist views of the satellite Pléiades-1A. Copyright ©Airbus DS/Master Image Films, 2007

georegistered and thus could be easily fused over time to obtain dense models. This would
enable the automatic production of a high resolution digital model of the whole Earth’s
surface, which could be updated permanently and automatically. The S2P pipeline, whose
development is still in progress, is a tentative answer. Many aspects of the 3D reconstruction
problem have received a lot of attention in the past 30 years. The development of 3D
reconstruction tools [Wohlfeil et al. 2012, Moratto et al. 2014, Pierrot Deseilligny 2015] was
boosted by the increasing availability of high resolution stereo images from satellites. These
tools have been shaped by the constraints of satellite imaging, like the large size of the
images or the pushbroom camera geometry which imposes to use ad hoc stereo matching
tools. These specializations have created a gap with respect to the fields of computer vision
and image processing, where research focuses on small images taken with pinhole cameras.
This thesis tries to fill this gap by adapting the tools of the computer vision and image
processing communities to the specifics of satellite images.

We will start by describing a camera model for the pushbroom sensors used on Earth
observation satellites, based on the model proposed by Westin [1990] in the early Nineties.
This simplified model allows to identify the main causes for localization inaccuracies, and
leads to an efficient correction algorithm that image vendors could use to improve the accuracy
of the geometric calibration data that they sell with images. We will then change point of
view and think as image users, trying to get the most of the stereo products proposed by
image vendors. To that aim we will adapt the epipolar rectification technique to pushbroom
images, and based on that we will propose a very simple algorithm to cancel the effects of
calibration inaccuracies on the stereo matching performances. We will then study one of
the most popular stereo matching algorithms, Semi-Global matching (SGM) [Hirschmüller
2008], that was developed at the German space agency (DLR), and present our own variant.
Finally we will describe S2P, a complete stereo pipeline for pushbroom images made with the
building blocks described in the previous chapters, and illustrate its usage with an application
to geomorphology. The next sections give an overview of the thesis, chapter by chapter.

1.2 Camera Modeling for Orbiting Pushbrooms

This chapter describes a simple pushbroom camera model for Earth observation satellites
and proposes a new algorithm to refine the orientation parameters of a camera from a set of
ground control points. The relative importance of the various orientation parameters is an-
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(a) Input image points
0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

35

40

45
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Figure 1.2 – Example of results produced with the online demo of the attitude refinement algorithm. Red
curves show the error before correction and blue curves after correction. The user clicked on the image
domain to select the input image points shown in (a). The localization error (in meters) as a function of
time (in seconds) is shown in (b). The red curve gives the error made using the measured attitudes, while
the blue curve gives the error made using the estimated attitudes.

alyzed. On the last generation of high resolution satellites such as Pléiades and WorldView,
the attitude angles are shown to be the main contributors to localization errors. Thus the
proposed algorithm focuses on refining the attitude angles. It is based on a simple polyno-
mial fitting method. Numerous experiments, which can be reproduced through the online
demo associated to this chapter, show that the proposed algorithm is able to reduce the lo-
calization error by one order of magnitude with only a few ground control points. Figure 1.2
gives an example of the algorithm result. A geometric simulator for the proposed model is
implemented, as well as the attitude refinement algorithm.

1.3 Epipolar Rectification of Pushbroom Images

Epipolar rectification is a common technique used in 3D reconstruction algorithms. It permits
to simplify the search of corresponding points between the images of a stereo pair. However,
it applies only to images taken with pinhole cameras. Pushbroom cameras produce images
for which any epipolar rectification is theoretically not possible. In this chapter we study
to what extent it is possible to apply epipolar rectification to pushbroom images anyway, in
order to use standard matching algorithms from the image processing and computer vision
communities. The approach presented here considers the epipolar rectification as an auxiliary
step for the computation of stereo correspondences, not as a final product. Images are thus
processed in small tiles by locally approximating the pushbroom camera with an affine camera
model. The explicit modeling of the approximation allows to quantify and control the epipolar
errors without needing ground control points. Experiments on Pléiades and WorldView-1
images of many kinds of scenes (urban, mountainous, flat) demonstrate that epipolar errors
can be reduced to one tenth of pixel, as shown on figure 1.3.

18



1.4. Local Correction of the Relative Pointing Error

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Tile size (pix)

0.1

0.2

0.3

0.4

0.5

0.6

m
ax

 e
rr

or
 (p

ix
)

calanques
cannes
giza
mera
mont_blanc
montevideo
new_york

ossoue
toulouse
tregor
ubaye
mercedes
fray_bentos

Figure 1.3 – Dependence of the epipolar error with the tile size. Each curve corresponds to a stereo pair. A
tile of size ranging from 500×500 to 5000×5000 pixels was selected in the middle of a Pléiades reference
image. Virtual matches were computed using the refined altitude range given by the SRTM data. The
error reported by each plot is the maximal distance between a point and the epipolar line of its match.

1.4 Local Correction of the Relative Pointing Error

Modern Earth observation satellites are calibrated in such a way that a point on the ground
can be located in the image domain with an error of just a few pixels. For many applications
this error can be ignored, but this is not the case for stereo reconstruction which requires
sub-pixel accuracy. In this chapter we propose a method to correct this error. The method
works by estimating local corrections that compensate the error relative to a reference image.
An example of this relative pointing error is shown on Figure 1.4. The proposed method does
not rely on ground control points, but only on the relative consistency of the image contents.
We validate our method with Pléiades and WorldView-1 images on a representative set of
geographic sites.

1.5 Stereo Processing by Semi-Global Matching and Beyond

Semi-Global Matching (SGM) is among the top-ranked stereo vision algorithms. SGM is an
efficient strategy to compute an approximate global minimum for an energy that comprises
a pixel-wise matching cost and pairwise smoothness terms. In SGM the two-dimensional
smoothness constraint is approximated as the average of one-dimensional line optimization
problems. The accuracy and speed of SGM are the main reasons for its widespread adoption,
even when applied to generic problems beyond stereo vision. However, this approximate
minimization produces characteristic low amplitude streaks in the final disparity image, and
is clearly suboptimal with respect to more comprehensive minimization strategies. Based on
a recently proposed interpretation of SGM as a min-sum Belief Propagation algorithm, we
propose a new algorithm that injects information from the 2D problem in the processing of
SGM’s 1D paths, as illustrated by figure 1.5. It allows to reduce by a factor five the energy
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(a) First view u. (b) Second view v.

Figure 1.4 – Effect of the satellite relative pointing error on a pair of Pléiades views of a road intersection
in Haiti. Two corresponding points x and x′ are shown, and the epipolar curve of x as traced by the RPC
does not pass through the corresponding point x′. The relative pointing error is the distance from the
point x′ to the epipolar curve epixuv(R). Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

SGM, 8 directions MGM (our method), 8 dir.

Figure 1.5 – Results of the baseline implementation of SGM and MGM on a stereo pair from the Middlebury
evaluation benchmark dataset (version 3). The diagrams on the left depict for each method the information
used by the recursive update of the red pixel in each of the 8 scans of the algorithms.

gap of SGM with respect to reference algorithms for Markov Random Fields (MRF) with
truncated smoothness terms. The proposed method comes with no compromises with respect
to the baseline SGM, no parameters and virtually no computational overhead. At the same
time it attains higher quality results by removing the characteristic streaking artifacts of
SGM.

1.6 A Stereo Pipeline for Pushbroom Images: S2P

By assembling the algorithmic blocks described in the previous chapters, this chapter pro-
poses a fully automatic and modular stereo pipeline to produce digital elevation models from
satellite images. The aim of this new pipeline is to use and test off-the-shelf computer vi-
sion tools, while abstracting from the complexity associated to satellite imaging. To this
aim, images are cut in small tiles for which chapter 3 proves that the pushbroom geome-
try is very accurately approximated an affine camera model. These tiles are then processed
with standard rectification and stereo matching tools. The specifics of satellite imaging such
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as pointing accuracy refinement, estimation of the initial elevation from SRTM data, and
geodetic coordinate systems are handled transparently by the pipeline. We demonstrate the
robustness of our approach on a large database of satellite images and by providing an online
demo of the pipeline. As a teaser, Figure 1.6 shows views of 3D models obtained with S2P
from two Pléiades pair of images of the Piton the la Fournaise and the Great Pyramid of
Giza.

(a) The Great Pyramid of Giza, also known as the Pyramid
of Cheops.

(b) Crater of the Piton de la Fournaise,
La Réunion.

Figure 1.6 – Examples of 3D models computed with S2P from Pléiades stereo images, without any manual
intervention.

1.7 Simulation of Landscape Evolution

This chapter illustrates how the main physical laws proposed in landscape evolution models
(LEMs) can be modeled by a system of three partial differential equations governing water
runoff, stream incision, hill slope evolution and sedimentation. Several numerical experiments
on high resolution digital elevation models (DEMs) obtained from stereo image pairs of the
satellite Pléiades thanks to the algorithm S2P presented in chapter 6 illustrate its potential to
simulate the fine structure of the river network, and to understand the landscape morphology
and its causes. They also permit to simulate plausible evolutions, as shown on Figure 1.7.
The experiments on digital elevation models of the same site (La Réunion) are made at three
different resolutions: the SRTM resolution, 90 m, and then 12 m and 4 m on digital elevation
models derived from several Pléiades pairs of the same site. The experiments show that the
water runoff simulation critically depends on the DEM resolution. This justifies the use of
high resolution DEMs like those that can now be produced from Pléiades pairs or triplets.
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(a) A plausible evolution of the digital elevation
model where 10% of the terrain has been removed
by erosion.

(b) Water height at the end of the evolution.
Bright pixels represent high values, as in terrain el-
evation models, showing the structure of the water
network in white.

Figure 1.7 – Example of results obtained by simulating the landscape evolution of the Piton des Neiges,
La Réunion, starting from a digital elevation model computed by S2P from a Pléiades stereo pair.
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2 Camera Modeling for Orbiting Pushbrooms

This chapter describes a simple pushbroom camera model for Earth observation satellites and
proposes a new algorithm to refine the orientation parameters of a camera from a set of ground
control points. The relative importance of the various orientation parameters is analyzed. On
the last generation of high resolution satellites such as Pléiades and WorldView, the attitude
angles are shown to be the main contributors to localization errors. Thus the proposed algorithm
focuses on refining the attitude angles. It is based on a simple polynomial fitting method.
Numerous experiments, which can be reproduced through the online demo associated to this
chapter, show that the proposed algorithm is able to reduce the localization error by one order
of magnitude with only a few ground control points. A geometric simulator for the proposed
model is implemented, as well as the attitude refinement algorithm.

The attitude refinement algorithm presented in this chapter can be tested online on any input at
http://dev.ipol.im/~carlo/ipol_demo/pushbroom_ba.

2.1 Introduction

Most of the problems relying on remote sensing images require accurately georeferenced im-
ages. For instance, when using multi-temporal images of the same area to monitor changes
in vegetation, water bodies, or geological landmarks, the images have to be accurately reg-
istered in order to provide meaningful measurements. Obviously for this use case a relative
registration of the images may suffice to the end users, but it implies a preprocessing specific
to the application. In an ideal world, all satellite images would be natively georeferenced to
sub-pixel precision.

To georeference an image, two things are necessary. First an accurate geometric model
of the camera with all the numerical values of its parameters, and second a digital surface
model of the ground area corresponding to the viewed scene. This chapter deals with the first
thing. Observation satellites use pushbroom cameras which record the scene line by line as
the satellite moves forward on its orbit. The resulting image is a stack of lines taken at slightly
different times, from different positions and viewing angles. The camera position and viewing
direction in space (usually referred to as attitude) are recorded on board during the image
acquisition. The frequency and precision of these measurements depend on the satellite, but
even in the best cases the resulting accuracy is limited and needs to be refined using the
image content. A common solution is to use known correspondences between ground control
points, i.e. 3D points located in the viewed scene, and their projection on the image. The
camera parameters are then estimated as those that best fit the correspondences according
to the geometric camera model.
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Chapter 2. Camera Modeling for Orbiting Pushbrooms

2.1.1 Previous Work

Many papers describing pushbroom camera models have been published since the early Fifties
and the advent of aerial photography. A thorough analysis of these works was made recently
by Poli and Toutin [2012] in their last review paper, and also by Konecny [2003] and Joseph
[2015] in their respective textbooks. An exhaustive review was already made by Toutin
[2004b]. We give here a quick historical overview of the developments of pushbroom camera
models and estimation algorithms, but the interested reader should refer to these publications
for a comprehensive coverage.

Papers dealing with pushbroom cameras were published even before the launch of the
first observation satellites, as pushbroom cameras were used on aircrafts [Case 1967]. In
these papers pushbroom cameras are generally referred to as strip cameras.

The first camera model for orbiting pushbroom cameras was published by Guichard [1983]
and Toutin [1985]. The model was used for SPOT-1 which was the first civilian Earth
observation satellite to be launched after the American Landsat series. Later this model
became known as the Toutin Model and was embedded in the commercial software PCI
Geomatica. This model assumes that the satellite flies on a perturbed elliptical orbit and
that its nominal constant attitude is perturbed by second degree polynomial functions of
time. Later the model was extended and adapted to newer observation satellites [Toutin
2003, 2004a, 2006a, b].

In 1987, Konecny proposed to model the movement of orbiting pushbroom cameras with
a straight path and a constant attitude, which leads to a model with six parameters [Konecny
et al. 1987]. The differences between that model and reality were handled by eight perturba-
tion parameters. This model was extended later by Jacobsen [1998, 2003, 2004].

In 1987, Gugan proposed an orbiting pushbroom camera model for SPOT-1 in which the
satellite flies an elliptical orbit whose longitude of the ascending node changes linearly with
time, as well as the satellite true anomaly [Gugan 1987]. The attitudes are assumed to drift
linearly with time, and their initial value is unknown. This model was extended by Michalis
and Dowman [2008].

In 1988, Kratky proposed to model the attitude variations of SPOT-1 by quadratic func-
tions of time [Kratky 1988, 1989b]. This model was implemented in the software SPOT-
CHECK+ and was later extended by Fritsch and Stallmann [2000].

In 1990, Westin proposed to simplify the usual models by approximating the orbit of
SPOT-1 by a plane circular orbit [Westin 1990]. This approximation has to be valid only
during the timespan of one scene. He reported experiments on SPOT-1 images showing
that the ground error due to this approximation is less than 10 cm. To further simplify
the model, the attitude derivatives measured on board are assumed to be accurate enough,
leaving only a constant term (i.e. the initial attitude) to be estimated. An iterative least-
squares minimization was proposed to estimate the seven parameters of the model (four
for the circular orbit and three for the constant attitude term). Sub-pixel accuracies were
obtained on SPOT-1 images using a limited number of control points.

In 1995, Gupta and Hartley described a model similar to Westin’s model, in a paper
aimed at describing a new algorithm for mapping 3D points to the image plane [Gupta and
Hartley 1995]. The only difference of their model with respect to Westin’s is that the satellite
path is assumed to be elliptic instead of circular. But Gupta and Hartley do not explain how
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the orbit parameters and the attitude offset are estimated from ground control points. In
1997 they introduced and gave a rigorous analysis of the linear pushbroom camera [Gupta
and Hartley 1997]. This model is considerably simpler than the usual models because it
assumes that the satellite flies at a uniform speed on a straight line and that its attitude is
constant. As a consequence, the relationship between image and ground coordinates is linear
in terms of homogeneous coordinates, almost as with standard pinhole cameras. The authors
reported a maximal error of half a pixel on a whole SPOT-1 scene when comparing the linear
pushbroom model to the more realistic model they published two years earlier [Gupta and
Hartley 1995].

In 2005, Poli proposed to model both the position and attitude errors by second order
piecewise polynomials depending on time [Poli 2005, 2007, Poli et al. 2014]. For pushbroom
cameras carried by satellites, two segments were reported to be sufficient in general [Poli 2007].
The position and attitude errors are used to correct the cubic splines interpolated from the
position and attitude samples measured on board and provided by the image vendors.

In 2007, Crespi et al. proposed to model the satellite path by an elliptical orbit and
the attitude errors by second order polynomials depending on time [Crespi et al. 2007].
The measured attitude functions are obtained by interpolation from samples provided by
vendors. This model was implemented in the SISAR software, but the implementation is
not distributed. The whole model was detailed and analyzed later in a book chapter [Crespi
et al. 2010].

2.1.2 Our Contribution

Poli and Toutin [2012] grouped the major Earth observation satellites in several classes and
subclasses. This chapter focuses on the most recent subclass of satellites, which scan the
Earth in asynchronous mode and use a so-called agile configuration. These satellites fly
along sun-synchronous and quasi-polar orbits and provide very high resolution images using
a flexible single-lens optical system. They have the ability to rotate about the axes of their
camera in order to point at off-nadir targets up to 30°, or to view the target from different
directions during a single orbit. Some well-known commercial satellites of this category are
Pléiades 1A and 1B, QuickBird, WorldView 1, 2, and 3, GeoEye 1, Eros A and B, Orbview
3 and TopSat.

This chapter proposes a simple model for this kind of orbiting pushbroom cameras and
analyzes the main causes for localization inaccuracies. A simple algorithm is proposed to
improve the localization accuracy. To the best of our knowledge, the work of this chapter is the
first that provides an open source implementation of an orbiting pushbroom camera simulator
as well as an online demo allowing to test the proposed attitude refinement algorithm.

The next section exposes the camera model used in the chapter. Section 2.3 analyzes
the main causes for localization inaccuracies and proposes an algorithm to reduce them.
Section 2.4 presents numerous synthetic experiments to validate the proposed approach.

2.2 Pushbroom Camera Model

This section describes the pushbroom camera model used in this chapter. This model is an
extension of the model that was described by Westin [1990]. The main difference is that
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our model is built for satellites whose attitude vary continuously during the timespan of
one scene, while the models made for SPOT-1 [Westin 1990, Guichard 1983, Toutin 1985,
Konecny et al. 1987, Gugan 1987, Kratky 1988, Gupta and Hartley 1995] were based on the
assumption that the attitude was unknown but almost constant. In our model the attitude
evolution is thus described by polynomial functions of degree 3.

2.2.1 The Linear Pushbroom Camera

The goal of a camera model is to define the geometric relationship between image and space
coordinates. We will first recall how to derive this relationship with the specialized case of
the linear pushbroom camera that was introduced by Gupta and Hartley [1997]. The linear
pushbroom camera model relies on two simplifying assumptions:

• the camera is traveling in a straight line at a constant velocity with respect to the
world,

• the attitude of the camera is constant over the whole image acquisition duration.

This camera can be thought of as a standard pinhole camera [Hartley and Zisserman 2004]
moving at constant speed along a straight line in 3-space, with fixed attitude. This pinhole
camera would have the additional property of containing a single line of pixel sensors in its
focal plane instead of the usual bi-dimensional array of pixel sensors. Thus, at any moment,
only the points lying in the plane defined by the optical center and the line of pixel sensors are
imaged by the camera. This plane is called the view plane, and is shown on Figure 2.1. The
orientation of the view plane depends only on the camera attitude, and is assumed to be fixed.
It is also assumed that the motion of the camera does not lie in the view plane. Consequently,
the view plane sweeps out the whole 3-space as time varies. The image provided by such a
camera is made of lines scanned independently at different instants of time and stored one
next to the other.

All the coordinates on Figure 2.1 are expressed in the instantaneous camera frame, defined
below.

Definition 1. The camera frame is an orthonormal coordinate frame attached to the moving
camera. The origin of the coordinate frame is the instantaneous camera center. The Z-axis lies
in the instantaneous view plane and is perpendicular to the linear sensor array. It is directed
towards the visible half-space. The X-axis is orthogonal to the view plane and its direction
is determined by requiring that the motion of the camera has a positive X component. The
Y-axis lies in the view-plane, is parallel to the sensor array, and its direction is determined
by requiring that the X,Y, and Z axes form a right-handed coordinate frame.

The image of a 3-space point X is described by its row and column coordinates x and y.
The first coordinate x gives the time instant at which the point X was imaged, i.e. lay in
the view plane. If δt denotes the time spent by the sensor to measure one sample, then the
instant of time at which the row x was imaged is xδt (assuming that the first row was imaged
at t = 0). The duration δt is called the dwell time. It is part of the internal parameters of
the sensor.

The second coordinate y gives the position of the projection of X on the sensor. It is a
2D projection carried out in the view plane. The coordinates of the projected point can be
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Figure 2.1 – Linear pushbroom camera model. The instantaneous camera optical center C moves at a
constant speed. The view plane sweeps out the whole 3-space as the camera moves forward. The 3D
point X is imaged by the camera to the focal plane location x.

expressed in the camera frame. In that frame the view plane is defined by X = 0. If f denotes
the focal length of the camera, it follows from similar triangles that the point X = (0,Y,Z)>

is mapped to the point (0, fY/Z, f)>, as shown on Figure 2.2.
The coordinate y is a pixel index expressed in the sensor frame, which differs from the

camera frame by a translation. The magnitude of this translation is given by the principal
point coordinate y0. It is the pixel index of the projection of the camera center on the sensor
array, as shown on Figure 2.3. If w denotes the pixel size measured with the camera frame
units, then w(y − y0) = fY/Z.

This permits to describe the locus of 3-space points that may have been imaged on a
given image point.

Result 1. Let x = (x, y)> be an image point, where x is the row index and y the column
index. Take as coordinate frame the instantaneous camera frame at time t = xδt. Then the
inverse image of {x} by the linear pushbroom camera mapping is the 3-space line passing
through the origin and directed by (0, w(y − y0), f)>.

2.2.2 Camera Rotation

Most modern high resolution commercial satellites such as those of the Pléiades and World-
View series scan the Earth in asynchronous mode [Poli and Toutin 2012]. The word asyn-
chronous refers to the fact that the satellite speed and ground scanning speed are not equal:
the satellite moves faster than the projection of its sensor array on the ground. On the
one hand this ensures a longer exposure time, which allows more photons to reach the CCD
(Charge Coupled Device) sensor and thus improves the signal to noise ratio [Poli 2005]. On
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Figure 2.2 – For 3-space points in the view plane, the image formation works in the same way as with a
pinhole camera. From similar triangles one knows that the ratio between the Y coordinate of the image
point and f is equal to Y

Z .

Figure 2.3 – The sensor frame is used to express the coordinate of a pixel in a given image row. Its
relationship with the camera frame depends on internal parameters such as the pixel size w and the
principal point coordinate y0.

the other hand, it implies that the camera attitude is not constant during one image ac-
quisition, i.e. that the second assumption made by the linear pushbroom camera model is
not valid, as illustrated in Figure 2.4. This makes the image formation model slightly more
complicated and increases the number of parameters needed to describe the image acquisition
system.

The first consequence of the variation of attitude angles over time on our camera model
is that the camera frame has no longer a fixed orientation. To convert coordinates between
the camera frame and a fixed world frame, an intermediate coordinate frame is thus needed.
This frame is the local orbital frame.

Definition 2. The local orbital frame is an orthonormal coordinate frame attached to the
moving satellite. The origin of the coordinate frame is the satellite center of mass. The Z-axis
points towards the center of the Earth. The X-axis is defined by the motion of the satellite.
The Y-axis is determined by requiring that the X,Y, and Z axes form an orthonormal right-
handed coordinate frame.

For the sake of simplicity the camera center is supposed to coincide with the satellite
center of mass. The camera frame and the local orbital frame have thus the same origin, and
differ only by a rotation. This rotation is described by its roll, pitch and yaw components
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Figure 2.4 – Synchronous observation satellites, shown on the left, have fixed attitudes: the orientation
of the camera with respect to the satellite does not change over time. On asynchronous observation
satellites, shown on the right, the attitude angles may vary during the image acquisition, such as the pitch
angle ψ shown here.

(ϕ,ψ, ω). To obtain the camera frame, the local orbital frame is first rotated about its X
axis by the roll angle ϕ, then rotated about its new axis Y′ by the pitch angle ψ, and finally
rotated about the twice new axis Z′′ by the yaw angle ω. These three rotations are shown
on Figure 2.5. As the three elemental rotations occur about axes of the rotating coordinate
system (they are called intrinsic rotations), the resulting transformation matrix is obtained
by composing the associated Givens rotation matrices [Hartley and Zisserman 2004] from left
to right:

R(ϕ,ψ, ω) =

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 cψ 0 sψ
0 1 0
−sψ 0 cψ

cω −sω 0
sω cω 0
0 0 1

 , (2.1)

where ca and sa denote cos(a) and sin(a). Note that the values of the attitude angles ϕ,ψ, ω
depend on t. The change of basis matrix from the local orbital frame to the camera frame
will usually be written as R(ϕ(t), ψ(t), ω(t)).

Result 2. Let x = (x, y)> be an image point, where x is the row index and y the column
index. In the local orbital frame at time t = xδt, the inverse image of {x} by the pushbroom
camera mapping is the 3-space line passing through the origin and directed by

R(ϕ(t), ψ(t), ω(t))

 0
w(y − y0)

f

 . (2.2)

Our model makes the extra assumption that the roll, pitch and yaw are polynomial
functions of time of degree 3:

ϕ(t) = ϕ0 + ϕ1t+ ϕ2t
2 + ϕ3t

3

ψ(t) = ψ0 + ψ1t+ ψ2t
2 + ψ3t

3

ω(t) = ω0 + ω1t+ ω2t
2 + ω3t

3

The attitude of the camera is thus entirely described by the set of coefficients of these 3
polynomial functions, which is denoted by Φ = {(ϕk, ψk, ωk)}k=0,...,3. Additional terms may
also be considered to model certain oscillations of the satellite attitude [Perrier et al. 2015],
but this is beyond the scope of this thesis.
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Chapter 2. Camera Modeling for Orbiting Pushbrooms

Figure 2.5 – The camera frame (represented in black) is obtained from the local orbital frame (in gray)
by composing three Givens rotations [Hartley and Zisserman 2004] about the three axes of the rotating
frame. The first rotation is about the X axis, thus the X axis does not change and X′ = X. In the same
way Y′′ = Y′ and Z′′′ = Z′′. The roll angle ϕ shown on the left figure is negative, while the pitch and
yaw angles ψ and ω shown on the middle and right figures are positive.

2.2.3 Satellite Movement

Real satellites have elliptical orbits around the Earth as described by Kepler’s laws. Gupta
and Hartley [1997] reported a discrepancy of about 5 m when approximating an orbiting push-
broom with a linear pushbroom camera model on images from the first generation of SPOT
satellites. As the first SPOT satellites had constant attitudes, the main factor responsible
for this discrepancy might be the first assumption of the linear pushbroom camera model,
i.e. the uniform and linear camera movement hypothesis.

Orbit description. In this chapter the orbit of the satellite is assumed to be a circle cen-
tered on the Earth’s center of mass, as in [Westin 1990]. It is described by three parameters:
the radius of the circle, plus two angles giving the orientation of the plane in which the circle
lies.

The radius is RE + a, where RE denotes the Earth radius and a the flying altitude of
the satellite, usually around 700 km. The orientation of the orbital plane is given by its
inclination i ∈ [0, π] and its reference node longitude λ0 ∈ [−π, π]. The inclination is the
angle formed with the equatorial plane, as shown on Figure 2.6. The reference node is the
intersection between the orbit and the equatorial plane at which the satellite is ascending
(i.e. going towards north). The longitude λ0 is measured with respect to the inertial frame.

Definition 3. The Earth-centered inertial frame is an orthonormal coordinate frame attached
to the center of mass of the Earth, whose axes have fixed directions. Its Z axis is the Earth
rotation axis, oriented towards the North pole. Its X axis lies in the equatorial plane and is
permanently fixed in a direction relative to the celestial sphere. The Y-axis is determined by
requiring that the X,Y, and Z axes form an orthonormal right-handed coordinate frame.

The inertial frame does not rotate with the Earth. This means that any particular location
on Earth, except the two poles, has coordinates that change over time. Coordinates of points
on Earth are usually expressed in a frame that rotates with the Earth, namely the Earth
centered rotational frame, defined below.

32



2.2. Pushbroom Camera Model

Figure 2.6 – A circular orbit around the Earth is described by three parameters: its radius RE + a, the
longitude λ0 of its reference node, and its inclination i. The longitude λ0 is defined with respect to the
X axis of the inertial frame. The inclination i is the angle between the equatorial plane and the orbital
plane. The satellite is localized by its angular position αt. Note that the longitude represented here is
negative.

Definition 4. The Earth centered rotational frame, or rotational frame for short, is an
orthonormal coordinate frame attached to the rotating Earth. The origin of the coordinate
frame is the center of mass of the Earth. The Z-axis is pointing towards the north. The X-
axis intersects the surface of the Earth at 0° latitude (equator) and 0° longitude (Greenwich).
The Y-axis is determined by requiring that the X,Y, and Z axes form an orthonormal right-
handed coordinate frame. The coordinates of a point in that frame are called its geographic
coordinates. They are usually given in spherical form by the longitude λ, the latitude θ and
the altitude h above the surface of the sphere.

For the sake of simplicity, we assume that the rotational frame coincides with the inertial
frame at the beginning of the acquisition (t = 0). The frame rotates with the Earth, therefore
coordinates of a fixed point on the Earth surface do not change over time.

Position of the satellite. The position of the satellite on the orbit is given by an angle
αt ∈ [0, 2π]. As the orbit is supposed to be circular and uniform, αt depends only on its
initial value α0 and on the time t elapsed since the beginning of the acquisition:

αt = α0 + 2π
t

TS
, (2.3)

where TS denotes the orbital period of the satellite. It is known from Kepler’s third law that

2π

TS
=

√
µ

(RE + a)3
, (2.4)
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Chapter 2. Camera Modeling for Orbiting Pushbrooms

Figure 2.7 – Decomposition of the rotation that maps the axes of the Earth-centered inertial frame to the
axes of the local orbital frame. The rotation is obtained by composing three Givens rotations about the
three axes of the rotating frame. On each figure, the old axes are plotted in gray while the new axes are
plotted in black. On the first figure, the inertial frame is rotated about its Z axis by λ0. On the second
figure, the new axes are rotated about X′ by i − π

2 . On the last figure, the new axes are rotated about
Y′′ by π

2 − αt.

where µ is the standard gravitational parameter of the Earth, thus TS depends only on a.
For typical Earth observation satellites with a roughly equal to 500 km, TS is about one hour
and a half.

Change of basis. The change of basis matrix from the rotational frame to the local orbital
frame depends both on the orbit parameters and the satellite position. As the rotational frame
and the satellite position depend on the time t, this change of basis matrix depends on t. It
is a simple rotation composed with a translation. Its expression is derived in the next two
paragraphs.

From inertial to orbital frame. Given a satellite position αt and a triplet of orbit
parameters (λ0, i, a), the change of basis is obtained by first rotating the inertial frame about
its Z axis by λ0. This makes the new X axis, X′, point to the reference node, as shown on
Figure 2.7. The new frame is then rotated about X′ to send the Z axis in the orbital plane.
As the Z axis is perpendicular to the equatorial plane, the angle between the X′Z plane and
the orbital plane is i− π

2 . A third rotation by π
2 −αt about the new Y axis, Y′′, makes the Z

axis point towards the satellite. An additional rotation of π about the same axis makes the
Z axis point towards the Earth center. The change of basis matrix is obtained by composing
these three rotations:

Pinertial, orbital(λ0, i, αt) =

cλ0 −sλ0 0
sλ0 cλ0 0
0 0 1

1 0 0
0 ci−π

2
−si−π

2

0 si−π
2

ci−π
2

 c−αt−π2 0 s−αt−π2
0 1 0

−s−αt−π2 0 c−αt−π2


(2.5)

From rotational to inertial frame. The change of basis at time t is a rotation of
angle τ = 2π t

TE
, where TE denotes the duration of a stellar day, which is the Earth rotation
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period relative to the fixed stars. It is approximately 86 164.10 s. The axis of the rotation is
Z, thus the change of basis matrix is

Protational, inertial(t) =

cτ −sτ 0
sτ cτ 0
0 0 1

 . (2.6)

The change of basis matrix from rotational to orbital frame is obtained by composing the
previous matrices:

Protational, orbital(t, λ0, i, α0) = Protational, inertial(t)Pinertial, orbital(λ0, i, α0 + 2π
t

TS
)

=

cτ+λ0 −sτ+λ0 0
sτ+λ0 cτ+λ0 0

0 0 1

1 0 0
0 ci−π

2
−si−π

2

0 si−π
2

ci−π
2

 c−αt−π2 0 s−αt−π2
0 1 0

−s−αt−π2 0 c−αt−π2

 , (2.7)

where for readability αt is used to denote α0 + 2π t
TS

in the last matrix (see formula 2.3).

Result 3. Let x = (x, y)> be an image point. In the Earth centered rotational frame at
time t = xδt, the inverse image of {x} by the pushbroom camera mapping is the 3-space line
passing through the point

S = −Protational, orbital(t, λ0, i, α0)

 0
0

RE + a

 (2.8)

and directed by the vector

u = Protational, orbital(t, λ0, i, α0)R(ϕ(t), ψ(t), ω(t))

 0
w(y − y0)

f

 . (2.9)

Proof. Let us denote by S the center of mass of the satellite. From Result 2 we know that
the inverse image of {x} is the 3-space line passing through S and directed by a vector whose
coordinates in the orbital frame are

R(ϕ(t), ψ(t), ω(t))(0, w(y − y0), f)>. (2.10)

The coordinates of that vector in the rotational frame are obtained by composing with the
change of basis matrix Protational, orbital(t, λ0, i, α0), which leads to the expression of u given
in (2.9). If we denote by E the Earth’s center of mass, then S−E is a vector whose coordinates
in the orbital frame are −(0, 0, RE + a)>. Thus its coordinates in the rotational frame are
given by

− Protational, orbital(t, λ0, i, α0)(0, 0, RE + a)>. (2.11)

As E is the origin of the rotational frame, the coordinates of S in that frame are the same.
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2.2.4 Image Formation Model

Localization function. Given an image point x and the altitude h above the sea level of
the associated 3-space point X, it is now possible to compute the geographic coordinates of
X (see Definition 4). This is done by computing the first intersection point of the line defined
in Result 3 with the sphere of radius RE + h centered at the Earth center.

The line defined in Result 3 passes through the point S and is directed by the vector u
given by expression (2.9). The first intersection point with the sphere is computed by finding
a scalar r such that

‖S + ru‖2= (RE + h)2. (2.12)

This is a polynomial equation on r of degree 2. When the camera points towards the Earth,
this equation has two positive roots, and the smallest root

r =
−S>u−

√
(S>u)2 − u>u(S>S− (RE + h)2)

u>u
(2.13)

gives the position of the desired 3-space point X = S + ru. This defines the localization
function

L :R2 ×R→ [−π, π]× [−π
2
,
π

2
]

(x, h) 7→ (λ, θ),
(2.14)

which associates a longitude λ and a latitude θ to each image point x, provided that the
altitude h is known. Here λ and θ are the geographic coordinates of the point X = S + ru.

Projection function. Conversely, given a 3-space point X it is possible to compute the
coordinates of its image x. As there is no direct way of computing the time t at which the
view plane will sweep through X, this computation is not as straightforward as the previous
one. This is a notable difference with the pinhole camera model for which the computation
of image coordinates is a linear operation on homogeneous coordinates of the 3-space point.
The projection function

P : [−π, π]× [−π
2
,
π

2
]×R→ R2

(λ, θ, h) 7→ x
(2.15)

is the inverse of L with respect to the image coordinates. It is estimated iteratively from L.
An initial estimate is computed by assuming that the dependence with h is linear and the
dependence with (λ, θ) is quadratic. This initial estimate is then refined using the Newton
algorithm.

A first estimation P0 of the projection function P is made for a fixed altitude h. The
estimation is done by assuming that the function P (·, ·, h) is quadratic. A 2× 6 matrix P is
estimated such that for all λ, θ

P0(λ, θ, h) = P(1, λ, θ, λ2, θ2, λθ)>. (2.16)

The matrix P is obtained through least squares minimization from a list of correspondences

(xi, yi)↔ (λi, θi) = L(xi, yi, h) (2.17)
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2.3. Pushbroom Camera Parameters Refinement

obtained by evaluating the localization function L on the vertices of a regular sampling grid
(xi, yi)i=1,...,n2 of size n × n in the image domain (usually n = 5 is enough). The two rows
P1> and P2> of P are computed by least-squares minimization of respectively ‖Ap−b1‖ and
‖Ap− b2‖, where

A =

1 λ1 θ1 λ2
1 θ2

1 λ1θ1
...

1 λn2 θn2 λ2
n2 θ2

n2 λn2θn2

 , b1 =

 x1
...
xn2

 , and b2 =

 y1
...
yn2

 . (2.18)

The previous least-squares estimation is carried out for two different altitudes h1 and h2,
leading to two matrices P1 and P2. These two altitudes can be, for example, lower and upper
bounds for the 3D points of the scene. The projection function estimate P0 is finally obtained
from linear interpolation on h:

P0(λ, θ, h) =

(
|h2 − h|
|h2 − h1|

P1 +
|h− h1|
|h2 − h1|

P2

)
(1, λ, θ, λ2, θ2, λθ)> (2.19)

Note that the estimation of P1 and P2 is done only once, while the formula (2.19) has to
be evaluated each time we want to evaluate the projection function. The initial estimate
P0 is then refined using the Newton method [Press et al. 2007], as detailed in Algorithm 1.
At each iteration, the function (x, y) 7→ L(x, y, h) is approximated by its first order Taylor
expansion. The inversion of its Jacobian matrix, denoted by Jx,yL(x, y, h), allows to refine
the estimation. Note that the partial derivatives needed to compute the Jacobian matrix are
approximated by forward differences. For example:

∂L

∂x
(x, y, h) ≈ L(x+ 1, y, h)− L(x, y, h). (2.20)

The loop stops when the function L(·, ·, h) maps the refined image coordinates to a point on
Earth which is less than 1 mm from the input. This distance is computed using the fact that
the squared distance between two points with spherical coordinates (λ, θ) and (λ̃, θ̃) on the
unit sphere is approximated to first order by (θ̃− θ)2 + (λ̃− λ)2 cos2 θ when (λ̃, θ̃) is close to
(λ, θ).

The projection and localization functions depend obviously on the values of the camera
parameters. For the sake of simplicity, this dependence is not made explicit in formula (2.14)
but this may be done if needed by renaming L to Lδt,w,f,y0,a,i,λ0,α0,Φ. The complete set of 20
parameters on which L depends (12 of them are grouped together into Φ), plus the duration
of the acquisition ∆t, is summarized in Table 2.1.

2.3 Pushbroom Camera Parameters Refinement

The computation of the camera parameters, both external and internal, from a set of world
to image correspondences is a problem known as resectioning [Hartley and Zisserman 2004].
In the case of remote sensing images, the internal parameters are usually known with a good
accuracy because the sensor has been carefully calibrated before the launch of the satellite.
Moreover the sensor calibration may have been refined during the in-flight commissioning,
as happened for Pléiades [de Lussy et al. 2012]. In this chapter the internal parameters are
thus assumed to be perfectly known.
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Algorithm 1: Iterative estimation of the projection function P : (λ, θ, h) 7→ (x, y).
Input: λ, θ, h: geographic coordinates and altitude of a 3D point

niter: number of iterations
Output: x, y: image coordinates
begin

1 x, y = P0(λ, θ, h) // initialization
2 for k ∈ {1 . . . niter} do
3 λ̃, θ̃ = L(x, y, h)

4 if RE
√

(θ̃ − θ)2 + (λ̃− λ)2 cos2 θ < 1 mm // error check

5 then
6 break

7

(
x
y

)
←
(
x
y

)
− [Jx,yL(x, y, h)]−1

(
λ̃− λ
θ̃ − θ

)
// update

2.3.1 Camera Position Parameters

On modern high resolution satellites, the external parameters are measured on board in real
time and provided with the images. The attitude parameters are more sensitive to mea-
surement inaccuracies than the position parameters: for the typical case of a nadir looking
satellite orbiting at 700 km, an error of 1 µrad on the roll or pitch angles yields a displacement
of about 70 cm on the ground, while an error of 1 cm on the camera position yields a displace-
ment of at most 1 cm on the ground. The accuracy of the attitude is much more critical than
that of the camera position. On Pléiades the orbit parameters, i.e. the satellite positions,
are computed on board with centimeter accuracy by two DORIS (Doppler Orbitography and
Radiopositioning Integrated by Satellite) positioning instruments [de Lussy et al. 2012]. Note
that satellite trajectories are subject to much less perturbations than airplanes trajectories.

Moreover, in terms of ground coordinates, attitude and position errors have similar effects
and are therefore difficult to distinguish from each other. A roll or pitch error has locally the
same effect as a translation of the focal plane, which can be obtained through a translation
of the camera center. This observation was already reported by Gugan [1987], Konecny et al.
[1987], and Kratky [1989b] in the late Eighties about SPOT-1 orientation parameters.

Therefore we make the extra assumption that the camera positions (i.e. the path fol-
lowed in 3-space by the optical center of the camera) are perfectly known, and that all the
measurement inaccuracies lie in the attitude angles.

2.3.2 Camera Attitude Parameters

The problem tackled in this section is to estimate the values of the 12 attitude parameters
Φ = (ϕk, ψk, ωk)k=0,...,3, given a set of correspondences between image and world points. To
emphasize the fact that only the attitude parameters are being estimated, the localization
and projection functions L and P introduced in Section 2.2.4 are denoted by LΦ and PΦ.
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Parameter Description Pléiades WorldView-2

in
te
rn
al
s δt dwell time 0.07 ms ?

w pixel width 13 µm 8 µm
f focal length 12.9 m 13.3 m
y0 principal point coordinate 15000 px 17500 px

ex
te
rn
al
s

a orbit altitude 694 km 770 km
i orbit inclination 98.2° 98.5°
λ0 reference node longitude −180° - 180° −180° - 180°
α0 initial angular position on the orbit 0° - 360° 0° - 360°
∆t duration of the acquisition ≈ 3 s ≈ 3 s

Φ = (ϕk, ψk, ωk)k=0,...,3 coefficients of the attitude functions

Table 2.1 – Parameters of the pushbroom camera model. The last two columns give typical numerical
values for Pléiades and WorldView-2 satellites. The parameters may be divided into two classes: internal
parameters, sometimes called intrinsics, which characterize the camera, and external parameters, or ex-
trinsics, which characterize the position and orientation of the camera with respect to the inertial frame
(see Definition 3).

Yaw versus Roll and Pitch

If we assume that the satellite is at nadir, i.e. with zero roll and pitch angles, the effect
of attitude errors on the localization function LΦ can be computed simply, as shown on
Figure 2.8. To first order, a small error ε on the roll or pitch angles induces a displacement
of aε on the ground, where a is the distance between the satellite and the ground. Things
are different for the yaw, as it induces a rotation of the imaging sensor around its center. A
small error ε results in a displacement of at most D

2 ε on the ground, where D is the swath
width of the satellite. The relative importance of yaw errors with respect to roll and pitch
errors is thus D

2a , which is generally less than 2%. For example with Pléiades D = 20 km and
a = 694 km, the ratio is approximately 1.4%.

It is thus reasonable to neglect the yaw error and assume that the yaw coefficients are
perfectly known. The problem is thus narrowed down to estimating the value of the roll and
pitch coefficients given a set of world to image correspondences. For simplicity of notation,
the reduced set of 8 attitude parameters (ϕk, ψk)k=0,...,3 is still denoted by Φ.

Global Energy Minimization

Assume n ≥ 1 point correspondences Xi ↔ xi between 3D points Xi and 2D image points
xi = (xi, yi) are given. xi and yi are the row and column indices of the image points,
meaning that xiδt is the acquisition time and yi is the column index, i.e. the position on
the pushbroom array. When the attitude coefficients Φ are exact, the line LΦ(xi, ·) passes
through the 3-space point Xi and the energy E defined by

E(Φ) =
1

n

n∑
i=1

d(Xi, LΦ(xi, ·))2, (2.21)

is zero. Here d(X, `) denotes the Euclidean distance between the 3-space point X and the
line `. Note that even if the line LΦ(xi, ·) can be thought of as the set of points LΦ(xi, h)
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Figure 2.8 – Effect of attitude errors on the localization function. The figure on the left shows a pitch
error of ε. To first order, this induces a ground displacement of the sensor projection of aε, where a is the
flying altitude of the sensor. The figure on the right shows a yaw error of ε. It induces a maximal ground
displacement of D2 ε, obtained for the sensor endpoints, where D denotes the swath width.

obtained by evaluating LΦ on (xi, h) for h varying in R, the line is entirely defined by a point
and a direction (given in Result 3). Hence the evaluation of LΦ(xi, h) for any particular h is
not needed. The attitude parameters can then be estimated by

Φ̂ = arg min
B(Φ,η)

E, (2.22)

where Φ is the initial estimate measured on board, B(Φ, η) is the ball centered in Φ with
radius η, and η is given by the nominal precision of the satellite attitudes measurement system
(typically 50 µrad, i.e. around 30 m on the ground).

The cost expressed in formula (2.21) involves the distance between 3-space points Xi and
rays back-projected from image points xi. Another option could be to minimize the distance,
in the image plane, between image points xi and projected points PΦ(Xi):

E′(Φ) =
1

n

n∑
i=1

d(xi, PΦ(Xi))
2, (2.23)

This would require to evaluate the projection function PΦ instead of the localization function
LΦ, which, as reported by Gugan [1987] and Kratky [1989a], is more complex computation-
ally since each evaluation of PΦ requires several evaluations of LΦ and its derivatives (see
Algorithm 1). For solving the general camera resectioning problem, energy (2.23) is usually
preferred to energy (2.21) because in energy (2.21) the points located far away from the
camera have more importance than the points located close to the camera. But in the case
of remote sensing images all the distances between points are small compared to the distance
separating the camera from the scene. The two energies can thus be considered as equivalent.

Pointwise Minimization

An alternative approach to global minimization is to compute, for any correspondence X↔ x,
the instantaneous roll and pitch angles ϕ(t) and ψ(t) needed to make the back-projected ray
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from x, namely L(x, ·), pass through X. The direction of this particular back-projected ray
depends only on the values of the roll and pitch angles at time t = xδt, not on the whole set
of coefficients Φ. The coefficients in Φ are then estimated by polynomial fitting from the n
computed roll and pitch values.

Each world to image correspondence imposes instantaneous roll and pitch values.
Let us consider a single correspondence between the image point x = (x, y) and the world
point X. Knowing the instantaneous yaw ω(t) at time t = xδt, we look for roll and pitch
values ϕ and ψ such that the ray back-projected from x passes through X. Assume that
the coordinates of X are expressed in the local orbital frame at time t (the conversion from
geographic coordinates to local orbital coordinates is done thanks to formula 2.7). Using the
direction of the ray back-projected from x given in Result 2, our problem amounts to find ϕ
and ψ such that R(ϕ,ψ, ω(t))(0, w(y−y0), f)> has the same direction as X. The factorization
of R(ϕ,ψ, ω) given in equation (2.1) allows to separate the known yaw term from the unknown
roll and pitch: R(ϕ,ψ, ω) = R(ϕ,ψ, 0)R(0, 0, ω). By denoting

u = R(0, 0, ω(t))

 0
w(y − y0)

f

 =

cω(t) −sω(t) 0

sω(t) cω(t) 0

0 0 1

 0
w(y − y0)

f

 , (2.24)

the problem becomes finding ϕ and ψ such that

R(ϕ,ψ, 0)u ∝ X. (2.25)

With normalized coordinates for u and X the proportionality constraint is replaced by an
equality. The angles ϕ and ψ are obviously bounded to (at least) [−π

2 ,
π
2 ], otherwise the

camera would not be oriented toward the Earth. Another reasonable assumption is that the
Z coordinate of u and X is much bigger than both their X and Y coordinates. Even the most
agile satellites such as Pléiades and WorldView-3 do not usually point more than 30° away
from nadir. With that assumption our problem is then completely solved by the next result.

Result 4. Let u = (u1, u2, u3)> and v = (v1, v2, v3)> be two points on the unit sphere S2,
such that u3 > |u1|+ |v1|

√
2 and v3 > |v2|+ |u2|

√
2. Then there exists a unique pair of angles

(ϕ,ψ) ∈ [−π
4 ,

π
4 ]2 such that

R(ϕ,ψ, 0)u = v, (2.26)

where R(ϕ,ψ, 0) is the rotation obtained by composing two Givens rotations about the X and
Y axis as defined in equation (2.1).

Proof. Using the factorization of equation (2.1), equation (2.26) becomes cψ 0 sψ
0 1 0
−sψ 0 cψ

u =

1 0 0
0 cϕ sϕ
0 −sϕ cϕ

v, (2.27)

which is equivalent to the following system of equations:

u1 cosψ + u3 sinψ = v1,

v2 cosϕ+ v3 sinϕ = u2,

−u1 sinψ + u3 cosψ = −v2 sinϕ+ v3 cosϕ.

(2.28)
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Lemma 1, stated below, shows that each of the first two independent equations has a unique
solution on [−π

4 ,
π
4 ]. Let us show that these solutions ψ and ϕ satisfy the third equation. As

u and v lie on the unit sphere, one can find (α, β) and (γ, δ) in [−π, π]× [−π
2 ,

π
2 ] such that

u1 = cosβ cosα

u3 = cosβ sinα

u2 = sinβ

v2 = cos δ cos γ,

v3 = cos δ sin γ,

v1 = sin δ.

(2.29)

α and β (resp. γ and δ) are spherical coordinates for u (resp. v). As u3 > |u1| and v3 > |v2|,
one can require additionally that α and γ lie in ]π4 ,

3π
4 [. With these notations the system (2.28)

is rewritten as

cosβ cos(α− ψ) = sin δ,

cos δ cos(γ − ϕ) = sinβ,

cosβ sin(α− ψ) = cos δ sin(γ − ϕ).

(2.30)

The square of the left term of the third equation is

cos2 β sin2(α− ψ) = cos2 β(1− cos2(α− ψ)) = cos2 β − cos2 β cos2(α− ψ) = cos2 β − sin2 δ,
(2.31)

where the last equality comes from the first equation of (2.30). Similarly, using the second
equation, the square of the right term is

cos2 δ sin2(γ − ϕ) = cos2 δ(1− cos2(γ − ϕ)) = cos2 δ − cos2 δ cos2(γ − ϕ) = cos2 δ − sin2 β,
(2.32)

hence the two terms have the same squares. As β is in [−π
2 ,

π
2 ], cosβ is non-negative. More-

over, as ψ ∈ [−π
4 ,

π
4 ] and α ∈ ]π4 ,

3π
4 [, it is clear that 0 < α − ψ < π hence sin(α − ψ) > 0.

Similarly, cos δ and sin(γ −ϕ) are non-negative thus the equality between squares suffices to
prove the desired result.

Lemma 1. Let a, b, c be three real numbers such that |a|+ |c|
√

2 < b. Then the equation

a cosx+ b sinx+ c = 0 (2.33)

has a unique solution on [−π
4 ,

π
4 ].

Proof. Let f : [−π
4 ,

π
4 ] → R be the mapping x 7→ a cosx + b sinx + c. This function is

continuous and has values of opposite sign at the endpoints of its domain interval, since

f
(
−π

4

)
f
(π

4

)
=

(
a− b√

2
+ c

)(
a+ b√

2
+ c

)
=

(
a√
2

+ c

)2

− b2

2
< 0. (2.34)

Thus from the intermediate value theorem [Rudin 1976] f has a root in [−π
4 ,

π
4 ]. To prove

the uniqueness, the case a = 0 being trivial, one can assume that a > 0 (or otherwise use
−f). The derivative of f is x 7→ −a sinx + b cosx. It has a unique zero and changes sign
from positive to negative in arctan b

a , which is outside the domain [−π
4 ,

π
4 ] since b

a > 1. Thus
f is strictly increasing and the root is unique.

42



2.3. Pushbroom Camera Parameters Refinement

In practice the solution to equation (2.33), and hence to equations (2.28) and (2.26), is
computed thanks to the change of variable t = sinx. If x is a solution then t satisfies the
quadratic equation

(a2 + b2)t2 + 2bct+ c2 − a2 = 0 (2.35)

which has two distinct solutions since its discriminant has the sign of a2 + b2 − c2 and we
assumed that c2 < b2. The unique solution to equation (2.33) is found by testing these two
candidates. The procedure to compute ϕ and ψ from a world to image correspondence is
summarized in Algorithm 2.

Algorithm 2: Computation of roll and pitch values from a world to image correspondence.
Input: X: Cartesian coordinates of a control point in the Earth-centered rotational

frame
x, y: image coordinates
δt, w, f, y0: camera internal parameters
a, i, λ0: orbit parameters
α0: satellite initial position on the orbit
ω: yaw function

Output: ϕ,ψ ∈ [−π
2 ,

π
2 ]: roll and pitch values

begin
1 v← Protational, orbital(xδt, λ0, i, α0)−1X + (0, 0, RE + a) // conversion to orbital

coordinates
2 v← v

‖v‖
3 u← R(0, 0, ω(xδt))(0, w(y − y0), f)> // yaw application
4 u← u

‖u‖
5 if u3 < |u1|+|v1|

√
2 or v3 < |v2|+|u2|

√
2 then

6 break // the ground control point is unusable
7 else
8 solve R(ϕ,ψ, 0)u = v for ϕ and ψ // using result 4

9 return ϕ,ψ

Polynomial fitting of roll and pitch error evolution. Once a list of roll and pitch sam-
ples has been computed from the set of world to image correspondences thanks to Algorithm 2,
the polynomial coefficients of the roll and pitch functions are estimated by least-squares min-
imization.

More precisely, assume that a list of roll samples ϕ̂1, . . . , ϕ̂n has been computed at times
t1, . . . , tn from the world to image correspondences. If we denote by ϕ the initial roll function
(the one derived from the onboard attitude measurements), then the roll correction function
is estimated by fitting a polynomial of degree 3 to the points ti, ϕ̂i − ϕ(ti) in R2. As the
initial roll function has a known accuracy η, given by the satellite specifications, any true
roll value cannot differ from ϕ(t) more than η. The samples ti, ϕ̂i such that |ϕ̂i − ϕ(ti)|> η
are thus discarded. Moreover the fitted correction polynomial must be bounded by η. Its
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coefficients p = (p0, p1, p2, p3)> are estimated by solving a constrained least squares problem:

minimizep ‖Ap− b‖2

subject to − η ≤
∑
i

pit
i ≤ η, ∀t ∈ [0, T ].

(2.36)

with

A =

1 t1 t21 t31
...

...
...

...
1 tn t2n t3n

 and b =

ϕ̂
1 − ϕ(t1)

...
ϕ̂n − ϕ(tn)

 . (2.37)

The constraint −η ≤
∑

i pit
i ≤ η, ∀t ∈ [0, T ] is approximated thanks to a finite sampling

0, Tm ,
2T
m , . . . ,

mT
m of the interval [0, T ], by

− η ≤
∑
i

pi

(
kT

m

)i
≤ η ∀k ∈ {0, . . . ,m}. (2.38)

This linear constraint is expressed as

− h � Gp � h, (2.39)

where x � y denotes componentwise inequality, i.e. xi ≤ yi for all i, while G is an (m+ 1)×4
matrix and h an (m+ 1)-vector defined by

G =


1 0 0 0

1 T
m

T
m

2 T
m

3

...
...

...
...

1 T T 2 T 3

 and h =

η...
η

 . (2.40)

The optimization problem 2.36 is thus replaced by a quadratic program problem [Boyd and
Vandenberghe 2004]:

minimizep ‖Ap− b‖2

subject to − h � Gp � h.
(2.41)

This kind of convex optimization problem that includes inequality constraints can be solved
by interior-point methods. These methods solve the problem by applying Newton’s method
to a sequence of equality constrained problems [Boyd and Vandenberghe 2004]. A quadratic
program solver is available in the cvxopt package, which is a free software package for con-
vex optimization based on the Python programming language. It is developed by Martin
Andersen, Joachim Dahl and Lieven Vandenberghe. This solver implements a primal-dual
path-following method based on the Nesterov-Todd scaling [Vandenberghe 2010, Andersen
et al. 2003].

Note that for simplicity we detailed only the roll function estimation, but the method
applies to pitch as well. The complete procedure to refine the roll and pitch functions is
summarized in Algorithm 3.
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2.3. Pushbroom Camera Parameters Refinement

Algorithm 3: Refinement of roll and pitch coefficients from world to image correspondences.
Input: {Xi ↔ xi}: set of n ≥ 1 world to image correspondences

δt, w, f, y0: camera internal parameters
a, i, λ0: orbit parameters
α0: satellite initial position on the orbit
ϕ,ψ, ω: attitude functions measured on board
η: nominal attitude accuracy

Output: ϕ̂, ψ̂: roll and pitch refined functions
begin

1 for k ∈ {1 . . . n} do
2 ti ← xiδt

3 ϕ̂i, ψ̂i ← roll_and_pitch_from_gcp(Xi,xi, δt, w, f, y0, a, i, λ0, α0, ω)
// algorithm 2

4 if |ϕ̂i − ϕ(ti)|> η or |ψ̂i − ψ(ti)|> η then
5 discard ϕ̂i, ψ̂i, ti,xi,Xi

6 n← n− 1

7 A← Vandermonde(t1, . . . tn) // formula 2.37
8 for θ ∈ {ϕ,ψ} do
9 b← (θ̂i − θ(ti))> // formula 2.37

10 minimizep ‖Ap− b‖2 subject to − h � Gp � h // G and h are precomputed

11 θ̂ ← θ +
∑

i pit
i

12 return ϕ̂, ψ̂
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2.4 Empirical Validation

This section presents an empirical validation procedure for the attitude correction Algo-
rithm 3. All the experiments are carried out on synthetic data, using the pushbroom camera
model described in Section 2.2. The implementation of that model is a geometric, and not
radiometric, simulator.

On the one hand, synthetic data permits to test any particular configuration, enabling
a fine understanding of the effects of each parameter. Moreover the synthetic observations,
i.e. the 3D and 2D coordinates of world to image correspondences, are generated from the
image formation model using the camera parameters, hence are noiseless. Adding artificial
noise permits to analyze and quantify the impact of noise on the refinement algorithm.

On the other hand, the camera model used in the present chapter is simplified: to mention
just a few approximations, the orbit is supposed perfectly circular while real observation
satellites fly on elliptical sun-synchronous orbits whose orbital plane precesses once a year, the
Earth is supposed to be a sphere while a closer approximation would be an oblate spheroid, the
light travel time from the Earth surface to the sensor is neglected, as well as the atmospheric
refraction. Experiments on real data are obviously needed for a definitive validation of the
proposed algorithm. This delicate task is left to a forthcoming article.

2.4.1 Experimental Setup

We use the same notational convention as Hartley and Zisserman [2004] in chapter 5 of their
reference book:

• measured quantities are denoted by x (image point coordinates), X (ground point
coordinates) or Φ (attitude coefficients),

• estimated quantities are represented by a hat, such as x̂, X̂ or Φ̂,

• true values are represented by a bar, such as x̄, X̄ or Φ̄.

The testing procedure begins by choosing a fixed set of values for the parameters describing
the pushbroom camera (see Table 2.1), among which the true attitude coefficients Φ̄ lie.
Next a set of image locations x̄i and associated altitudes h̄i are chosen. The number of such
locations will vary. Synthetic world to image correspondences X̄i ↔ x̄i are generated thanks
to the localization function LΦ̄. The correspondence is exact, in the sense that X̄i = LΦ̄(x̄i, h̄i)
precisely, up to machine accuracy.

Next, artificial Gaussian noise is added to the image and ground locations by perturbing
both the x and y coordinates of the image points and the X, Y and Z coordinates of the ground
control points by a zero-mean Gaussian random variable with known variance. The resulting
noisy points are denoted by Xi and xi. A suitable Gaussian random number generator is
given in [Press et al. 2007]. As the number of points is usually rather small, the experiment
should be run many times with different realizations of the noise, and the results averaged.
In the case of only one experiment, it makes more sense to impose the magnitude of the
noise by choosing the perturbations uniformly on a sphere of known radius. This is what is
implemented in Algorithm 4.
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Next, the roll and pitch coefficients are perturbed. On real satellites, the attitude func-
tions are interpolated from a list of regularly sampled attitude values. These attitude va-
lues are measured with star trackers and gyroscopes at fixed intervals. For examples, on
WorldView-2, a state vector containing the time, position, velocity and attitude is recorded
every 0.02 s [Poli and Toutin 2012]. On Pléiades, a state vector containing the time, position
and velocity is recorded every 30 s during a timespan longer than the acquisition in order to
provide around 10 samples. The attitudes are given directly as polynomial functions, but we
can reasonably assume that they have been fitted from measured samples. To simulate this
behavior, d+ 1 real numbers are generated from a zero-mean uniform random variable with
known amplitude. A polynomial perturbation of degree at most d is interpolated from these
d+ 1 values, regularly spaced at times t = 0, ∆t

d ,
2∆t
d , . . . ,∆t. This perturbation is added to

the roll true function ϕ̄ to produce the measured roll function ϕ. The same is done with the
pitch. The resulting noisy attitude coefficients are denoted by Φ.

Then the roll and pitch coefficients are estimated from the noisy ground control points
Xi ↔ xi and the noisy attitude coefficients Φ using the proposed refinement algorithm (see
Algorithm 3). This results in the estimated functions ϕ̂ and ψ̂.

To assess the algorithm performance, the estimation errors ϕ̂− ϕ̄ and ψ̂− ψ̄ are compared
to the measurement errors ϕ − ϕ̄ and ψ − ψ̄. In order to facilitate the comparison, the L2

and L∞ norms of the error functions are computed. These norms give the root mean square
and the maximal errors. The same quantities are computed for the localization error function
defined by

[0,∆t]→ R+

t 7→ d(LΦ(tδt, y0, h0), LΦ̄(tδt, y0, h0)),
(2.42)

where y0 is the principal point coordinate, h0 = 1
n

∑
i h̄i is the mean altitude and d(X,X′) is

the geodetic distance between two points on the surface of the Earth. As for ϕ and ψ, the
estimation error (computed with Φ̂) is compared to the measurement error (computed with
Φ as in (2.42)).

2.4.2 Online Demo

The experimental setup presented in Section 2.4.1 is made available to the reader through
the online demo associated to this chapter1.

To help the user with the fastidious task of setting the numerous parameters of the
camera, a few predefined sets of parameters are proposed. They correspond to the internal
and orbit parameters of well-known commercial satellites such as Pléiades and WorldView
and are given in Table 2.1. The reference node longitude λ0 and the initial angular position
α0 on the orbit change over time for any satellite, thus they should be chosen by the user
of the demo. As these two parameters shown no influence on the results of the refinement
algorithm, they are not exposed in the demo interface and have fixed values λ0 = 30° and
α0 = 180° for all the experiments.

As it would be difficult to choose manually a set of realistic values for the 12 attitude
coefficients, the user only selects an initial pointing direction Ψx,Ψy ∈ [−π

4 ,
π
4 ]2 and a heading

1http://boucantrin.ovh.hw.ipol.im:8082/pushbroom_ba
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γ ∈ [0, 2π]. The heading defines the desired direction of the pushbroom track on the ground,
with respect to the local North direction. The attitude coefficients Φ̄ are then computed from
Ψx,Ψy and γ thanks to the guidance algorithm, given in appendix A.

Next the user selects a number of image points x̄i by clicking on a white square repre-
senting the image domain. A random altitude h̄i is associated to each image point.

Finally the user selects the standard deviations σimage and σworld of the Gaussian pertur-
bations added to the coordinates of the image and world points, and selects the degree and
amplitude of the polynomial perturbation added to the roll and pitch functions.

As a result of the simulation, the online demo shows the plots of the localization error
function (see (2.42)) as well as the roll and pitch error functions, each computed with the
measured data and with the estimated data. An example is given in Figure 2.9. The complete
testing procedure implemented in the online demo is summarized in Algorithm 4.

Algorithm 4: Testing procedure for the roll and pitch refinement algorithm.
Input: δ̄t, w̄, f̄ , ȳ0, ā, ī: set of true internal and orbit parameters

λ̄0, ᾱ0: true reference node longitude and initial angular position on the orbit
Ψx,Ψy, γ: initial pointing direction and heading
{x̄k}: set of n ≥ 1 true image locations
σimage, σworld: std dev of the Gaussian perturbations added to the

correspondences
d, η: degree and amplitude of the perturbation added to the roll and pitch

functions
Output: statistics (rmse, max) of the roll, pitch and localization error functions, with

measured and estimated attitudes
begin

1 Φ̄← guidance(Ψx,Ψy, γ, δ̄t, w̄, f̄ , ȳ0, ā, ī, λ̄0, ᾱ0)
2 for k ∈ {1 . . . n} do
3 h̄k ← random value between 0 and 1000
4 X̄k ← LΦ̄(x̄k, h̄k)

5 for k ∈ {1 . . . n} do
6 u← random vector on the unit sphere S2

7 v← random vector on the unit circle S1

8 Xk ← X̄k + σworldu
9 xk ← x̄k + σimagev

10 for θ ∈ {ϕ,ψ} do
11 θ0, θ1, . . . , θd ← uniform random samples in [−η, η]

12 p← Lagrange polynomial interpolating (0, θ0), (∆t
d , θ

1), . . . , (∆t, θ
d)

13 θ ← θ̄ + p

14 ϕ̂, ψ̂ ← roll_and_pitch_refinement({Xi ↔ xi}, δ̄t, w̄, f̄ , ȳ0, ā, ī, λ̄0, ᾱ0, ϕ, ψ, ω̄, η)
15 for θ ∈ {ϕ,ψ} do
16 return statistics of θ − θ̄ and θ̂ − θ̄
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(a) Input image points
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(b) Localization error in meters
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(d) Pitch error in micro radians

Figure 2.9 – Example of results produced with the online demo associated to this chapter. Red curves
show the error before correction and blue curves after correction. The user clicked on the image domain
to select the input image points shown in (a). The localization error (in meters) as a function of time (in
seconds) is shown in (b). The red curve gives the error made using the measured attitudes, while the blue
curve gives the error made using the estimated attitudes. The roll and pitch errors (in micro radians) as
functions of time (in seconds) are shown on (c) and (d). The blue dots give the errors of the instantaneous
roll and pitch samples computed from each world to image correspondence.
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2.4.3 Numerical Results

The testing procedure described in Algorithm 4 was run with typical sets of camera pa-
rameters on various control points configurations and various roll and pitch errors. Results
presented in Figure 2.10, page 53, show that for a given degree d of the roll and pitch poly-
nomial errors, d+ 1 control points are sufficient to reduce the localization error by one order
of magnitude.

However this conclusion holds only if the row indices of the control points are roughly
allocated regularly over the whole row range. Two control points located on neighboring rows
correspond to very close times t and t′, thus the two constraints they provide for the roll and
pitch fitting behave as only one constraint. This is illustrated by the results in Table 2.3,
page 54.

Experiments with different amounts of noise added to the control points show that, as
expected, the estimation is perfect in the absence of noise. The accuracy of the estimation
reduces as soon as the noise amount increases, but this can be compensated by increasing
the quantity of control points. These observations are illustrated by results presented in
Table 2.4, page 55.

2.5 The Rational Polynomial Camera Model

Image vendors, such as Airbus Defence and Space [Coeurdevey and Gabriel-Robez 2012],
DigitalGlobe and Skybox, provide usually the orientation parameters of the cameras along
with the images. To save their customers the tedious task of understanding and implement-
ing a specific geometric camera model, they provide directly the localization and projection
functions L and P that we introduced in section 2.2.4.

These functions allow to convert from image coordinates to coordinates on the globe and
back. The projection function P : R3 → R2, (λ, θ, h) 7→ x returns the image coordinates,
in pixels, of a given 3-space point represented by its spheroidal coordinates in the World
Geodetic System (WGS 84). In that system a point of 3-space is identified by its longitude
λ ∈ [−180, 180], latitude θ ∈ [−90, 90] and altitude h, in meters, above the reference ellipsoid.
The localization function L : R3 → R2, (x, h) 7→ (λ, θ) is its inverse with respect to the first
two components. It takes a point x = (x, y)> in the image domain together with an altitude
h, and returns the geographic coordinates of the unique 3-space point X = (λ, θ, h) whose
altitude is h and whose image is x.

The Rational Polynomial Coefficient (RPC) camera model is an analytic description of
the projection and localization functions. It was introduced in the late eighties by Baltsavias
and Stallmann [1992], and studied in depth by Tao and Hu [2001]. In the RPC model, the
projection and localization functions are expressed as ratio of multivariate cubic polynomials.
For example, the latitude component of the localization function for the image point (x, y)
at altitude h is

θ =

20∑
i=1

Cθ,NUM
i ρi(x, y, h)

20∑
i=1

Cθ,DEN
i ρi(x, y, h)

, (2.43)

where Cθ,NUM
i (resp. Cθ,DEN

i ) is the ith coefficient of the numerator (resp. denominator)
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polynomial and ρi produces the ith factor of the three variables cubic polynomial. The
functions are defined between normalized coordinate systems.

A cubic polynomial in three variables has 20 coefficients, thus each component of the
localization and projection functions requires 40 coefficients. With the additional 10 param-
eters specifying the scale and offset for the five variables x, y, λ, θ and h, the RPC camera
model for an image is described by a total of 170 coefficients.

In the remainder of this thesis, we will use the notations L and P to denote the RPC
localization and projection functions associated to the images. If needed, we may indicate
the underlying image with a subscript: Lu and Pu are the RPC functions associated to image
u. Ideally, these functions should verify

Lu(Pu(λ, θ, h), h) = (λ, θ) (2.44)

and
Pu(Lu(x, y, h), h) = (x, y), (2.45)

but as any model the rational polynomial projection has a limited precision. In particular
the two RPC functions are not exact inverses of each other. The errors due to concatenating
the projection and inverse functions are negligible, being of the order of 10−7 degrees in WGS
84 coordinates, and 1

100 of pixel in the image i.e. about 1 cm on the ground.
Note that Pléiades images are provided by Airbus Defence and Space with both the

localization L and projection P functions, while DigitalGlobe and Skybox provide only the
projection function P (i.e. only 90 coefficients). The inverse L has to be estimated from P .
This is done iteratively using an algorithm similar to the algorithm 1.

2.6 Conclusion and Future Work

We gave a detailed description of a simplified orbiting pushbroom camera model and showed
that, under reasonable assumptions, the main factor responsible for the localization error are
the roll and pitch functions. We presented a simple algorithm to refine the roll and pitch
functions using ground control points. It exploits the fact that each ground control point
imposes two independent constraints on the instantaneous values of the roll and pitch, thus
permits to compute these values. Experimental results show that as soon as one has n + 1
control points on roughly well spaced rows, a polynomial error of degree no greater than n
is substantially corrected by the proposed algorithm. In contrast to classical minimization
approaches, this algorithm has the particularity that outliers are automatically detected and
removed, preventing them to bias the final result.

To further improve the localization accuracy, once the roll and pitch have been refined,
one could refine the yaw coefficients by minimizing the mean quadratic distance between
world points and back-projected rays (see energy (2.21)). Other parameters such as the orbit
parameters and the focal length may be incorporated in that energy to be refined too. The
Hessian of the energy could be used to evaluate the quality of the extrema.

Future work will also include careful experimentation of the proposed algorithm with real
data, and study whether it is possible or not to reduce the need for ground control points
by using stereo images, i.e. sequences of at least two views of the same area. Refining the
orientation parameters of several cameras given a sequence of views of the same scene is a
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problem known in computer vision and photogrammetry as bundle adjustment. Several open
source tools have been developed to solve this problem, such as Apero [Pierrot Deseilligny
and Clery 2012], Bundler [Snavely et al. 2006] and OpenMVG [Moulon et al. 2013]. It is likely
that ground control points will always be needed because, as was shown by Jama et al. [2011],
the bundle adjustment problem with pushbroom cameras has several degrees of freedom, even
if the camera positions are known.
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parameters results
noise perturbation roll error (µrad) pitch error (µrad) loc. error (m)

satellite type σimage σworld d η (µrad) before after before after before after
Pléiades 0.5 px 0.2 m 0 50 76.48 0.01 61.33 0.92 43.03 0.40
Pléiades 0.5 px 0.2 m 1 50 40.11 0.08 39.51 0.59 24.75 0.26
Pléiades 0.5 px 0.2 m 2 50 60.53 1.01 27.42 0.89 29.16 0.59
Pléiades 0.5 px 0.2 m 3 50 34.74 0.94 52.42 5.24 27.62 2.36

Table 2.2 – Numerical parameters and results of the experiments shown in Figure 2.10, just below. For each
polynomial error degree d, only d+ 1 control points are used.
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Figure 2.10 – Minimal number of ground control points needed to correct the roll and pitch error, depending on
the degree of the polynomial error. Each of the four rows presents a different experiment. On the dth row, a
polynomial error of degree d− 1 is corrected with d control points. The numerical parameters and results of these
experiments are given in Table 2.2.
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parameters results
noise perturbation roll error (µrad) pitch error (µrad) loc. error (m)

satellite type σimage σworld d η (µrad) before after before after before after
Pléiades 0.5 px 0.2 m 3 50 10.97 2.96 51.50 2.15 23.11 1.62
Pléiades 0.5 px 0.2 m 3 50 10.97 5.75 51.50 9.58 23.11 4.94
Pléiades 0.5 px 0.2 m 3 50 10.97 18.10 51.50 9.07 23.11 8.89
Pléiades 0.5 px 0.2 m 3 50 10.97 34.91 51.50 58.08 23.11 29.84

Table 2.3 – Numerical parameters and results of the experiments shown in Figure 2.11, just below. As soon as two
control points are located barely on the same row, they count as only one point. This affects the accuracy of the
refinement.
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Figure 2.11 – Each of the four rows presents a different experiment. The polynomial error of degree 3 added to
the attitudes is identical in the four experiments, as well as the number of control points, but the positions of
the control points vary. When two control points are located on neighboring rows in the image plane, their effect
on the estimated roll and pitch functions is that of a single control point. This is why on the second experiment
shown here the polynomial fitting of the roll and pitch corrections is poorly conditioned. We are trying to fit a
polynomial of degree up to 3 to three points. Hence the refinement is less accurate. The situation gets worse on
the third and fourth experiments, as confirmed by the numerical results given in Table 2.3.
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parameters results
noise perturbation roll error (µrad) pitch error (µrad) loc. error (m)

satellite type σimage σworld d η (µrad) before after before after before after
Pléiades 0.5 px 0.2 m 3 50 45.87 0.93 31.18 1.01 24.33 0.60
Pléiades 1.0 px 1.0 m 3 50 45.87 8.84 31.18 7.41 24.33 5.07
Pléiades 1.0 px 1.0 m 3 50 45.87 2.72 31.18 2.12 24.33 1.52
Pléiades 2.0 px 2.0 m 3 50 45.87 3.30 31.18 7.50 24.33 3.60
Pléiades 2.0 px 2.0 m 3 50 45.87 1.43 31.18 2.41 24.33 1.23

Table 2.4 – Numerical parameters and results of the experiments shown in Figure 2.11, just below. As soon as the accuracy of
the ground control points decreases, the overall accuracy of the refined attitudes decreases. This effect can be compensated
by adding more ground control points.
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Figure 2.12 – In the first experiment (first row) the roll and pitch are refined from four control points. In the second row,
the same experiment is done with a higher level of noise. The accuracy of the output roll and pitch functions is lower. In
the third row the same experiment is done with six additional control points. The output is more accurate. Similarly, on the
fourth row the noise level is increased and in the fifth row 10 points are added.
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3 Epipolar Rectification of Pushbroom Images

Epipolar rectification is a common technique used in 3D reconstruction algorithms. It permits
to simplify the search of corresponding points between the images of a stereo pair. However,
it applies only to images taken with pinhole cameras. Pushbroom cameras produce images for
which any epipolar rectification is theoretically not possible. In this chapter we study to what
extent it is possible to apply epipolar rectification to pushbroom images anyway, in order to use
standard matching algorithms from the image processing and computer vision communities for
processing satellite stereo pairs. The approach presented here considers the epipolar rectification
as an auxiliary step for the computation of stereo correspondences, not as a final product.
Images are thus processed in small tiles by locally approximating the pushbroom camera with
an affine camera model. The explicit modeling of the approximation allows to quantify and
control the epipolar errors without needing ground control points. Experiments on Pléiades
and WorldView-1 images of many kinds of scenes (urban, mountainous, flat) demonstrate that
epipolar errors can be reduced to one tenth of pixel.

The stereo-rectification algorithm presented in this chapter can be tested online on any crop of
a satellite image from our test database at
http://dev.ipol.im/~carlo/ipol_demo/s2p_rectification.

3.1 Introduction

Epipolar rectification is a technique that permits to simplify and accelerate the computation
of image point correspondences between the views of a stereo pair. It restricts the search
for corresponding image points from the entire image plane to a single line. For any point
x of the first view, the corresponding point x′ in the other view, if it exists, lies on the
epipolar line of x denoted by epix. Conversely x lies on epix

′
. The epipolar rectification, also

known as stereo-rectification or epipolar resampling, aims to resample the images in such a
way that corresponding points are located on the same row, thus simplifying the matching
task and permitting to use all classic stereo matching algorithms, such as those listed in the
Middlebury Stereo Evaluation1 benchmark.

For images taken with pinhole cameras there is a correspondence between the epipolar
lines of the two views. All the points x′ of the second view lying on the epipolar line epix

share the same epipolar line in the first view. Epipolar lines epix and epix
′
are said to be

conjugate. Figure 3.1 (a) illustrates the conjugacy of epipolar lines. It is well-known [Hartley
and Zisserman 2004] that images can be resampled according to a planar homography in
order to produce a rectified pair in which the epipolar lines are horizontal and conjugate
epipolar lines have the same row index. Several algorithms have been proposed to compute
the resampling homographies [Loop and Zhang 1999, Monasse et al. 2010, Monasse 2011].
Matching rectified images is much simpler than matching the original images, because the
search of correspondences is performed along horizontal lines only [Ohta and Kanade 1985a].

1http://vision.middlebury.edu/stereo/
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Chapter 3. Epipolar Rectification of Pushbroom Images

(a) In the pinhole case the epipolar plane defines a
one-to-one correspondence between epipolar lines.
Corresponding epipolar lines are said to be conju-
gate.

(b) In the pushbroom case the projection of a 3-
space ray on the secondary view generates a ruled
quadric. The projection of this quadric on the refer-
ence view contains many epipolar curves: epipolar
curves are not conjugate.

Figure 3.1 – Difference between the epipolar constraints of the pinhole camera model (a) and the pushb-
room camera model (b).

Satellite images however cannot be rectified because they are taken with pushbroom sen-
sors, for which the pinhole model is invalid. Using various pushbroom camera models [Orun
and Natarajan 1994, Gupta and Hartley 1997], it has been shown that pushbroom image pairs
have non-straight epipolar curves and that these curves are not conjugate, making stereo-
rectification impossible [Kim 2000, Habib et al. 2005]. The case of linear pushbroom cameras
(see section 2.2.1) is illustrated by Figure 3.1 (b). In this chapter we study to what extent it
is possible to perform an epipolar rectification of parts of pushbroom images anyway, in order
to use standard matching algorithms to process stereo images taken by Earth observation
satellites. This study was motivated by the availability of high resolution images from new
satellites with stereo capabilities such as Pléiades.

3.1.1 Previous Work

The non rectifiability of pushbroom images did not block the development of 3D reconstruc-
tion solutions for satellite images. Many solutions have been proposed to circumvent this
issue. We may group them into three categories:

1. No rectification: many authors [Lee et al. 2003, Hirschmüller et al. 2005, Hirschmüller
2008] propose to keep the original images unchanged and to perform stereo matching
by following the non-straight epipolar curves. This approach eliminates the need for
epipolar rectification while keeping the benefits of one-dimensional exploration. How-
ever, non-straight epipolar curves may prevent from applying stereo matching optimiza-
tions and from using off-the-shelf correlators. Other methods [Paparoditis and Pierrot
Deseilligny 2006] estimate directly a Digital Elevation Model (DEM) by minimizing an
energy function. This function of the DEM is made of a data term measuring the images
similarity at the projections of DEM points, plus a regularization term penalizing the
variations of the DEM. The energy minimization involves graph cuts techniques (see
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3.1. Introduction

introduction of chapter 5), which are computationally intensive. A limitation of these
methods is that they do not allow to compute a real 3D model. The vertical facades of
a building, for example, will not be reconstructed even if they are visible in the images.

2. Affine camera approximation: other authors [Ono 1988, Fraser et al. 2004, Morgan et al.
2006, Wang et al. 2011] propose to approximate the pushbroom sensor with an affine
camera model. This approach usually uses Ground Control Points (GCP) to estimate
the affine model for each image, and the overall achieved precision is on the order of
one pixel on images from SPOT and Ikonos satellites.

3. Polynomial epipolar rectification [Oh et al. 2010, Christophe et al. 2008]: Oh et al. show
that even if pairs of epipolar curves do not exist in the pushbroom case, for small altitude
ranges of the scene one may assume that curve pairs exist with small error. Thus they
build whole epipolar curve pairs on Ikonos stereo images by putting together small
pieces of corresponding curves. Then they resample the images to transform these
curves into straight horizontal lines. They report a maximal error of one pixel. Since
their rectification procedure is non-linear, i.e. it is not a homographic resampling, it
cannot guarantee that straight lines are preserved.

It is important to note that errors in the rectification are critical as they may result in a
vertical disparity between corresponding points in the rectified images, which may hurt the
performance of the stereo matching. We refer to this vertical disparity as epipolar error. The
epipolar error is the ultimate performance measure for the different methods. Current state
of the art methods attain errors on the order of one pixel. The method presented in this
chapter lowers this error by one order of magnitude.

3.1.2 Our Contribution

Our goal is to build an automatic 3D reconstruction pipeline for satellite images. We started
by observing that a large-scale rectified pair is not needed for applying a stereo matching al-
gorithm. The need of a rectified whole stereo pair may be motivated by the photointerpreter’s
use, which match points manually using the rectified images. However this does not apply for
an automatic matching method. Thus we propose, like Morgan et al. [2006], to approximate
the sensor by an affine camera model. But, unlike Morgan et al. [2006], this approximation
is made only on small image tiles. This limits the discrepancy between epipolar curves, as
was studied by Oh et al. [2010]. It leads in practice to an almost perfect rectification, with a
very small epipolar error. By not imposing to build a single large rectified image we greatly
reduce the residual vertical disparities and thus reduce their impact on the stereo matching
results.

In our approach the rectification is seen as an intermediary step to efficiently solve the
stereo matching problem, not as a product per se. For each locally rectified tile a standard
off-the-shelf stereo matching algorithm can be applied to estimate a horizontal disparity map,
with high chances of success thanks to the subpixel accuracy of the stereo-rectification. The
computed correspondences are then transferred back to the coordinate system of the original
images. This eliminates the need for rectifying the whole images all at once.

The proposed local rectification hinges on the external and internal camera calibration in-
formation, provided for satellite images as localization and projection functions, as explained
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Figure 3.2 – 3D point clouds automatically generated from Pléiades tri-stereo datasets, without any manual
intervention, with the S2P Satellite Stereo Pipeline which is available online on the IPOL website.

in section 2.5, page 50. This information permits to quantify a priori the epipolar error due
to the affine approximation. Conducting our experimentation on several satellite stereo pairs
of urban, flat and mountainous regions, we obtained errors on the order of 1

20 of pixel.
The proposed method is currently being used by CNES on Pléiades images, as part of

the S2P 3D reconstruction stereo pipeline, which will be presented in chapter 6. It is an
automatic pipeline for computing digital elevation models and 3D points clouds from stereo
and tri-stereo datasets. Figure 3.2 shows some of its results. The method can be tested
online2 and provides rectified stereo pairs to be used by the image processing community.

We detail the proposed solution in the next section and in section 3.3 we validate our
approach with extensive experimentation carried out using images from the Pléiades satellites.

3.2 Local Rectification without Control Points

While Morgan et al. [2006] uses ground control points to estimate the affine camera models,
this work uses the standard computer vision approach for epipolar rectification [Hartley and
Zisserman 2004]: first estimate the affine fundamental matrix that encapsulates completely
the affine geometry of the pair of cameras, then compute a pair of transformations to rectify
the images. The fundamental matrix estimation requires only image matches, eliminating
the need for ground control points and manual intervention.

3.2.1 In Defense of the Affine Approximation

While epipolar rectification of images from pinhole cameras is generally done with planar
homographies [Loop and Zhang 1999], for small pieces of satellite images one may use simpler
transformations as the sensor can be modeled by an affine camera. The suitability of the
affine camera model in approximating a satellite pushbroom sensor can be attributed to
Okamoto et al. [1993]. Its main arguments are all applicable to Pléiades and WorldView
images:

• Altitude differences in the photographed terrain are small in comparison with the flying
altitude of the satellite, whose average is 694 km for Pléiades.

• The angular field of view of the sensor is narrow. For a full Pléiades image it is less
than 2°, and it is much less if one considers only a small tile.

2http://dev.ipol.im/~carlo/s2p
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3.2. Local Rectification without Control Points

• The acquisition time of such a tile is less than one tenth of a second, thus the sensor
may be assumed to have constant attitude and speed.

3.2.2 Virtual Correspondences Generation

A natural way to compute correspondences between the two views is to extract feature points,
compute descriptors and match them, as done by SIFT [Lowe 2004, Rey Otero and Delbracio
2014]. But this may lead to a set of keypoints all lying on the same plane, i.e. on the ground.
This configuration is degenerate and F cannot be computed from it, even with robust methods
such as [Espuny et al. 2014]. This problem occurs also if the keypoints do not exactly lie on
the same plane: as relief reduces to zero, the covariance of the estimated F increases [Hartley
and Zisserman 2004]. We found that a safer way to estimate F is to use the orientation
parameters of the cameras, usually provided by image vendors as RPC coefficients. The RPC
model and the associated notations are introduced in section 2.5 of chapter 2. A detailed
presentation and in depth analysis of the RPC model are given in [Tao and Hu 2001].

As previously done by Oh et al. [2010], we use the RPC functions to generate virtual
correspondences between the two views. Given a region Ω in the reference image and an
estimated altitude range [hm, hM ] for the associated 3-space points (i.e. points that were
imaged into Ω) Ω is back-projected on the Earth surface thanks to the RPC localization
function L. Let denote by Γ = L(Ω × [hm, hM ]) ⊂ R3 the back-projected domain3, and by
(Xi)i=1,...,n a regular sampling of Γ. Each 3-space point Xi is projected on the two images
using the associated RPC projection functions, leading to a virtual correspondence (xi,x′i).
The images contents at locations xi and x′i may not correspond, but x′i is located on the
epipolar curve of xi, and that is enough to estimate a fundamental matrix.

How to determine the altitude range. Starting with a rough altitude range estimation,
given by the RPC validity domain which is usually provided with the coefficients [Coeurdevey
and Gabriel-Robez 2012], Ω is back-projected on the WGS 84 ellipsoid. All the SRTM samples
(see appendix B) in the back-projected region are collected. The extremal values of these
samples give a better control of the needed altitude range.

3.2.3 Local Affine Rectification Algorithm

The stereo-rectification algorithm is summarized in Algorithm 6. Given a list of at least
4 correspondences (xi,x′i)i=1,...,n between the two views, the affine fundamental matrix F
is estimated using the Gold Standard algorithm [Hartley and Zisserman 2004]. An affine
fundamental matrix is an homogeneous 3× 3 matrix of the form

F =

0 0 a
0 0 b
c d e

 . (3.1)

Note that the estimation problem is easier for affine fundamental matrices than for general
fundamental matrices. In particular, the Gold Standard algorithm is reduced to performing

3in section 2.2.4 the localization function L was defined with values in R2. Here the input altitude h is
included in the function outputs thus L has values in R3.
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the Singular Value Decomposition (SVD) of a n × 4 matrix, as can be seen in Algorithm 5
which we reproduce here from chapter 14 of [Hartley and Zisserman 2004].

Algorithm 5: The Gold Standard algorithm for estimating F from image correspondences.
Input: {xi ↔ x′i}i=1,...,n: set of n ≥ 4 image point correspondences. A correspondence

is represented as Xi = (x′i, z
′
i,xi, zi)

>.
Output: F: affine fundamental matrix
begin

1 Compute the centroid X̄ = 1
n

∑
iXi and center the vectors ∆Xi = Xi − X̄.

2 Compute the n× 4 matrix A with rows ∆X>i .
3 Then N = (a, b, c, d)> is the singular vector corresponding to the smallest singular

value of A, and e = −N>X̄. The matrix F has the form (3.1).

Once the affine fundamental matrix is known, one can compute two rectifying similarities
using formulas (3.2) and (3.3).

Algorithm 6: Locally affine stereo-rectification of pushbroom images.
Input: L1, P1, L2, P2: RPC localization and projection functions of the input images

x, y, w, h ∈ R: coordinates of a rectangular region of interest in the first view
SRTM data (when available)

Output: S1, S2: rectifying similarities
begin

1 estimate the altitude range [hm, hM ] // from RPCs or SRTM
2 compute n virtual matches xi ↔ x′i // section 3.2.2
3 estimate F from the set of matches {xi ↔ x′i}i=1,...,n // algorithm 5
4 compute S1 and S2 from F // formula 3.3

R1 =
1√

a2 + b2

[
b −a
a b

]
R2 =

1√
c2 + d2

[
−d c
−c −d

]
(3.2)

S1 =

 zR1
0
t

0 0 1

 S2 =

 1
z
R2

0
−t

0 0 1

 (3.3)

3.3 Experimental Validation

The proposed stereo-rectification method is evaluated by measuring the epipolar error, which
is completely determined by the fundamental matrix F. This error is measured by

max
i∈{1,...,n}

max{d(z′i, Fzi), d(zi, F>z′i)}, (3.4)

where d(z, l) is the distance, in pixels, between a point z and a line l. The matches {zi ↔ z′i}
are new virtual correspondences obtained from a sampling of volume Γ. This error is the
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maximal distance between a point and the epipolar line of its match (computed for both
points of the match). The distance d(z′i, Fzi) between a point z′i and the epipolar line it is
supposed to lie on (Fzi) is computed as

d(z′i, Fzi) =
|z′>i Fzi|√

(F>1 zi)2 + (F>2 zi)2
, (3.5)

where F>1 , F
>
2 and F>3 denote the three rows of matrix F.

3.3.1 Numerical Results

From a geometric viewpoint, the locally affine rectification method described in this chapter
amounts to approximate the two pushbroom sensors with affine camera models. The validity
of such an approximation relies on the dimensions of the 3-space domain on which it is used,
and on its location. These dimensions depend on two parameters: the tile size and the width
of the altitude range. To understand the influence of these two parameters on the epipolar
error, experiments were performed on numerous Pléiades stereo datasets, listed in Table 3.1.
Each dataset contains a stereo pair of images together with their geometrical calibration
data given by the RPC functions. The validity domain of the RPC functions in the altitude
variable gives a rough estimation of the altitude range of the scene.

Figures 3.3 and 3.4 show the error measured on each dataset by varying the tile size and
the width of the altitude range separately. Figure 3.3 shows the errors obtained when varying
the tile size up to 5000× 5000 pixels, while keeping the width of the altitude range fixed to
2500 m (or less if needed by the RPC validity range). This is enough because at Pléiades
resolution, i.e. 50 cm per pixel, 5000 pixels correspond to 2.5 km, and it is reasonable to
assume that no place on Earth is steeper than 45◦ when averaged on a 2.5 × 2.5 km area,
even in high mountain areas such as the Himalaya. It is clear from the plots of Figure 3.3
that for tiles of size 1000 × 1000 pixels the error is always lower than 0.1 pixel. The error
increases with the tile size, and it increases faster for mountainous regions like Mont Blanc
(Alps), Mera peak (Himalaya), Ossoue glacier (Pyrenees), Ubaye valley (Alps) and Spitsberg
island. This may be due to the fact that the RPCs of the other datasets have an altitude
validity range narrower than 2500 m.

These results are confirmed by the plots presented on Figure 3.4, where the tile size is
fixed to 1000 × 1000 pixels while the width of the altitude range is varied up to 3000 m.
Whenever the validity domain of RPCs for the altitude is narrower than 3000 m, the width
of the altitude range is varied only up to that limit. This is why some plots do not span the
entire figure. This figure confirms that on any Pléiades dataset, for any altitude variations
in the scene, if one considers a tile of 1000× 1000 pixels the epipolar error due to the affine
stereo-rectification is smaller than 0.1 pixel. This is the main result of the chapter.

By using data from the SRTM database (see appendix B) the estimation of the altitude
range of the scene can be improved. The accuracy gained on the altitude range allows to
use bigger tiles, while keeping the epipolar error lower than 0.1 pixel. Figure 3.5 shows the
influence of the tile size on the error when the altitude range is estimated from SRTM data.
These results show that it is always possible to rectify tiles of size 1000 × 1000 pixels with
an epipolar error lower than 0.05 pixels.

63



Chapter 3. Epipolar Rectification of Pushbroom Images

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Tile size (pix)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ax

 e
rr

or
 (p

ix
)

calanques
cannes
giza
mera
mont_blanc
montevideo
new_york

ossoue
spitsberg
toulouse
tregor
ubaye
mercedes
fray_bentos

Figure 3.3 – Dependence of the epipolar error with the tile size. Each curve corresponds to a stereo pair.
A square tile of size ranging from 500 × 500 to 5000 × 5000 pixels was selected in the middle of the
reference image. The experiments presented in Figure 3.6 show indeed that the position of the tile in the
image does not influence the result. Virtual matches between this central tile and the secondary image
were computed using an altitude range of width fixed to 2500 m. The altitude range was centered in the
RPCs validity domain, and shrinked, if needed, to fit the validity domain. The error reported by each
plot is the maximal distance between a point and the epipolar line of its match. The epipolar lines were
computed thanks to the affine fundamental matrix estimated from the virtual matches, as explained in
Algorithm 6.
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Figure 3.4 – Dependence of the epipolar error with the width of the altitude range. Each curve corresponds
to a stereo pair. A tile of size fixed to 1000 × 1000 pixels was selected in the middle of the reference
image. Virtual matches between this tile and the secondary image were computed using an altitude range
of width ranging from 100 m to 3000 m. The altitude range was centered in the RPCs validity domain.
For some datasets, it was not possible to extend the altitude range up to 3000 m without getting out from
the validity domain. This is why some plots stop at smaller range widths. The error reported by each
plot is the maximal distance between a point and the epipolar line of its match. The epipolar lines were
computed thanks to the affine fundamental matrix estimated from the virtual matches, as explained in
Algorithm 6.
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Dataset Scene dimensions (km) RPC altitude validity (m)
calanques 25× 24 40 – 1090

cannes 21× 20 50 – 830
giza 26× 23 10 – 290
mera 25× 42 -10 – 8610

mont_blanc 21× 15 850 – 4730
montevideo 22× 20 -10 – 150

new_york 48× 37 -120 – 190
ossoue 22× 22 -10 – 3320

spitsberg 21× 20 -10 – 640
toulouse 25× 21 150 – 340

tregor 26× 24 50 – 160
ubaye 22× 15 1100 – 3050

mercedes 25× 23 10 – 90
fray_bentos 22× 20 0 – 80

Table 3.1 – Pléiades datasets used for the experiments.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Tile size (pix)

0.1

0.2

0.3

0.4

0.5

0.6

m
ax

 e
rr

or
 (p

ix
)

calanques
cannes
giza
mera
mont_blanc
montevideo
new_york

ossoue
toulouse
tregor
ubaye
mercedes
fray_bentos

Figure 3.5 – Dependence of the epipolar error with the tile size. Each curve corresponds to a stereo pair. A
tile of size ranging from 500×500 to 5000×5000 pixels was selected in the middle of a Pléiades reference
image. Virtual matches were computed using the refined altitude range given by the SRTM data. The
error reported by each plot is the maximal distance between a point and the epipolar line of its match.
Spitsberg is located above latitude 60°N, outside SRTM domain, thus omitted here.
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Figure 3.6 – Maximal epipolar error on a tile, using different tile sizes ranging from 1000 × 1000 to
4000×4000 pixels, depending on the position of the tile in the full image. Two different datasets are used:
Toulouse in figures (a), (b) and (c), and Mont Blanc in figures (d), (e) and (f). The error distributions
are quite different for the two datasets. On the one hand, this indicates that there is no preferred image
location to measure the highest epipolar errors that works across all datasets. On the other hand, the
ratio between maximum and minimum on these plots is lower than 3. This indicates that if we measure
the epipolar error on a given tile, we are within a factor 3 of the maximal epipolar error that could be
measured on the image.

3.4 Conclusion

In this chapter we showed that, for the purpose of stereo matching, pushbroom satellite
images can be rectified and therefore be reduced to standard stereo pairs. This permits to
produce and make available to the stereo community rectified pairs from real satellite images,
that can be processed using standard computer vision tools. Thorough experimentation on
numerous Pléiades datasets has shown that using tiles of size 1000 × 1000 pixels ensures a
precision of 0.1 pixel, regardless of the altitude range of the scene. The stereo-rectification
described here is implemented in the Satellite Stereo Pipeline S2P (see chapter 6). This
method could be used on images from other Earth observation satellites such as WorldView-
2 and GeoEye-1. However, since for these images only the direct RPC projection function is
provided, the inverse RPC−1 must be estimated, as was mentioned in section 2.5.
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4 Local Correction of the Relative Pointing
Error

Modern Earth observation satellites are calibrated in such a way that a point on the ground
can be located with an error of just a few pixels in the image domain. For many applications
this error can be ignored, but this is not the case for stereo reconstruction, which requires sub-
pixel accuracy. In this chapter we propose a method to correct this error. The method works
by estimating local corrections that compensate the error relative to a reference image. The
proposed method does not rely on ground control points, but only on the relative consistency
of the image contents. We validate our method with Pléiades and WorldView-1 images on a
representative set of geographic sites.

The relative pointing correction algorithm presented in this chapter is used in the stereo-rectifi-
cation method described in chapter 3, which can be tested online at
http://dev.ipol.im/~carlo/ipol_demo/s2p_rectification.

4.1 Introduction

As was pointed out in the general introduction (see chapter 1), the agility of modern Earth
observation satellites such as Pléiades allows them to capture multiple views of the same
target in a single orbit. This enables nearly simultaneous stereo acquisitions aimed at pro-
ducing accurate 3D models. The internal and external parameters of the pushbroom camera
system are known, including the effects of the atmospheric refraction. Thus, as explained in
chapter 2, each image is accompanied by a pair of functions that describe the formation mo-
del. These functions permit a conversion of image coordinates to geographic coordinates and
back. They are described using the Rational Polynomial Coefficient (RPC) camera model,
that we introduced in section 2.5.

There is a noticeable error of a few pixels in the RPC functions [Hanley et al. 2002, Fraser
and Hanley 2003, Grodecki and Dial 2003, Fraser and Hanley 2005]. This is inevitable due
to the limited precision of the camera calibration, especially for the determination of the
attitude, as was seen in chapter 2. For many purposes, this error can be ignored, since it
typically results in a global offset of the results. However, for stereo matching, the epipolar
constraints derived from the parameters of the cameras have to be as precise as possible.
The local stereo image rectification algorithm proposed in chapter 3 relies entirely on the
RPC functions. Thus the relative error between the RPC functions of the images of a stereo
pair must be corrected before applying rectification. In this chapter we propose a method
to correct this error relative to a given reference image. Our method does not rely on
ground control points, but on the relative consistency of the image contents. Thus it can be
implemented as an automatic pre-processing of the input images.
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Chapter 4. Local Correction of the Relative Pointing Error

(a) Four epipolar curves plotted in the domain of the second image.
They correspond to four points located near the edges of the first image.
Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

(b) The same epipolar curves
placed closer to facilitate the
comparison.

Figure 4.1 – The RPC projection and localization functions allow to draw the epipolar curves for a pair of
Pléiades images of Melbourne. The size of the images is approximately 40 000× 16 000 pixels. The range
of altitudes considered is h ∈ [−200, 3000] meters.

4.2 The Relative Pointing Error

4.2.1 Epipolar curves

The knowledge of the localization and projection functions L and P (as defined in (2.14),
(2.15) and in section 2.5) for two images u and v allows to give an analytical description of
epipolar curves. If x is a point in image u, then the function

epixuv : h 7 −→ Pv(Lu(x, h), h) (4.1)

defines a parametrized curve in the domain of image v containing all the possible correspon-
dences of x for different altitudes h. This curve is called the epipolar curve of the point x.
In practice, we observe that these curves are locally straight line segments which are almost
parallel (see Figure 4.1).

The epipolar curves are used to compute the altitudes of 3-space points which are visible
in two images. Suppose that x is the projection of a point in image u, and x′ is the projection
of the same point in image v. Then the epipolar curve of x passes through x′ and the value
h for which

x′ = epixuv(h) (4.2)

is the altitude of the 3-space point. An algorithm to compute h will be presented in chapter 6.

4.2.2 Relative pointing error evidence

The RPC functions simplify the manipulation of the image formation model. However, due
to inevitable errors in the estimation of the external parameters of the system, the formation
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4.2. The Relative Pointing Error

(a) First view u. (b) Second view v.

Figure 4.2 – Effect of the satellite relative pointing error on a pair of Pléiades views of a road intersection
in Haiti. Two corresponding points x and x′ are shown, and the epipolar curve of x as traced by the RPC
does not pass through the corresponding point x′. The relative pointing error is the distance from the
point x′ to the epipolar curve epixuv(R). The altitude of the 3-space point corresponding to x and x′
is approximated by the parameter h for which epixuv(h) is the orthogonal projection of x′ on the curve.
Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

model itself may not agree with the images, as was seen in chapter 2. Given a pair of
corresponding points x and x′ in two images, the epipolar curve of x may not pass through
the point x′, as illustrated in Figure 4.2. We call this error the relative pointing error. It
is not negligible at all, being often of the order of tens of pixels, as shown by the numerical
measurements reported in Table 4.1.

4.2.3 How to measure the relative pointing error

Given two images u and v and a set of correspondences (xi,x′i)i=1...n, the relative pointing
error between u and v is formally defined by

1

n

n∑
i=1

d(x′i, epixiuv(R)). (4.3)

Here epixiuv(R) is the epipolar curve of point xi, and d is the Euclidean distance, measured in
pixels, between a point and a subset of R2. The set of correspondences between two images
can be determined using SIFT [Lowe 2004, Rey Otero and Delbracio 2014]. Table 4.1 gives
values for the relative pointing error measured on several Pléiades and WorldView-1 stereo
pairs.
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Dataset error on small tile (pix) error on large tile (pix) Altitude range width (m)
calanques 0.61 0.58 182

cannes 4.33 3.83 151
giza 0.63 0.39 57

lenclio 1.88 1.17 55
mera 8.47 8.13 1097

mercedes_1 2.01 2.07 19
mercedes_2 2.18 2.14 21

mont_blanc_1 2.23 2.13 466
mont_blanc_2 3.25 3.05 1159

montevideo 0.16 0.22 18
new_york 0.17 0.46 40

ossoue 1.02 0.80 540
reunion_1 1.13 3.34 79
reunion_3 0.99 1.07 72
reunion_4 0.80 0.77 28
reunion_5 0.72 0.67 349
spitsberg 1.16 1.12 610
toulouse 0.92 0.66 4

ubaye 0.27 0.31 220
ambedkar* 2.55 – 9
charbagh* 2.35 – 16

mean 1.80 1.57 –

Table 4.1 – Pointing error values measured on each stereo pair for two tile sizes: small is 1000 × 1000
pixels and large is 25 000 × 25 000 pixels. Datasets marked with an asterisk (*) are from WorldView-1.
The others are from Pléiades 1A and 1B.

Figure 4.3 – Consequence of the satellite relative pointing error. Two point clouds computed from two
image pairs of the Melbourne stadium while keeping the same reference image. One is colored in yellow
and the other in pink. They do not fit exactly because of the residual pointing error in the direction of
the epipolar lines. But these clouds are easy to register.
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4.3. Correction of the Relative Pointing Error

4.3 Correction of the Relative Pointing Error

4.3.1 Not absolute but automatic correction

The error affecting RPC functions is well known [Fraser and Hanley 2003]. It comes from
inaccuracies in the sensor attitude estimation and also affects the rigorous model, as was
discussed in chapter 2. Thus the RPC approximation is not to blame for it [Fraser and
Hanley 2005]. This error is absolute. It can be evidenced with a single image u and a unique
ground control point X by observing that Lu(X) is not exactly located on the actual image
of X. Several authors have modeled this absolute error and proposed methods to compensate
it [Hanley et al. 2002, Fraser and Hanley 2003, Grodecki and Dial 2003, Fraser and Hanley
2005]. All these methods need ground control points and manual interactions, thus are not
suitable in a fully automatic 3D reconstruction pipeline.

The relative pointing error is measured using two images and can be corrected without
any control points. This correction will not remove the absolute error affecting the RPC
projection and localization functions, but will allow to perform efficient stereo matching
between the views by following epipolar curves. Moreover, this correction procedure does
not require any manual interaction and can be integrated in a fully automatic pipeline to
compute digital elevation models. However, as the correction is relative to a given image
pair, 3D point clouds obtained from different image pairs may not be correctly registered, as
illustrated by Figure 4.3.

4.3.2 Relative pointing error model

As mentioned in chapter 2, and previously reported by Fraser and Hanley [2005], errors
within the direct measurement of sensor orientation reside mainly in sensor attitude. For an
image tile of size 1000×1000 pixels, covering a scene of size 500×500 m on the ground (with
Pléiades resolution), we can assume that the scene is located at infinity with respect to the
satellite. The error can then be modeled in image space as a translation composed with a
rotation.

A simple way to correct the relative pointing error is thus to transform one of the two
images in such a way that the corresponding points fall on the respective epipolar curves:
given two images u, v and a set of correspondences (xi,x′i)i=1...n, we search for a translation
T and a rotation R centered in the center of the tile such that, for all i, the transformed point
RTx′i lies on the epipolar curve epixiuv(R). The desired translation T∗ and rotation R∗ minimize
the relative pointing error defined by equation 4.3:

R∗, T∗ = arg min
R,T

1

n

n∑
i=1

d(RTx′i, epixiuv(R)). (4.4)

The goal of the relative pointing error correction is to improve the precision of the epipolar
constraints derived from the RPC functions. Epipolar constraints are used to rectify the
images for efficient stereo matching. But as was shown in chapter 3, stereo-rectification of
pushbroom images is possible only on small image tiles. For Pléiades images an appropriate
tile size was found to be 1000 × 1000 pixels. On such small tiles the rotation component R
of the pointing error is not visible. The correction can thus be performed with a translation
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Figure 4.4 – For a tile of size 1000× 1000, the epipolar curves are well approximated by parallel lines (see
chapter 3). On this figure the lines are assumed to be horizontal. For each correspondence (xi, x′i) there is
a vertical shift between the point x′i and the line Fxi. The median of all these shifts minimizes the relative
pointing error defined by formula (4.3).

only. The minimization can hence be simplified and becomes:

T∗ = arg min
T

1

n

n∑
i=1

d(Tx′i, epixiuv(R)). (4.5)

4.3.3 Correction algorithm

From chapter 3 we know that the epipolar curve epixiuv(R) is approximated up to 0.05 pixels
by the straight line Fxi, where F is the affine fundamental matrix of the two views for
the considered tile. As this fundamental matrix is an affine fundamental matrix, all the
lines Fxi are parallel. Without any additional restriction, we may assume that these lines
are horizontal (otherwise just do a change of coordinates). The horizontal line Fxi can be
written, in homogeneous coordinates, as

Fxi =

0
1
ci

 . (4.6)

With these notations, for each point correspondence (xi,x′i) we have

d(x′i, Fxi) = |y′i + ci|, (4.7)

where x′i = (x′i, y
′
i, 1)>. The situation is illustrated in figure 4.4. This error is invariant

to horizontal translations, thus the search for a translation minimizing the relative pointing
error defined in formula (4.3) can be restricted to vertical translations only. With a vertical
translation of parameter t, the error becomes

1

n

n∑
i=1

d(Tx′i, Fxi) =
1

n

n∑
i=1

|y′i + t+ ci|. (4.8)

The translation that minimizes this sum is given by the geometric median [Weiszfeld 1937]
of the vectors (−y′i − ci)i=1,...,n, as shown by the next lemma.
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Lemma 2. Let a1, a2, . . . , an be real numbers. The function f : R→ R defined by

f(t) =
n∑
i=1

|ai − t| (4.9)

is minimal when t is equal to the median of the ai (i = 1, . . . , n).

The relative pointing error can thus be minimized in a tile by applying a translation
to one of the images. The translation is estimated from a set of point correspondences by
computing a median. Note that the median is robust against outliers, thus this correction
procedure works well even in the presence of false matches.

4.4 Experimental Results

The relative pointing error, as defined by equation (4.3), was measured on several Pléiades
and a few WorldView-1 datasets. For each dataset the measurement was made with tiles
sizes of 1000×1000 pixels (small) and 25 000×25 000 pixels (large). The tiles were located in
the center of the reference image. The matches used to compute the relative pointing errors
were obtained using SIFT [Lowe 2004, Rey Otero and Delbracio 2014]. Figure 4.5 shows the
displacements that should be applied to the matching points of the second image to make
them fit on the corresponding epipolar curves, before and after correction. Table 4.2 gives
the measured values before and after correction, for both the tile sizes (small and large). The
correction was performed by computing the optimal translation in image space as described
in section 4.3.3. The results show that, on average, for tiles of size 1000× 1000, the relative
pointing error is reduced by a factor 10 and the residual error is always smaller than half a
pixel. On the contrary, for large tiles of size 25 000 × 25 000 pixels, the error is reduced on
average by a factor 2, but the residual error may still be greater than 1 pixel, and in some
cases the correction increases the error. There are two explanations for that:

• the pointing error is not well approximated by a translation in image space for such
large tiles,

• the epipolar geometry is not well approximated by an affine fundamental matrix. Indeed
the results of chapter 3 show that the approximation is not valid for such large tiles.

For these large tiles, we included the rotation term in the error model, as in equation 4.4.
This led to an almost null rotation and almost the same residual errors. This indicates that
for large tiles the error cannot be modeled by a rigid transformation in the image space.
Nevertheless, this study shows that for stereo reconstruction purposes, which require only
small tiles, the pointing error correction is satisfactory.

4.5 Conclusion

We presented a method to automatically correct the relative error that exists in the RPC
coefficients associated to two views of any high resolution satellite stereo dataset. This
method reduces the relative error by a factor 10, lowering it under 0.2 pixels, thus allowing
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(a) Error vectors before correction. (b) Error vectors after correcting the position
of the second image by the optimal translation
given by equation (4.5).

Figure 4.5 – Error vectors for some keypoints on a 1000× 1000 tile of a Pléiades image.

a very precise stereo-rectification. This pointing error correction method is implemented
in the Satellite Stereo Pipeline (S2P), which will be presented in chapter 6. Future work
should investigate more complex error models for entire images. Independently of the error
model, the correction could be further improved by refining the position of the matches using
techniques such as least square matching [Gruen 1985, Liu et al. 2014].
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4.5. Conclusion

Dataset Small tile error (pix) Large tile error (pix) Altitude range width (m)before after before after
calanques 0.61 0.14 0.58 0.41 182

cannes 4.33 0.12 3.83 0.36 151
giza 0.63 0.09 0.39 0.40 57

lenclio 1.88 0.12 1.17 0.44 55
mera 8.47 0.29 8.13 0.38 1097

mercedes_1 2.01 0.15 2.07 0.31 19
mercedes_2 2.18 0.13 2.14 0.18 21

mont_blanc_1 2.23 0.15 2.13 1.35 466
mont_blanc_2 3.25 0.21 3.05 1.27 1159

montevideo 0.16 0.09 0.22 0.15 18
new_york 0.17 0.10 0.46 0.73 40

ossoue 1.02 0.36 0.80 0.43 540
reunion_1 1.13 0.10 3.34 2.49 79
reunion_3 0.99 0.10 1.07 0.17 72
reunion_4 0.80 0.12 0.77 0.21 28
reunion_5 0.72 0.13 0.67 0.19 349
spitsberg 1.16 0.27 1.12 4.58 610
toulouse 0.92 0.14 0.66 0.29 4

ubaye 0.27 0.17 0.31 0.36 220
ambedkar* 2.55 0.16 – – 9
charbagh* 2.35 0.48 – – 16

mean 1.80 0.17 1.57 0.7 –

Table 4.2 – Pointing error values before and after correction, for two tile sizes: small is 1000×1000 pixels
and large is 25 000 × 25 000 pixels. On average, the proposed algorithm allows to reduce the error by a
factor 10 on the small tiles, and a factor 2 on the large tiles. Thus the correction is used only for small
tiles. Datasets marked with an asterisk (*) are from WorldView-1. As the images from these datasets are
smaller than the large tile, only the small tile was used. The other datasets are from Pléiades 1A and 1B.
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5 Stereo Processing by Semi-Global Match-
ing and Beyond

Semi-Global Matching (SGM) is among the top-ranked stereo vision algorithms. SGM is an effi-
cient strategy for approximately minimizing a global energy that comprises a pixel-wise matching
cost and pairwise smoothness terms. In SGM the two-dimensional smoothness constraint is ap-
proximated as the average of one-dimensional line optimization problems. The accuracy and
speed of SGM are the main reasons for its widespread adoption, even when applied to generic
problems beyond stereo vision. However this approximate minimization produces characteris-
tic low amplitude streaks in the final disparity image, and is clearly suboptimal with respect
to more comprehensive minimization strategies. This chapter gives a detailed description of
the algorithm, and analyzes the approximations made by SGM with respect to the underlying
Markov Random Field (MRF). Based on a recent interpretation of SGM as a min-sum Belief
Propagation algorithm, we propose a new algorithm that allows to reduce by a factor five the
energy gap of SGM with respect to reference algorithms for MRFs with truncated smoothness
terms. The proposed method comes with no compromises with respect to the baseline SGM, no
parameters and virtually no computational overhead. At the same time it attains higher quality
results by removing the characteristic streaking artifacts of SGM.

Implementations of the SGM and MGM algorithms presented in this chapter can be tested online
on any stereo pair at http://dev.ipol.im/~facciolo/ipol_demo/mgm.

5.1 Introduction

Stereo vision estimates the depth of a scene from two or more images taken from slightly
different viewpoints. This is done by computing the apparent motion of the scene points
between the views. In the case of stereo-rectified image pairs, such as those produced by the
Algorithm 6 presented in chapter 3, this motion is referred to as disparity.

Stereo matching methods are traditionally divided into local and global methods [Schar-
stein and Szeliski 2002]. Local methods estimate the disparity independently for each pixel
by comparing features (usually a window around the pixel) of the left and right image. Local
methods are computationally cheap, however they suffer from several artifacts among which
the well-known foreground fattening effect near depth discontinuities. Numerous methods
have been proposed to overcome this effect by adapting the shape or the weight distribution
of the window to the local image content, such as [Yoon and Kweon 2006] which has been
analyzed and implemented by Julià and Monasse [2015]. But in any case if the comparison
window falls on an ambiguous area (lacking texture or with repetitive patterns) the estimated
disparity will likely be incorrect.

Global methods cope with these ambiguities by imposing the smoothness of the disparity
map, which permits to derive reasonable estimates even in the ambiguous areas. Global
methods model the correspondence estimation as a global minimization usually associated
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Chapter 5. Stereo Processing by Semi-Global Matching and Beyond

with a Markov Random Field (MRF) formulation. The resulting energy functional is a sum
of unary matching terms and smoothness terms that force adjacent pixels to have similar
disparities. While this problem is NP-hard, strong local minima can be computed [Boykov
et al. 2001] and many techniques have been developed to that effect, such as move-making
approaches [Boykov et al. 2001, Kolmogorov and Zabih 2001, Kolmogorov et al. 2014] and
message-passing methods [Felzenszwalb and Huttenlocher 2006, Kolmogorov 2006]. Their
effectiveness has been reviewed by Szeliski et al. [2008]. Most of these techniques, however,
are too slow when applied to images of a reasonable size such as those of the Middlebury
stereo evaluation dataset (version 3) [Scharstein et al. 2014].

Because of the ever increasing size of the problems, fast approximate algorithms producing
reasonable solutions are currently preferred to global techniques [Hirschmüller 2008, Sinha
et al. 2014, Hosni et al. 2013, Geiger et al. 2011, Cech and Sara 2007, Besse et al. 2014,
Chen and Koltun 2014, Komodakis et al. 2007]. Among these approximate algorithms, Semi-
Global Matching (SGM) [Hirschmüller 2008] is nowadays one of the preferred choices for
stereo vision applications [Hermann and Klette 2013, Zhu et al. 2012] because of its efficiency
and good performance, and it has even been applied to problems beyond disparity estimation,
for example, to approximately solve the Potts model [Sinha et al. 2014].

In SGM the two-dimensional smoothness constraint is efficiently approximated as the
average of one-dimensional line optimization problems. This approximation reduces at each
pixel to an optimization on a star-shaped graph (usually with 8 cardinal directions) centered
at the pixel. This structure favors the occurrence of piecewise constant solutions along these
directions. However, two adjacent scan lines share little information, so if the data term is
weak, their solutions can differ, yielding the well known streaking artifacts of SGM.

The success of the SGM algorithm relies on several heuristics. In this chapter we clarify
some of them by analyzing SGM in the light of its recently proposed interpretation as a
min-sum Belief Propagation algorithm by Drory et al. [2014]. This leads us to propose a new
version of the algorithm that overcomes some of its limitations. Our principled interpreta-
tion of SGM reduces by a factor five its energy gap with respect to reference optimization
algorithms for MRFs with truncated smoothness terms.

Extensive evaluation shows that the proposed algorithm removes all streaking artifacts,
improves the visual quality of the result, and computes efficiently approximate solutions to
large MRF problems. All this is achieved while keeping the flexibility of SGM, without
introducing new parameters and with a computing overhead of at most 20%.

Previous work. The strategies for finding a minimum of the global energy function dif-
fer. Many methods simplify the 2D graph by reducing it to simpler subproblems. But these
simplifications are critical as they determine the flow of information. Dynamic program-
ming approaches [Ohta and Kanade 1985b] perform the optimization in one dimension for
each scan line individually, which commonly leads to streaking effects. This is avoided by
tree-based dynamic programming approaches. Some methods derive, from the 2D graph,
a single tree that spans the entire image [Veksler 2005]. Others construct trees that vary
their grid structure with the position of the pixel [Bleyer and Gelautz 2008]. The Fast-PD
algorithm [Komodakis et al. 2007] exploits information from the original MRF problem and
its dual resulting in a remarkable speed-up with respect to alpha-expansions. In [Chen and
Koltun 2014] a very efficient block coordinate descent is used to approximately solve MRFs

78



5.2. The Semi-Global Matching algorithm

with truncated smoothness terms. In SGM [Hirschmüller 2008] the optimization is restricted
to a star-shaped graph centered at the current pixel, which sometimes results in streaking
artifacts over poorly textured areas. Increasing the number of paths (i.e. 16 directions) may
suppress them but doubles the computational burden [Hirschmüller 2008].

The technique we propose aims at increasing the support of SGM’s graph without extra
overhead, by leveraging its connection with message passing algorithms [Drory et al. 2014].

5.2 The Semi-Global Matching algorithm

The Semi-Global Matching (SGM) algorithm [Hirschmüller 2008] for dense stereo matching
is an efficient tool to perform approximate minimization of energies for 2D Markov Random
Fields (MRF). Let us denote by G = (V, E) the image graph associated to the first view of
the stereo pair, where V denotes the set of vertices, i.e. pixels, and E denotes the set of edges,
i.e. neighborhood relations. The graph generally used is the 4-connected or the 8-connected
image graph. The stereo matching problem is then formulated as finding the disparity map
d that minimizes the energy E defined on G by

E(d) =
∑
p∈V

C(p,dp) +
∑

(p,q)∈E

V (dp,dq). (5.1)

Here C(p, d) is a unary data term that represents the pixel-wise cost of matching p with
disparity d ∈ D, where D = {dmin, . . . , dmax} is the search space, while dp denotes the value
of the disparity map d at pixel p. The pairwise terms V (dp,dq) enforce smoothness of the
solution by penalizing changes of neighboring disparities on the edge set E . SGM considers
a particular type of pairwise terms of the form

V (d, d′) =


0 if d = d′

P1 if |d− d′|= 1
P2 otherwise

. (5.2)

This imposes a small penalty P1 for small jumps in disparity (up to one pixel), which are
common on slanted surfaces. The second penalty term P2 (with P2 > P1) accounts for
larger disparity jumps. The penalty P2 can be further adapted [Hirschmüller 2008, Bleyer
and Gelautz 2008, Sinha et al. 2014] depending on the image content to align the disparity
discontinuities with the discontinuities in the image.

Remark. In the original papers [Hirschmüller 2005, 2008] the energy (5.1) is written with
pairwise terms V (dp,dq) for all neighbors of all pixels. Thus each edge of E is counted twice
(one time for each endpoint of the edge). This does not have any consequences, except for
the fact that the numerical values of P1 and P2 have to be doubled here to obtain the same
energy.

The exact minimization of energy (5.1) is NP-hard, as proved in section 5.2.1. The
SGM algorithm extends single-line dynamic stereo matching [Ohta and Kanade 1985b] into
a multi-line integration strategy along multiple directions which leads to an approximate
solution of the NP-hard problem (5.1). The strategy adopted by SGM consists in dividing
the grid-shaped problem into multiple one-dimensional problems defined on scanlines, which
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are straight lines that run through the image in the 8 cardinal directions. For each cardinal
direction r, SGM computes a matrix of costs Lr. The costs Lr(p, d) are computed recursively,
starting from the image borders, along a path in the direction r:

Lr(p, d) = C(p, d) + min
d′∈D

(Lr(p− r, d′) + V (d, d′)). (5.3)

This recursion is in fact a dynamic programming algorithm that solves the problem restricted
to the directed graph induced by the scanline p−Nr = {p−kr|k ∈ N}. Because of the special
form of the smoothness potential (5.2), Lr(p, ·) can be computed with just 7 instructions per
disparity, as will be shown in section 5.2.3. These costs are computed in each direction r and
are then added to obtain an aggregated cost volume

S(p, d) =
∑
r

Lr(p, d). (5.4)

The final disparity for each pixel is then selected by minimizing the aggregated cost S(p, d)
with respect to d.

5.2.1 Energy minimization is NP-hard

The NP-hardness proof is adapted from [Boykov et al. 2001]. It is based on the reduction in
polynomial time of the NP-hard multiway cut problem, that we shall first present.

The multiway cut problem. Let G = (V, E) be a graph. Consider T ⊆ V a set of
vertices, called terminals. A multiway cut, sometimes referred to as a cut for short, is a set
of edges C ⊆ E verifying:

• The terminals are separated by C, i.e. each terminal is in a distinct connected component
in the induced graph (V, E − C).

• No proper subset of C separates the terminals.

The weight of a cut is defined as its cardinal, i.e. the number of edges contained in the
cut. The multiway cut problem is to find a cut of minimal weight. An example is shown on
Figure 5.1. If the graph is not planar, which is the case for the 8-connected image graph as
soon as the image is larger than 3× 3 pixels, or if the number of terminals is not fixed, then
this problem is NP-hard [Dahlhaus et al. 1992].

With P1 = 0 and P2 = 1 the pairwise term V (dp,dq) defined in (5.2) is equal to 1R∗(dp−
dq), thus in that particular case the energy (5.1) is a Potts energy. But even in that simpler
case, the minimization problem is NP-hard.

Result 5. Minimizing a Potts energy is NP-hard.

Proof. The plan of the proof is the following: given an arbitrary graph G, we build, in
polynomial time, a Potts energy EG such that a minimal cut on G can be determined from
d∗ = arg minEG in polynomial time. As the multiway cut problem is NP-hard, minimizing
a Potts energy is NP-hard.

For not connected graphs, a multiway cut is just the union of multiway cuts on each
connected component, so in the following we shall consider only connected graphs.
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Figure 5.1 – A graph G in which the terminals are surrounded. On the right, a minimal multiway cut on
G is shown in green.

Let G = (V, E) be a graph with T = {t1, ..., tk} ⊆ V the set of terminals. Considering
the search space D = {1, ..., k}, let define the energy of a disparity map d as:

EG(d) =
∑
p∈V

C(p,dp) +
∑

(p,q)∈E

1R∗(dp − dq), (5.5)

where

C(p, j) =

{
|E| if p = ti and i 6= j

0 otherwise
(5.6)

As |E| is an upper bound for the regularity term
∑

(p,q)∈E 1R∗(dp−dq), this definition forces
the minimizing disparity map d∗ to verify d∗tj = j for all j ∈ D, and if p is not a terminal,
C(p, j) = 0 means that there is no privileged disparity for p.

A map d is said feasible if, for all j ∈ {1, . . . , k}, dtj = j and d−1(j) form a connected
component of G (i.e. the graph (d−1(j), E ∩ (d−1(j) × d−1(j))) is connected). Yet, d∗ is
feasible. Indeed, suppose there is a disparity j such that d−1(j) does not form a connected
component of G. Let S be a connected component of d−1(j), not containing tj . As G is
connected and d(Ω) 6= {j}, there is a vertex p0 ∈ S that is connected to a certain q0 of
disparity i 6= j. Then the disparity map d− defined by

d−(p) =

{
i if p ∈ S

d∗(p) otherwise (5.7)

verifies E(d−) ≤ E(d∗)− 1 < E(d∗), which contradicts the minimality of d∗.
Lemma 3 states that there is a one-to-one correspondence between feasible maps and

multiway cuts such that the weight of a cut is the energy of the corresponding map, and this
correspondence can be computed in polynomial time. Hence, once d∗ is known, a solution to
the multiway cut problem can be computed in polynomial time.

Lemma 3. There is a one-to-one correspondence between feasible maps and multiway cuts,
such that the weight of a cut is the energy of the corresponding map.
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Proof. Let us consider a feasible map d. Call Cd = {(p,q) ∈ E | dp 6= dq} . As d is
feasible, Cd separates the terminals. Furthermore Cd has no proper subset that separates
the terminals. Indeed, if C′ ( Cd, there is an edge (p,q) such that i = dp 6= dq = j but
(p,q) 6∈ C′. Thus, terminals ti and tj are in the same connected component and C′ does not
separate the terminals. Thus Cd is a multiway cut, and its weight is

|Cd| =
∑

(p,q)∈Cd

1 =
∑

(p,q)∈E

1R∗(dp − dq) = EG(d) (5.8)

where the last equality comes from the fact that all the unary cost terms C(p,dp) are equal
to zero.

Conversely, if C is a multiway cut, as G is connected each pixel p is in the connected
component of a single terminal tj in the induced graph V, E − C. Define the disparity map
dC by dC(p) = j. Then obviously CdC = C and dCd = d which proves that d 7→ Cd is
bijective.

5.2.2 1D Energy minimization is linear

For the usual 4-connected or 8-connected image graph the energy minimization problem (5.1)
is NP-hard. But if the image graph is one dimensional, i.e. if V = {1, · · · , n} and the set
of edges E contains only pairs of consecutive vertices, then the minimization problem is
easier. In this subsection we study this particular case. To emphasize the fact that the image
domain has only one dimension, pixels (or graph vertices) are denoted by italic letters such
as p instead of p. The energy (5.1) can be rewritten as

E(d) =

n∑
p=1

C(p,dp) +

n∑
p=0

V (dp,dp+1) (5.9)

where (d0,dn+1) = (d1,dn), in order to make the extra terms V (d0,d1) and V (dn,dn+1) be
zero. Given p ∈ {1, . . . , n}, the two sums can be split in two and reorganized as

E(d) =

p∑
q=1

(C(q,dq) + V (dq−1,dq))︸ ︷︷ ︸
Ep,+(d)

+
n∑
q=p

(C(q,dq) + V (dq,dq+1))︸ ︷︷ ︸
Ep,−(d)

−C(p,dp). (5.10)

The first term Ep,+ of this sum is a function that actually depends only on d1, . . . ,dp. It
can be minimized with respect to d1, . . . ,dp−1 in linear time with a dynamic programming
algorithm. The value of the minimum, which depends on p and dp, is stored in the aggregated
cost table denoted by L+. It is computed by algorithm 7. Note that the term mini L+(p−1, i)
intervening in the recursion formula (5.11) needs to be computed only once for each value of
p. The complexity of the algorithm is hence O(nk).

Result 6. The aggregated cost table L+ computed by algorithm 7 verifies

L+(p, d) = min
d,dp=d

Ep,+(d) (5.12)

for all p ∈ {1, . . . , n} and d ∈ {dmin, . . . , dmax}.
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Algorithm 7: Directional cost aggregation in 1D to minimize term Ep,+ defined in formula
(5.10)
Input: cost table C of size n× k

set of disparities D = {dmin, . . . , dmax}
Output: aggregated cost table L+ of size n× k
begin

for d ∈ D do // initialization
L+(1, d)← C(1, d)

for p ∈ {2, . . . , n} do
for d ∈ D do // aggregation

L+(p, d)← C(p, d) + min(L+(p− 1, d),

L+(p− 1, d+ 1) + P1,

L+(p− 1, d− 1) + P1,

min
i
L+(p− 1, i) + P2)

(5.11)

Proof. The result is proved by induction on p. Any d verifies L+(1, d) = C(1, d) = C(1, d) +
V (d1,d0) = E1,+(d) for all disparity maps d such as d1 = d. This proves the equality (5.12)
for p = 1.

If the result (5.12) holds for p − 1 ≥ 1, then by replacing L+(p − 1, ·) in (5.11) with the
induction hypothesis (5.12) we have:

L+(p, d) = C(p, d) + min
(

min
d,dp−1=d

Ep−1,+(d),

min
d,dp−1∈{d±1}

Ep−1,+(d) + P1,

min
i

min
d,dp−1=i

Ep−1,+(d) + P2

)
.

(5.13)

In the first two arguments of the most external min operator, the value of dp−1 is fixed thus
V (dp−1, d) is equal to zero and P1 respectively. In the third argument, the value of dp−1 is
not fixed thus we only know that V (dp−1, d) ≤ P2. But if the value of the third argument is
obtained with a disparity map such that V (dp−1, d) < P2, then V (dp−1, d) is equal to either
P1 or zero, and then the third argument is equal to one of the first two arguments. Hence
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L+(p, d) can be rewritten as

L+(p, d) = C(p, d) + min
(

min
d,dp−1=d

Ep−1,+(d) + V (dp−1, d),

min
d,dp−1∈{d±1}

Ep−1,+(d) + V (dp−1, d),

min
d
Ep−1,+(d) + V (dp−1, d)

)
= C(p, d) + min

d

(
Ep−1,+(d) + V (dp−1, d)

)
= min

d

(
Ep−1,+(d) + C(p, d) + V (dp−1, d)

)
(5.14)

As the argument of the min does not depend on the value of dp, this can be rewritten as

L+(p, d) = min
d,dp=d

(
Ep−1,+(d) + C(p,dp) + V (dp−1,dp)

)
= min

d,dp=d
Ep,+(d).

(5.15)

This proves the result for p and hence ends the proof.

In the same way the second term Ep,−(d) of the sum (5.10) can be minimized with respect
to dp+1, . . . ,dn in linear time by computing the aggregated cost table L− such that for all
p ∈ Ω and d ∈ {dmin, . . . , dmax}

L−(p, d) = min
d,dp=d

Ep,−(d). (5.16)

The algorithm to compute L− is analogous to algorithm 7, the only difference being the loop
order that goes from n to 1 instead of going from 1 to n.

Then given p ∈ Ω and a disparity value d, the value of min
d,dp=d

E(d) is obtained simply

from L+, L− and C:

(L+ + L− − C)(p, d) = min
d,dp=d

Ep,+(d) + min
d,dp=d

Ep,−(d)− C(p, d) = min
d,dp=d

E(d), (5.17)

where the last equality is a consequence of formula (5.10) and of the fact that the two
added minima actually operate on disjoint sets, namely {d1, . . . ,dp−1} and {dp+1, . . . ,dn}.
If we assume that E has a unique global minimum on Dn, it follows from lemma 4 and
equality (5.17) that the minimum point can be computed componentwise as

dp = arg min
D

(L+ + L− − C)(p, ·). (5.18)

The global minimization problem is hence reduced to a pointwise one, whose complexity is
O(nk).

Lemma 4. Let I1, . . . , In be n finite sets, and f : I1× . . .×In → R+ a non-negative function.
Assume that f has a unique global minimum point at (x∗1, . . . , x

∗
n). Then, for any 1 ≤ p ≤ n

the function g : Ip → R+ defined by

g(x) = min
x1,...,xp−1,xp+1,...,xn

f(x1, . . . , xp−1, x, xp+1, . . . , xn) (5.19)

has a unique global minimum point at x∗p. Hence x∗p = arg min g.
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Figure 5.2 – Disparity map obtained on the Middlebury stereo pair Cones by minimizing the 1D energy (5.9)
row by row. The streaking artifacts are due to the absence of regularity constraints in the vertical direction.

Proof. As all the Ik are finite sets the minimum used to define g is attained and g(x) ≥
f(x∗1, . . . , x

∗
n) for all x ∈ Ip. But we have

g(x∗p) = min
x1,...,xp−1,xp+1,...,xn

f(x1, . . . , xp−1, x
∗
p, xp+1, . . . , xn) ≤ f(x∗1, . . . , x

∗
n). (5.20)

Hence x∗p is a global minimum point for g and g(x∗p) = f(x∗1, . . . , x
∗
n). If g has another global

minimum point x, then there exists (x̄1, . . . , x̄p−1, x̄p+1, . . . , x̄n) ∈
∏n
k=1,k 6=p Ik such that

f(x̄1, . . . , x̄p−1, x, x̄p+1, . . . , x̄n) = g(x) = f(x∗1, . . . , x
∗
n) (5.21)

and as the global minimum point of f is unique it follows that x = x∗p.

Remark. As the energy function E is real-valued and defined on a finite set, it has in general
a unique global minimum.

5.2.3 Aggregation of Costs in 1D from Several Directions

As minimization of the 2D energy (5.1) is NP-hard while minimization of the 1D energy (5.9)
is linear, one could try to minimize energy (5.9) along individual image rows. This leads to
streaking artifacts, as shown by figure 5.2. The problem is that nothing relates the disparities
of an image row to those of the surrounding rows, as the non-horizontal interaction potentials
of energy (5.1) have been removed.

The solution proposed by SGM

To solve this issue while preserving the linear minimization, Hirschmüller [2008] proposed
to aggregate matching costs in 1D from several directions equally. The number of proposed
directions was 8 or 16. For the sake of simplicity we focus on the 8 directions case, i.e. when
the direction r verifies

r ∈ {(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1,−1), (1,−1), (−1, 1)}. (5.22)
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The aggregated cost S(p, d) for a pixel p with disparity d is obtained by adding the costs
Lr(p, d) over all the directions r:

S(p, d) =
∑
r
Lr(p, d), (5.23)

where Lr(p, d) is the cost of the 1D minimum r-oriented path ending in pixel p with disparity
d. As for L− and L+ in formula (5.11), Lr is computed recursively by

Lr(p, d) = C(p, d) + min(Lr(p− r, d),

Lr(p− r, d+ 1) + P1,

Lr(p− r, d− 1) + P1,

min
i
Lr(p− r, i) + P2)

(5.24)

As the term mini Lr(p − r, i) is computed only once per each p, this update required only
five additions and the computation of the minimum of four numbers. The computation of
the Lr cost volume is detailed in algorithm 8. Its complexity is O(whk) because each pixel is
covered once. The disparity for each pixel p is then obtained by minimizing the aggregated
cost with respect to d:

dp = arg min
d

S(p, d). (5.25)

What does SGM really minimize?

By doing so the original 2D energy (5.1) is approximated, for each pixel p, by another energy
Ep defined on a Union Jack domain centered on p, as shown on Figure 5.3. In the previous
section we computed the aggregated cost L+ in the horizontal direction r = (1, 0), and showed
that its value in (p, d) gives the minimum of Ep,+(d) with respect to all the disparity maps
d such that dp = d. Given a pixel p and a direction r, let us define

Ep,r(d) =
∑

q∈Ω∩(p−Nr)

C(q,dq) + V (dq,dq−r). (5.26)

When r = (1, 0) this definition is the same as that of Ep,+ given in equation (5.10). It can
be shown as in proposition 6 that

Lr(p, d) = min
d,dp=d

Ep,r(d). (5.27)

Then, for a given p, as the minimizations (5.27) for various directions r are carried out
on disjoint sets of variables, namely {dq|q ∈ Ω ∩ (p − N∗r)}, the sum of the minima is the
minimum of the sum: ∑

r
Lr(p, d) = min

d,dp=d

∑
r
Ep,r(d)

= min
d,dp=d

Ep(d),
(5.28)
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Figure 5.3 – Aggregation of costs in 8 directions around pixel p. The shape of the set of considered pixels
reminds the Union Jack, as noted by Drory et al. [2014]. The red arrows show the interaction potentials
that are taken into account.

where we introduced the notation Ep =
∑

rEp,r. Hence it follows from (5.23) that

arg min
d

S(p, d) = arg min
d

min
d,dp=d

Ep(d). (5.29)

Then if we assume that Ep has a unique global minimum, lemma 4 ensures that this pointwise
minimization of S(p, ·) gives the value in p of a disparity map that minimizes Ep. The energy
really minimized by SGM is thus

Ep(d) =
∑
r

∑
q∈Ω∩(p−Nr)

C(q,dq) + V (dq,dq−r). (5.30)

The domain of that energy, i.e. the Union Jack shown in Figure 5.3, changes for every pixel
like in local stereo methods such as block-matching. From that perspective, SGM belongs to
the family of local stereo method.

How well does this energy approximate the real energy?

While all the cost and interaction terms related to pixels out from the union jack are ne-
glected, the cost of the current pixel p appears in each of the Ep,r and thus is counted eight
times. Hence, as was reported by Drory et al. [2014], a closer approximation is obtained by
subtracting 7C(p, Dp) from the aggregated cost. The over counting corrected (occ) aggre-
gated cost

Socc(p, d) =
∑
r
Lr(p, d)− 7C(p, d) (5.31)
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permits to compute the minimum of the energy

Eocc
p (d) = Ep(d)− 7C(p,dp) = C(p,dp) +

∑
r

∑
q∈Ω∩(p−N∗r)

C(q,dq) + V (dq,dq−r) (5.32)

which is a better approximation of the initial energy (5.1).

Algorithm 8: Directional 1D cost aggregation in direction r
Input: cost table C

disparity bounds dmin, dmax
direction r = (rx, ry)

Output: aggregated cost table Lr
if rx 6= 0 then

if rx > 0 then // determines the first scanned column
x0 ← 0

else
x0 ← w − 1

for y ∈ {0, . . . , h− 1} do
for d ∈ {dmin, . . . , dmax} do // initialization of the first scanned column

Lr((x0, y), d)← C((x0, y), d)

p← (x0, y) + r
while p ∈ Ω do // aggregation from the first column

for d ∈ {dmin, . . . , dmax} do
Compute Lr(p, d) from Lr(p− r, ·) and C(p, d) according to
formula (5.24)

p← p + r

if ry 6= 0 then
if ry > 0 then // determines the first scanned row

y0 ← 0

else
y0 ← h− 1

for x ∈ {0, . . . , w − 1} do
for d ∈ {dmin, . . . , dmax} do // initialization of the first scanned row

Lr((x, y0), d)← C((x, y0), d)

p← (x, y0) + r
while p ∈ Ω do // aggregation from the first row

for d ∈ {dmin, . . . , dmax} do
Compute Lr(p, d) from Lr(p− r, ·) and C(p, d) according to
formula (5.24)

p← p + r
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Figure 5.4 – Star-shaped graphs associated in SGM to two adjacent pixels.

5.2.4 Interpretation of SGM as Min-Sum Belief Propagation

In [Drory et al. 2014] SGM is interpreted as a Belief Propagation (BP) [Pearl 1988] algorithm
on a star-shaped graph (see Figure 5.3). The Min-sum BP is a message-passing algorithm,
that computes each node’s belief (energy min marginal) by sending messages along the edges
of the graph. A message from node q to node p is defined recursively from the messages to
node q as:

mq→p(d) = min
d′∈D

(Cq(d′) +
∑

(q,k)∈E,k 6=p

mk→q(d′) + V (d, d′)). (5.33)

And the state belief of a node p is computed from the messages as

B(p, d) = C(p, d) +
∑

(q,p)∈E

mq→p(d). (5.34)

Upon convergence arg mindB(p, d) yields the estimated solution.
On a tree, BP computes the exact minimum of the energy in two passes sending message

from the leaves to the root and back. On a general graph however, BP is implemented
as an iterative algorithm, updating messages according to some schedule. The sequential
schedule [Tappen and Freeman 2003, Szeliski et al. 2008], for instance, propagates messages
in raster order updating the nodes immediately. Messages are typically initialized to all-zero.

Equation (5.33) is reminiscent of SGM. Indeed, Drory et al. [2014] established the connec-
tion between SGM and the min-sum BP algorithm. In their interpretation the SGM recursive
update formula (5.3) is computing the state belief of the node p during the r-oriented scan
of the image. To make it explicit:

Br(p, d) = Lr(p, d) = C(p, d) +

m(p−r)→(p)(d)︷ ︸︸ ︷
min
d′∈D

(Lr(p− r, d′) + V (d, d′)) . (5.35)

They also show that the aggregate of state beliefs for all 8-directions given by (5.4),
corresponds (modulo the over counting correction (5.31)) to the min-marginals for the star-
shaped graph centered at p (shown in figure 5.5). Then, minimizing Socc(p, ·) gives the exact
minimizer of the energy restricted to the star-shaped graph, as was shown in section 5.2.3.
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SGM and streaking artifacts. In the light of this result we can understand the occurrence
of the streaking artifacts in SGM. Although the optimization is exact over the star-shaped
graph, the graphs for two adjacent pixels (as shown in figure 5.4) are loosely related as they
share only the nodes on a single line (plus 4 intersection points). In this case, when the data
term on the horizontal line is weak, i.e. all disparity hypothesis are equally plausible, the
messages from the vertical directions, which are completely unrelated, can and will produce
different results for each pixel. This also means that the smoothness constraint is poorly
enforced by SGM because the messages are restricted to the 8 paths of the graph.

5.2.5 Effortless linear and truncated linear potentials with min-convolution

Felzenszwalb and Huttenlocher [2006] propose several strategies for accelerating the message
computation of BP algorithms. One of the techniques consists in expressing linear, truncated
linear, quadratic, and truncated quadratic potentials as a min convolution [Felzenszwalb and
Huttenlocher 2012]. This allows to update all the labels at a given node in linear time. Given
the tight connection between SGM and BP it is straightforward to adapt the min-convolution
strategy to SGM’s update rules (5.24). This allows to incorporate the linear and truncated
linear models in SGM. This change does not affect the performance of SGM.

Following Felzenszwalb and Huttenlocher [2006], let us first consider an interaction po-
tential of the form

V (p, q) = δ|p− q|. (5.36)

The recursive update of Lr(p, ·) for this potential is written as

Lr(p, d)← C(p, d) + min
d′

(Lr(p− r, d′) + δ|p− q|). (5.37)

A naive implementation of this formula amounts, for k labels, to performing k×k comparisons.
In [Felzenszwalb and Huttenlocher 2006] it is observed that since the labels are ordered, the
previous formula could be seen as a min convolution of the formm(d)← minp(h(p)+δ|p−d|),
which can be computed in linear time O(k) with the simple algorithm 9.

Algorithm 9: Min-convolution algorithm to compute: m(d)← minp(h(p) + δ|p− d|)
Input: vector h of length k and the parameter δ
Output: vector m

1 m← h // initialize m copying h
2 for d ∈ {1, . . . , k − 1} do
3 m(d)← min(m(d),m(d− 1) + δ) // forward pass

4 for d ∈ {k − 2, . . . , 0} do
5 m(d)← min(m(d),m(d+ 1) + δ) // backward pass

To compute a truncated distance of the form V (p, q) = min(δ|p− q|, τ) a last step is added:
for d ∈ {0, . . . , k − 1} do

m(d)← min(m(d),minp(m(p)) + τ) // point-wise truncation

Note that minp(m(p)) could be easily precomputed.
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SGM, 8 directions MGM (our method), 8 dir.

Figure 5.5 – Results of the baseline implementation of SGM and MGM for the Adirondack pair (figure
5.11). The diagrams on the left depict for each method the information used by the recursive update of
the red pixel in each of the 8 scans of the algorithms.

5.3 More Global Matching

In the spirit of the belief update formula (5.34) we propose to update Lr using information
from more than one direction. Concretely our strategy injects information from the 2D
problem in the processing of SGM’s 1D paths (see figure 5.5). This is efficiently done by
incorporating messages from the nodes visited in the previous scanline (i.e. the pixel above).

Let us consider the left-to-right direction. The image is traversed in raster order (left-to-
right, top-to-bottom) and SGM updates each node p using only the beliefs from the node on
its left Lr(p − r, ·). Instead we propose to access as well the beliefs from the node directly
above p (indicated by the direction r⊥) . Thus our proposed recursion is:

Lr(p, d) = C(p, d) +
∑

x∈{r,r⊥}

1

2
min
d′∈D

(Lr(p− x, d′) + V (d, d′)). (5.38)

As a result of this multiple recursion, the belief at a given pixel is influenced by its entire
upper-left quadrant (as illustrated in figure 5.5). In comparison SGM recursion only sees
information from the line of pixels to its left.

For each propagation direction r we compute Lr using an adequate traversal order (de-
picted in figure 5.6). The resulting beliefs are then combined using the over-counting cor-
rected formula (5.31), and the disparity is estimated by WTA. Compared to SGM, MGM
only requires a few extra operations per pixel.

Each pass of MGM can be seen as the first iteration of a sequential belief propagation
algorithm [Tappen and Freeman 2003, Szeliski et al. 2008] with a particular scheduling order
dictated by the propagation direction (see figure 5.6). Since the messages from the non visited
nodes (below p) are initialized to 0, the update rule (5.38) corresponds exactly to (5.33).

Algorithm. The pseudo code of the MGM algorithm is given in Algorithm 10.

Parallelization considerations. Since MGM introduces dependency among the scan li-
nes, these cannot be processed in parallel as it is usually done with SGM. A naive paral-
lelization of MGM consists in performing the 4 or 8 image traversals in parallel. However,
the performance improvement with this approach is limited to the number of traversals.
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Figure 5.6 – Depiction of the 8 image traversals and the corresponding recursion directions r and r⊥ in
MGM.

Algorithm 10: More Global Matching (MGM)
Input: pixel-wise cost volume C, search space D = {dmin, . . . , dmax}
Output: aggregated and over-counting corrected cost volume Socc

begin
1 (Li)i=0,...,7 ←− 0 // initialize Li, each one has the size of the image ×|D|
2 for i ∈ {0, . . . , 7} do // 8 traversals as in figure 5.6
3 (r, r⊥)←− compute_previous_and_above_directions_for_traversal(i)
4 (xn)n=0,...,N−1 ←− compute_adequate_pixel_ordering_for_traversal(i)
5 for n ∈ {0, . . . , N − 1} do // for all the N pixels of the image
6 p←− xn
7 mr ←− mind′ Li(p− r, d′) // precompute the two min

8 mr⊥ ←− mind′ Li(p− r⊥, d′)
9 for d ∈ D do

10

Li(p, d)← C(p, d) + 1
2 min(Li(p− r, d),

Li(p− r, d± 1) + P1,

mr + P2)

+1
2 min(Li(p− r⊥, d),

Li(p− r⊥, d± 1) + P1,

mr⊥ + P2)

11 Socc ←− (
∑7

i=0 Li)− 7C
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Figure 5.7 – Speedup of MGM applying different parallelization strategies. The naive strategy consists
in computing the 8 image traversals in parallel. This does not scale beyond 8 cores. The diagonal
parallelization (illustrated on the left for the raster ordered image traversal) scales better with the number
of cores.

Instead, parallelization in MGM is achieved diagonal-by-diagonal. That is, during the
image traversal in raster order (first diagram of figure 5.6) the pixels of a diagonal going from
top-right to bottom-left can be processed in parallel, because they only depend on their top
and left neighbors (which are computed by the previous diagonal). This strategy is illustrated
in figure 5.7. A nearly linear speed-up is observed (figure 5.7) when applying this strategy
on a 16-core test machine (Xeon@2.60GHz).

5.4 Experiments

We first evaluate the effectiveness of MGM as a fast approximate minimization tool for
pairwise Markov Random Fields. Then the improvement of MGM over SGM is quantified in
terms of performance on a stereo benchmark.

5.4.1 Evaluation for MRF minimization

We evaluated our method on pairwise MRFs from the Middlebury energy minimization bench-
mark [Szeliski et al. 2008]. For the stereo matching problem the MRF graphs consist of regular
4-connected grids. We compared with well known optimization algorithms provided with the
benchmark.

Experimental setup. The disparity map from images u and v was estimated by minimiz-
ing

E(d) =
∑
p∈V

C(p,dp) + λ
∑

(p,q)∈E

V (dp,dq), (5.39)

where E is the edge set of the 4-connected image graph and the disparities dp are discretized
at one pixel precision. We used the absolute differences of intensities for the data term
C(p, d) = |u(p)− v(p + (d, 0))| (summed over all channels for color images). This matching
cost, although not robust to radiometric changes, provides a common ground for comparison
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Tsukuba(16 labels) Teddy(60 labels) Venus(20 labels) Fountain(143 labels)
Method Egap%B(%) t(s) Egap% B(%) t(s) Egap%B(%) t(s) Egap% B(%) t(s)
TRW-S ref. 4.5 17 ref. 20.5 483 ref. 4.7 51 ref. 16.2 2170
α-expansion 0.09 4.6 5.9 0.13 21.2 58 0.07 4.7 12 -0.05 16.3 196
BP-S 1.78 8.2 4.7 0.68 20.1 382 0.68 6.3 18 1.32 16.9 1697
SGM4 48.3 6.6 1.0 21.7 24.2 3.7 31.4 7.4 1.8 29.0 14.5 14
ocSGM4 41.9 6.3 1.0 18.2 21.9 3.8 25.6 6.9 1.8 26.5 13.6 14
MGM4 7.5 6.7 1.2 5.5 21.4 4.5 4.2 5.8 2.0 10.7 15.8 17

Table 5.1 – Results. Egap% is the energy gap (E−Eref

Eref
×100) of the solution with respect to the reference

solution of TRW-S (Tree-Reweighted Message Passing [Kolmogorov 2006]), t(s) is the time in seconds to
compute the solution, and B(%) is the percentage of pixels that differ more than one disparity level from
the ground truth. Two other reference methods are also included: alpha-expansion algorithm [Boykov
et al. 2001], and BP-S a sequential Belief-Propagation algorithm from [Szeliski et al. 2008]. The running
times were measured using a single core of an Intel Core 2 Duo CPU @1.8GHz.

with the methods listed by Szeliski et al. [2008]. The smoothness term V (·, ·) is the L1-norm
truncated at 2, which amounts to taking P1 = λ and P2 = 2λ in (5.2). For simplicity the
fine tuning of the matching costs and variable weights were not considered here (essentially
disabling the intensity cues and the Birchfield and Tomasi [1998] costs for all the methods).
However different matching costs and intensity cues can be easily incorporated in MGM as
in SGM [Hirschmüller 2008, Bleyer and Gelautz 2008]. For instance, in section 5.4.2 we use
census [Zabih and Woodfill 1994] as matching cost, which is robust to radiometric changes. In
this section the parameter λ is chosen for each stereo pair but is unchanged across algorithms.

Four test image pairs were considered. Three from the Middlebury benchmark [Szeliski
et al. 2008], Tsukuba (16 disparity labels, λ = 20), Venus (20 disparity labels, λ = 20), Teddy
(60 disparity labels, λ = 10), and one stereo pair from the multi-view dataset published by
Strecha et al. [2008], Fountain (143 depth labels, λ = 8).

Evaluation. We compared MGM with five minimization algorithms. First, three refer-
ence MRF optimization techniques, TRW-S (Tree-Reweighted Message Passing) [Kolmogorov
2006], the alpha-expansion graph-cut algorithm [Boykov et al. 2001], and BP-S, a sequential
Belief-Propagation algorithm from [Szeliski et al. 2008]. We also tested our own baseline
implementation of SGM [Hirschmüller 2008], one variant incorporating the over-counting
correction [Drory et al. 2014], and the proposed algorithm MGM. Since the energy (5.39) is
defined on a 4-connected graph, these variants explore only four cardinal directions. Hence
they are denoted by SGM4, ocSMG4 and MGM4 respectively.

We assessed the performance by computing the energy gap, the bad pixel ratio and the
computing time. The energy gap is the relative gap between the energy of the current solution
and the energy of a reference (top performing) strategy, while the bad pixel ratio is the
percentage of pixels that differ more than one level from the ground-truth.

Results and discussion. The results are reported in table 5.1 and figure 5.8. We note in
table 5.1 that, in terms of energy, SGM4 and the over-counting corrected ocSGM4 [Drory
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et al. 2014] produce rather distant solutions from the reference optimum. Looking at figure
5.8 we can see that this error comes mainly from the regularity term (see section 5.4.3),
which confirms that in SGM the smoothness term of (5.39) is only weakly enforced. Our
algorithm (MGM4), on the other hand, consistently produces better minima than SGM4 and
ocSGM4. It yields approximations that are within 10% of the optimum produced by TRW-S
(the reference method), an improvement by a factor five with respect to SGM4 or ocSGM4.
Another experiment presented in section 5.4.6 was performed on a large set of images (all the
stereo pairs from the Middlebury page: 2005, 2006, and 2014). It confirms that on average
MGM yields a systematic improvement of 40% in the energy minima with respect to SGM.

In terms of efficiency MGM can be 20% slower than SGM, however the results are well
worth the time: they are more regular, show less artifacts, and better approach the minima
of the underlying energy. For problems with larger label sets, such as Fountain, MGM (with
its current non-optimized implementation) already provides an approximate solution in a
tenth of the time needed by a classic technique. We can safely say that MGM can be used
as an accurate and rather inexpensive approximation for solving problems with truncated
smoothness terms or with the Potts interaction penalty [Sinha et al. 2014].

In the horizontal plane of the Fountain image (figure 5.8) we see that SGM4 produced
smoother results than TRW-S and MGM4. Piecewise constant solutions are expected in this
experiment because the smoothness term (5.2) is a truncated L1-norm. It is more convenient
to jump three or more disparity levels once in a while (with penalty 2λ) rather than changing
disparity at each row (each with penalty λ). This serves as evidence that SGM4 does not
actually enforce the smoothness defined in (5.39). Indeed, SGM4 only enforces the regularity
by lines with a weak bond between parallel lines. On the other hand, this issue is easily solved
with MGM, since it minimizes a closer approximation of the energy (5.39). For instance,
lowering the value of the parameter P1 (for instance P1 = λ/4, while keeping P2 = 2λ)
prevents this effect. The results are shown in the last column of figure 5.8.

5.4.2 Evaluation on Stereo Pairs with Ground Truth

Experimental setup. We evaluated MGM using 37 full resolution stereo pairs from the
Middlebury datasets (2005, 2006, and 2014) [Hirschmüller and Scharstein 2009, Scharstein
et al. 2014]. The images of the 2005 and 2006 datasets have a resolution of 1.4MP and the
disparity range is about 150 pixels. The 2014 dataset contains 5MP images and the disparity
range goes up to 500 pixels.

Evaluation. We were interested in comparing the performance of the proposed algorithm
(MGM) with a baseline implementation of SGM and ocSGM (the over-counting corrected
SGM). We evaluated the bad pixel ratio of each method. A bad pixel is a point whose disparity
differs from the ground truth by more than one pixel. The three algorithms use the same
settings: 8 propagation directions and, as matching cost Cp, the Hamming distance of census
transform [Zabih and Woodfill 1994, Zhu et al. 2012] on a 5 × 5 neighborhood (normalized
by the number of channels). The parameters P1 and P2 were set for all images to P1 = 8
and P2 = 32 (as in OpenCV’s SGBM). No intensity cues (adapting P2) were used, though
they could easily be incorporated [Hirschmüller 2008, Bleyer and Gelautz 2008]. To prevent
influence of the post-processing steps on the evaluation, we performed this evaluation on the
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TRW-S (17.2s) SGM4 (1.0s) MGM4 (1.2s) MGM4 P1 =λ/4

TRW-S (483.3s) SGM4 (3.7s) MGM4 (4.5s) MGM4 P1 =λ/4

TRW-S (2170s) SGM4 (14s) MGM4 (17s) MGM4 P1 =λ/4

Figure 5.8 – Qualitative result comparison for the images Tsukuba and Teddy from [Szeliski et al. 2008],
plus a low resolution Fountain from [Strecha et al. 2008]. Note that in the result of MGM4 there are no
streaking artifacts as in the baseline SGM4. The last column (MGM4 P1 = λ/4) and the detail magnified
in the last figure are commented in the text.

TRW-S (17.2s) SGM4 (1.0s) MGM4 (1.2s) MGM4 P1 =λ/4

TRW-S (483.3s) SGM4 (3.7s) MGM4 (4.5s) MGM4 P1 =λ/4

TRW-S (2170s) SGM4 (14s) MGM4 (17s) MGM4 P1 =λ/4

Figure 5.9 – Shaded versions of the disparity maps presented in figure 5.8, obtained with the tool GrShade
from MicMac [Pierrot Deseilligny 2015].
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Figure 5.10 – Bad pixel ratio (% of pixels with error larger than 1 disparity level) on the two sets of test
images. Our method yields the lowest average errors on the two datasets.

unmodified outputs of the winner-take-all stage of all methods. Section 5.4.5 presents results
after post-processing the outputs of SGM and MGM with a 3× 3 median filter [Hirschmüller
and Scharstein 2009]. The conclusion is that, even after filtering, the results of SGM present
more errors than those of MGM, specially in poorly textured areas.

Discussion. The accuracy of the three methods is shown in figure 5.10. It can be seen
that MGM is the most accurate on both datasets. This improvement is attained with negli-
gible computation overhead. Our current implementation of SGM runs in 130s on an 8-core
Xeon@2.60GHz computer for a 2964 × 1988 image with 226 disparity levels. On the same
image the equivalent implementation of MGM runs in 137s.

A qualitative analysis of the disparity maps (figure 5.11) shows that MGM produces
results that are denser and cleaner, with less streaking artifacts. To facilitate the qualitative
evaluation these results were filtered with the left-to-right consistency check [Fua 1993] with
threshold set to 1. Moreover, for all these experiments MGM yielded (with respect to SGM)
a systematic reduction of about 40% in the energy minima for the 8-connected energy, as
shown in section 5.4.4.

5.4.3 In SGM the regularity term is only weakly enforced

As mentioned in section 5.4.1, we observe that in the SGM algorithm the regularity defined
in the energy

E(d) =
∑
p∈V

C(p,dp)︸ ︷︷ ︸
C

+λ
∑

(p,q)∈E

V (dp,dq)

︸ ︷︷ ︸
V

(5.40)

is only weakly enforced, whereas MGM yields a result closer to the reference optimization
techniques. To corroborate this, we evaluated the energy of the solutions reported in sec-
tion 5.4.1. In table 5.2 we distinguish the contributions of the data term (C) and the regular-
ity term (V) for each solution, and compare the ratios C/V. First, we note that for all the
methods the data term C has approximately the same energy. However the regularity terms
for the results of SGM4 and ocSGM4 are abnormally high, which means that the regularity
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Figure 5.11 – Results on some of the test images with ground truth.

term does not enforce regularity. MGM4, on the other hand, yields much lower values for
the regularity term which means that the obtained solutions are more regular.

5.4.4 MGM systematically improves the energy minima

To complement the experiment of section 5.4.1 we evaluated the energy gap between the
solutions obtained with MGM and the 8-directions SGM (the larger the gap the better). We
used for this experiment full resolution stereo-pairs from the datasets published with [Hirsch-
müller and Scharstein 2009] and [Scharstein et al. 2014]. The energy is measured on the
8-connected graph, and the smoothness term is

V (d, d′) =


0 if d = d′

P1 if |d− d′|= 1
P2 otherwise

, (5.41)

with P1 = 8 and P2 = 32 for all the experiments.
In table 5.3 we see that the energy of the solutions obtained with MGM is on average

40% lower than with SGM, while with ocSGM it is only 10% lower on average.

5.4.5 Post-processing with median filter

As the evaluation presented in section 5.4.2 focuses on energy minimization, no post-proces-
sing of the outputs is considered. However, a key component of the SGM algorithm [Hirsch-
müller 2008] is the 3× 3 median filtering of the disparity maps to fill-in small holes. Here we
compare the impact of this post-process (denoted +med) on the baseline SGM and MGM.
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Tsukuba(16 labels) Teddy(60 labels) Venus(20 labels) Fountain(143 labels)
Method Egap C V C/V Egap C V C/V Egap C V C/V Egap C V C/V

TRW-S 0.00 933 192 4.8 0.00 3293 432 7.6 0.00 2164 205 10.5 0.00 2899 703 4.1
Expansion 0.09 928 199 4.7 0.13 3305 425 7.8 0.07 2171 200 10.8 -0.05 2911 688 4.2
BP-S 1.78 939 206 4.5 0.68 3295 456 7.2 0.68 2163 223 9.7 1.32 2932 717 4.1
SGM4 48.3 844 826 1.0 21.7 2968 1565 1.9 31.4 2003 1110 1.8 29.0 2611 2036 1.3
ocSGM4 41.9 904 693 1.3 18.2 3225 1179 2.7 25.6 2130 846 2.5 26.5 2794 1763 1.6
MGM4 7.51 918 292 3.1 5.53 3229 703 4.6 4.19 2144 325 6.6 10.7 2779 1207 2.3

Table 5.2 – Energy ratios. E is the energy gap (Eref−E
Eref

×100) of the solution with respect to the reference
solution of TRW-S (Tree-Reweighted Message Passing [Kolmogorov 2006]), C/V is the ratio in the final
energy between the data term (C) and the regularity term (V). All the reported energies are measured
in thousands. Two other reference methods are also included: Expansion-move algorithm [Boykov et al.
2001], and BP-S a sequential Belief-Propagation algorithm from [Szeliski et al. 2008]. The energy ratios
C/V indicate the current balance of the data and regularity term in the solution. In both SGM4 and
ocSGM4, the regularity term (V) is always much larger than in the solutions of the other methods. This
means that the regularity term is weakly enforced by SGM4 and ocSGM4. On the other hand, for MGM4
the energy ratios are much closer to those of reference optimization algorithms.

Figure 5.12 shows that the results of SGM improve substantially after median filtering, while
the results of MGM do not change much. Nevertheless, even after filtering the results of
SGM present more errors than MGM specially in poorly textured areas (as shown in figure
5.13).

5.4.6 Middlebury 2014 dataset

Figures 5.15 and 5.16 show more results on the full Middlebury benchmark (version 3) [Schar-
stein et al. 2014]. We compare the results of our baseline implementation of SGM, MGM,
and the publicly available ELAS [Geiger et al. 2011]. The two figures show the sparse and
dense results of each method. SGM and MGM use the same settings for all the images: 8
propagation directions and the Hamming distance of census transform [Zabih and Woodfill
1994, Zhu et al. 2012] on a 5 × 5 neighborhood (normalized by the number of channels) as
matching cost C(p, ·). The parameters P1 and P2 were set for all images to P1 = 8 and
P2 = 32. No intensity cues (adaptation of P2) were used but they could easily be incor-
porated [Hirschmüller 2008, Bleyer and Gelautz 2008] in both SGM and MGM. To prevent
influence of the post-processing steps on the evaluation, the results shown for base-SGM and
MGM in figure 5.15 correspond to the unaltered outputs of the winner-take-all stage. The
bad pixel ratios for the dense results are compared in table 5.10. The sparse results (figure
5.16) are obtained by applying the left-to-right consistency check [Fua 1993] with threshold
set to 1.

5.4.7 KITTI dataset

Results on the KITTI training and testing datasets [Geiger et al. 2012] are shown in tables 5.4
and 5.5. We didn’t optimize the parameters, instead we used the ones proposed in [Span-
genberg et al. 2014]: P1 = 7, P2 = 100. We used the census distance (5 × 5 windows) as
cost, refined the disparities with V-fit sub-pixel interpolation [Haller and Nedevschi 2012],
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Image 1−
(
EocSGM
ESGM

)
1−

(
EMGM
ESGM

)

M
id
dl
eb

ur
y
20
14

Motorcycle 0.090 0.419
Jadeplant 0.059 0.401
Adirondack 0.050 0.358
Playtable 0.093 0.482
Playroom 0.057 0.289
Teddy 0.142 0.461
Vintage 0.075 0.523
Pipes 0.096 0.381
Shelves 0.058 0.549
Recycle 0.060 0.515
Piano 0.092 0.504

M
id
dl
eb

ur
y
20
06

Baby1 0.126 0.446
Baby3 0.131 0.449
Baby2 0.115 0.451
Plastic 0.046 0.482
Aloe 0.153 0.311
Cloth2 0.124 0.298
Cloth3 0.174 0.271
Cloth1 0.175 0.269
Cloth4 0.154 0.311

Lampshade1 0.084 0.514
Wood1 0.133 0.511
Wood2 0.076 0.541

Lampshade2 0.062 0.520
Flowerpots 0.071 0.423
Monopoly 0.091 0.312
Bowling1 0.073 0.501
Bowling2 0.090 0.475
Midd2 0.078 0.518
Midd1 0.099 0.502
Rocks1 0.178 0.376
Rocks2 0.185 0.369
Books 0.133 0.382

M
id
d.

20
05 Moebius 0.150 0.378

Reindeer 0.142 0.410
Dolls 0.124 0.322

Laundry 0.129 0.371
Art 0.115 0.374

Average 0.107 0.420

Table 5.3 – Energy gap (the larger the better) between the solutions obtained with MGM and the
baseline SGM with 8 directions. The images are from the stereo datasets [Hirschmüller and Scharstein
2009, Scharstein et al. 2014]. The energy is measured on the 8-connected graph, in all the test we use
P1 = 8 and P2 = 32 for the smoothness term (5.2). The energy obtained with MGM is on average 40%
lower than with SGM, while with ocSGM it is only 10% lower.
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Figure 5.12 – Bad pixel ratios (% of pixels with error larger than 1 disparity level) on the Middlebury 2005,
2006 and 2014 datasets. The statistics corresponds to results of the baseline SGM and MGM, with and
without the post-processing using the 3× 3 median filter (+med).
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(a) base-SGM (b) base-SGM with median filter

(c) MGM (d) MGM with median filter

Figure 5.13 – Comparison of the impact of the median filter post-process when applied to the baseline
SGM and MGM.
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Figure 5.14 – Bad pixel ratios (% of pixels with error larger than 1) on the Middlebury 2014 test images.
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5.4. Experiments

Image Ground Truth base-SGM MGM ELAS

Motorcycle

Shelves

Playroom

Piano

Recycle

Jadeplant

Adirondack

Playtable

Teddy

Figure 5.15 – Dense results on stereo pairs with ground truth from the 2014 Middlebury dataset. Continues
on the next page.
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Image Ground Truth base-SGM MGM ELAS

Pipes

Vintage

Figure 5.15 – Dense results on stereo pairs with ground truth from the 2014 Middlebury dataset. We
compare the results of our baseline implementation of SGM, MGM, and ELAS [Geiger et al. 2011].

method Out-Noc (all pixels) Out-Noc (estimated pixels) Density
base-SGM 7.30 % 3.94 % 88.78 %
MGM 6.33 % 4.09 % 92.18%

Table 5.4 – Average results of the MGM and base-SGM algorithms on the KITTI training dataset. Out-
Noc is the fraction of erroneous pixels (computed using the threshold at 3 pixels) in non-occluded areas,
evaluated on all the pixels (interpolated), or restricted to the estimated ones. The average densities of
the disparity maps are shown in the last column.

then filtered with a 3 median filter and with the left-to-right consistency check. The running
time for computing each frame on a 16-core computer is about 6 seconds for MGM, and 5.3
seconds for base-SGM. The results shown in figure 5.17 confirm that MGM yields slightly
denser results than base-SGM.

5.5 Conclusion

In this chapter we studied SGM, which is still one of the most popular algorithms for stereo
matching. Based on this study we proposed a new algorithm called MGM. Our method is
a variant of SGM where messages are propagated on a quadrant of the whole graph instead
of a line subgraph. This elaborates on a recent interpretation of SGM in terms of belief

Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 8.51 % 9.95 % 1.2 px 1.4 px
3 pixels 5.70 % 6.89 % 1.2 px 1.4 px
4 pixels 4.31 % 5.30 % 1.2 px 1.4 px
5 pixels 3.45 % 4.28 % 1.2 px 1.4 px

Table 5.5 – Results of the MGM algorithm on the KITTI testing dataset. We used the census distance
(5× 5 windows), with parameters P1 = 7, P2 = 100 (as in [Spangenberg et al. 2014]) the disparities are
refined with V-fit sub-pixel interpolation [Haller and Nedevschi 2012], then filtered with a 3 median filter,
and with the left-to-right consistency check. The running time for each image is about 6 seconds on a
16-core computer.
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Image Ground Truth base-SGM MGM ELAS

Motorcycle

Shelves

Playroom

Piano

Recycle

Jadeplant

Adirondack

Playtable

Teddy

Figure 5.16 – Sparse results on stereo pairs with ground truth from the 2014 Middlebury dataset. Continues
on the next page.
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Image Ground Truth base-SGM MGM ELAS

Pipes

Vintage

Figure 5.16 – Sparse results on stereo pairs with ground truth from the 2014 Middlebury dataset. We
compare the results of our baseline implementation of SGM, MGM, and ELAS [Geiger et al. 2011].

(a) SGM disparity map (b) MGM disparity map

(c) SGM costs (d) MGM costs

(e) SGM disparity map (f) MGM disparity map

(g) SGM costs (h) MGM costs

Figure 5.17 – Results of base-SGM and MGM on two stereo pairs from the training dataset of the KITTI
challenge.
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5.5. Conclusion

propagation. With a very small overhead MGM improves up to a factor five the energy gap
of SGM with respect to the best minimization algorithms. We validated experimentally that
MGM produces denser results than the baseline SGM, without streaking artifacts. In sum-
mary, MGM produces better results than the baseline SGM with practically no computation
overhead. It is hence an excellent candidate to be used in our 3D reconstruction pipeline
presented in chapter 6.
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6 A Stereo Pipeline for Pushbroom Images:
S2P

In this chapter we propose a fully automatic and modular stereo pipeline to produce digital
elevation models from satellite images. The aim of this new pipeline is to use (and test) off-the-
shelf computer vision tools, while abstracting from the complexity associated to satellite imaging.
To this aim, images are cut in small tiles for which we proved in chapter 3 that the pushbroom
geometry is accurately approximated by the affine camera model. These tiles are then processed
with standard rectification and stereo matching tools. The specifics of satellite imaging such as
pointing accuracy refinement, estimation of the initial elevation from SRTM data, and geodetic
coordinate systems are handled transparently by the pipeline. We demonstrate the robustness
of this approach on a large database of satellite images and by providing an online demo of its
implementation.

The 3D reconstruction pipeline presented in this chapter can be tested online on any crop of a
satellite image from our test database at http://dev.ipol.im/~carlo/s2p.

6.1 Motivation

This chapter wraps together the results of chapters 3, 4 and 5 to present S2P, an automatic 3D
reconstruction pipeline for satellite images meant to be modular and generic. Its development
was motivated by the recent availability of high resolution images from new satellites with
stereo capabilities such as Pléiades, which were briefly presented in the general introduction
(see chapter 1, page 16). Even if most of the experiments described here were carried on
Pléiades images, S2P can also be used on images from other satellites such as WorldView,
QuickBird, SPOT and Ikonos.

The philosophy of S2P is to isolate the 3D reconstruction problem from the complexities
associated to satellite imaging. To that aim the satellite images are processed by small tiles.
This permits to locally approximate the pushbroom geometry with an affine model, which in
turn allows to rectify the tiles using standard computer vision tools [Hartley and Zisserman
2004]. As was seen in chapter 3, the rectification error obtained on the tiles is below the tenth
of pixel, improving the state of the art by one order of magnitude [Oh et al. 2010]. Each
rectified tile is then processed using off-the-shelf stereo matching algorithms such as SGM or
MGM, which were presented in chapter 5.

The pipeline deals transparently with inaccuracies of the sensor attitude, by estimating
relative corrections for each tile without need of ground control points [Hanley et al. 2002,
Grodecki and Dial 2003, Fraser and Hanley 2005], as was exposed in chapter 4. These
local corrections are then combined in a global correction for the entire image, which is
used to perform a consistent 3D triangulation. Information from the SRTM database (see
appendix B) is automatically incorporated to identify corresponding regions in both images,
and to estimate the disparity range of the scene.
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Chapter 6. A Stereo Pipeline for Pushbroom Images: S2P

The proposed pipeline also handles three-view stereo datasets. In this case two stereo
pairs are processed independently, then the resulting elevation models are merged to increase
the coverage. Figure 6.5 shows an example of digital elevation model obtained with this
method. This automatic pipeline is available online1 for testing. It can be tested on any
images, as soon as the associated RPC coefficients (see section 2.5) are provided.

Similarly to previous works [Wohlfeil et al. 2012, D’Angelo and Kuschk 2012, D’Angelo
and Reinartz 2012, Kuschk 2013], and similarly to reference open source stereo pipelines such
as ASP (Ames Stereo Pipeline) [Moratto et al. 2014], developed by NASA, and MicMac [Pier-
rot Deseilligny 2007, 2015], developed by IGN, S2P is fully automated. All tasks that used to
be performed manually such as disparity range estimation, tie points selection for geometric
calibration data refinement, and water masking, are performed automatically thanks to the
proper use of SRTM data [Farr et al. 2007] and feature detectors such as SIFT [Lowe 2004,
Rey Otero and Delbracio 2014]. But unlike these works, S2P does not depend on a particular
stereo matching algorithm. Instead the main contribution of our work is a complete frame-
work to evaluate any stereo matching algorithm (that works with stereo-rectified images)
on pushbroom images. Indeed, the matching part is modular and anyone can plug his own
algorithm, while S2P provides the end-to-end plumbing for tile-wise processing, geometric
calibration, point cloud colorization, and raster digital surface model synthesis. As such, it
greatly facilitates the assessment and comparison of stereo matching algorithms performance
on complex remote sensing datasets.

6.2 Pipeline Overview

The S2P pipeline deals with pairs or triplets of images. Pairs and triplets are the standard
stereo products proposed by the main commercial providers of satellite images such as Dig-
italGlobe and Airbus Defense and Space (formerly Astrium). The acquisition of multi-view
datasets with more than three views during a single orbit is technically feasible, as demon-
strated by the use of Pléiades video mode during the in flight commissioning [de Lussy et al.
2012]. But image vendors do not consider this acquisition mode as economically viable and
do not sell it as a standard product.

In case of a stereo triplet, each pair out of the six possible (ordered) pairs is processed
independently, and the resulting 3D point clouds are then merged. The merging procedure
is not discussed in this thesis. Figure 6.1 gives an overview of the processing pipeline for
a stereo pair of images. The input images are cut in small tiles, to allow a very precise
rectification. The optimal size of the tiles was discussed in chapter 3. Then for each tile the
RPC functions are refined (see chapter 4) and the images are rectified (see chapter 3). Each
rectified tile pair is matched using some standard stereo matching algorithm, such as the
popular Semi-Global Matching (SGM), or its variant More Global Matching (MGM) that we
both presented in chapter 5. The local refinements from all the processed tiles are combined
to compute a global correction of the RPC functions. The triangulation uses the globally
corrected RPC functions, which are the same for all tiles. This ensures a perfect continuity
between the 3D points computed from different tiles.

1http://dev.ipol.im/~carlo/s2p
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6.2. Pipeline Overview

Figure 6.1 – Stereo pipeline overview. The input is a pair of images with their respective rational polynomial
camera models, and the output is a digital elevation model given as a georeferenced 3D point cloud. Green
blocks are applied to the whole images, while pink blocks are applied on small independent tiles. They
can be processed in parallel.

6.2.1 Size of the tiles.

Extensive experiments carried out on several Pléiades datasets (see section 3.3) show that
with a tile size of 1000× 1000 pixels the epipolar error is always less than 0.05 pixels. This
precision fits all the stereo matching algorithms, in particular SGM and MGM (chapter 5),
thus our pipeline uses a tile size fixed to 1000× 1000 pixels for all Pléiades images.

In case of satellites with a different behaviour, the epipolar error can be computed as
a preliminary step, and the optimal tile size is automatically selected accordingly. It is
important to note that this approximation is limited to satellite images. Aerial pushbroom
images such as those obtained from Leica’s ADS 40 or 80 cannot be rectified in that way
since the trajectory of a plane is not as smooth as that of a satellite.

6.2.2 Global relative pointing error model.

The model we use to correct the pointing error on a tile relies on the validity of the affine
approximation. From chapter 3 we know that this model is valid on image regions of size
smaller than 1000× 1000 pixels. For larger regions, the local pointing correction model may
not be valid. Several authors [Fraser and Hanley 2005, Grodecki and Dial 2003, D’Angelo
and Reinartz 2012] reported that the global RPC bias can be corrected with an affine trans-
formation in image space. A simple way to estimate the optimal affine transformation is to
use the local corrections computed for each tile. An example of this procedure is given in
figure 6.2.

6.2.3 Triangulation

For each rectified tile we compute the disparity by applying an off-the-shelf stereo matching
algorithm. The SRTM data (see appendix B) is used to estimate the initial disparity range,
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Figure 6.2 – A global pointing correction is estimated for the whole processed region of interest from the
local corrections that were computed in each tile. In this example, the region was cut into 24 tiles. In
each tile a corrective translation was computed and is represented by an arrow starting from the center
of the tile. The 24 corrective translations are used to estimate an affine transformation that corrects the
relative pointing error on the whole region.

together with the SIFT point correspondences that were used in chapter 4 to correct the local
pointing error.

The disparities are then interpreted as point correspondences with the coordinates of the
original (non rectified) images, as illustrated in figure 6.3. From these correspondences the
3D position of the point is triangulated using the refined RPC camera models.

Figure 6.3 – A match on a rectified tile is interpreted as a point correspondence in the coordinate systems
of the original images.

Triangulation with RPC functions. As studied in chapter 4, the limited precision of
the RPC data may cause a point x′ to be displaced from the epipolar line epixuv(R) of the
corresponding point x. Algorithm 11 determines iteratively the altitude of the 3-space point
defined by the point correspondence (x,q), where q is the projection of x′ on the epipolar
curve epixuv(R). The algorithm updates an altitude hypothesis h for the point x in such
a way that its correspondent point r0 is as close as possible to the match x′. The altitude
hypothesis is updated by linearly approximating the epipolar curve. Figure 6.4 illustrates the
simple rationale behind this algorithm. As the epipolar lines are very smooth the parameter
hstep can be large. We set it to 1 m.
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Figure 6.4 – Illustration of one iteration of Algorithm 11. The images u and v, two corresponding point
x and x′, and the epipolar curve epixuv(R).

Algorithm 11: Altitude of a 3-space point from an image match using RPC functions.
Input: RPCu,RPCv: RPC coefficients of images u and v

x,x′ ∈ R2: pair of corresponding points in images u and v
Output: h, e : altitude h of the triangulated 3-space point and distance e from x′ to

the epipolar curve epixuv(R).
1 h = 0
2 hinc =∞
3 hstep = 1
4 while hinc > 10−7 do
5 r0 = epixuv(h)
6 r1 = epixuv(h+ hstep)
7 t = r1 − r0

8 v = x′ − r0

9 hinc = tTv
‖t‖2

10 q = r0 + hinc · t // q projection of v over t

11 e = ‖q− x′‖
12 h = h+ hinc · hstep

6.3 Results and Discussion

6.3.1 Melbourne tri-stereo

As a validation of the proposed pipeline we processed a region from a three-view stereo
dataset of Melbourne. Our validation does not include ground control points. Thus we
evaluated the relative precision by measuring the height of a known building. The Eureka
Tower is a 297.3-meter skyscraper located in the Southbank precinct of Melbourne, which has
been highlighted in figure 6.5 (a-c). The altitude estimates were computed by averaging the
heights at the street level (yielding 16.15±0.23 meters) and on the roof (yielding 312.97±0.49
meters). Thus our estimated height of the Eureka Tower is 296.82± 0.72 meters.

Figure 6.5 (d-f) shows the elevation models obtained from the nadir-left and nadir-right
pairs for the Melbourne dataset. Note that both images contain large occluded areas close to
tall structures, however these areas are complementary. The fusion of both models exploits
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(a) left image (b) nadir image (c) right image

(d) digital elevation model from
nadir-left pair

(e) fused digital elevation model (f) digital elevation model from
nadir-right pair

Figure 6.5 – Three Pléiades images of Melbourne (a-c). The roof and street areas used for the evaluation
are highlighted in (b). The elevation maps obtained by taking only two images are shown in (d) and (f),
while (e) corresponds to the fusion with outlier filtering. Black areas represent rejected pixels. Copyright
©CNES 2011-15, distribution Airbus DS / Spot Image
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this complementarity to produce a much denser elevation model.

6.3.2 La Réunion island

To illustrate the automatic power of S2P, the whole Réunion island was processed from
Pléiades images. As the island is larger than the swath width of Pléiades, several acquisitions
were needed to cover the whole island. Table 6.1 lists the 9 stereo datasets that were used
for the 3D reconstruction. The geographic positions of the images are shown on figure 6.7.
The reference image of each dataset was cut into tiles of size 1000 × 1000 pixels, which led
to a total number of approximately 20 000 tiles. All these tiles were processed automatically
without any human intervention and without any parameter tuning. A subsampled version of
the complete 3D point cloud is shown on figure 6.8, while a full resolution version of the Piton
de la Fournaise crater is shown on figure 6.6. Note that even if the coverage of the island
is complete, some areas were hidden by clouds and consequently were not reconstructed by
the algorithm. These areas are visible as blue holes in figure 6.8. A portion of the obtained
digital elevation model, around the central peak of Piton des Neiges, is used in chapter 7 to
simulate landscape evolution and water runoff.

6.4 Code and Online Demo

The S2P stereo pipeline described here is completely implemented and its source code has
been released as open source software. It is available on github2. The implementation can be
tested online3 thanks to the demo framework of the IPOL journal4. Several stereo datasets
from Pléiades and a stereo pair from WorldView-1 are available for testing. Users can also
upload their own stereo datasets and run S2P on it. The implementation is compatible with
all the stereo datasets provided by Airbus DS and DigitalGlobe, and thus could be tested on
images from WorldView-2, QuickBird-1 and SPOT-6.

The choice of the stereo matching algorithm is left to the user. Several options are
proposed, among which the OpenCV5 implementation of SGM, which is included because of
its low computation time. However, any other stereo matching algorithm can be used instead
and several other options will soon be added to the demo.

Figure 6.9 shows several 3D point clouds that were obtained after a single click on a
Pléiades image. These reconstructions can be performed online.

2https://github.com/carlodef/s2p
3http://dev.ipol.im/~carlo/s2p
4http://www.ipol.im
5StereoSGBM module in OpenCV 2.4.8 (http://opencv.org/), with default parameters. To filter more

outliers we compute a second disparity map reversing the reference and secondary images and enforce the
consistency of both maps [Fua 1993]
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Dataset Nb. of Images
name images dimensions (pix)

ST-PAUL_ST-LEU 2 39 164× 102 038
ST-DENIS_MAIDO 2 39 869× 116 069

SAINT-PIERRE 3 38 345× 38 532
ST-BENOIT 2 39 982× 39 486

ST-PIERRE_Volcan 2 40 000× 42 192
VOLCAN 2 40 000× 38 582

ST-BENOIT_STE-ROSE 2 31 595× 38 802
VOLCAN-ST-PHILIPPE 2 31 012× 38 366

ST-BENOIT-ST-JOSEPH 2 39 977× 77 597

Table 6.1 – Nine overlapping Pléiades stereo data-
sets were used to cover the whole Réunion island.

Figure 6.6 – Crater of the Piton the la Fournaise,
located on the eastern side of La Réunion island. It
was obtained with S2P from one Pléiades stereo pair
at full resolution.

Figure 6.7 – Coverage of the Réunion island by Pléi-
ades stereo images. Eight stereo pairs and one
tri-stereo dataset were used. Each rectangle cor-
responds to a dataset. The largest image has di-
mensions of approximately 40 000 × 120 000 pixels.
Some clouds are visible in white. They correspond to
the holes of the digital elevation model of figure 6.8.
Copyright ©CNES 2011-15, distribution Airbus DS / Spot
Image

Figure 6.8 – View of the 3D point cloud produced
by S2P. The points are colored with the original
panchromatic channel of the respective reference im-
ages. The input images were downsampled 16 times
before applying S2P, thus the point cloud shown
here has a resolution of 8 meters per point. The
large holes are due to clouds occluding parts of the
ground.
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(a) Terrace in the Massif des Calanques (Marseille) (b) The summit of Mont Blanc

(c) Stadium Municipal (Toulouse) (d) Glacier in Iceland

(e) Docklands Stadium (Melbourne) (f) The Pyramid of Khafre

Figure 6.9 – 3D point clouds automatically generated from Pléiades stereo datasets, without any manual
intervention, with the S2P stereo pipeline. To obtain these 3D point clouds, the user simply selected a
region of interest on one of the images. This can be tested online on the IPOL S2P workshop associated
to this chapter.
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7 Simulation of landscape evolution on digital
elevation models obtained with S2P

This chapter illustrates how the main physical laws proposed in landscape evolution models
(LEMs) can be modeled by a system of three partial differential equations governing water
runoff, stream incision, hill slope evolution and sedimentation. Several numerical experiments
on high resolution digital elevation models (DEMs) obtained from stereo image pairs of the
satellite Pléiades, thanks to the algorithm S2P presented in chapter 6, illustrate its potential to
simulate the fine structure of the river network, and to understand the landscape morphology
and its causes. They also permit to simulate plausible evolutions. The experiments on digital
elevation models of the same site (La Réunion) are made at three different resolutions: the
SRTM resolution, 90m, and then 12m and 4m on digital elevation models derived from several
Pléiades pairs of the same site. The experiments show that the water runoff simulation critically
depends on the DEM resolution. This justifies the use of high resolution DEMs like those that
can now be produced from Pléiades pairs or triplets.

The landscape evolution model presented in this chapter can be tested online on any digital
elevation model at
http://dev.ipol.im/~carlo/ipol_demo/landscape_evolution.

7.1 Introduction

Among other goals, geomorphological research attempts to model and explain the evolution
of landscape morphology under the conjugated effects of erosion, sedimentation, chemical
weathering, creep, tectonic motions, etc. Erosion (runoff) is the removal of sediment from
the land surface by a fluid agent such as water or air, while sedimentation is the converse
process, in which sediment from the fluid mixture settles onto the land surface. During
storm events, rainfall increases the erosion and sedimentation activity. By estimating the
amount of erosion and sedimentation, an estimate for the dynamics of the landscape can
be obtained. This effect can be complemented by a terrain smoothing effect called creep,
whose description and causes are multiple (water splash, chemical and thermal weathering,
gravitational flow of soft soil). All of these effects and others can be modeled by a landscape
evolution model (LEM), summarized in a few partial differential equations. The simulation
of a landscape evolution model requires a thorough knowledge of the Earth morphology, at
the highest possible resolution. To that effect, accurate digital elevation models (DEMs) are
indispensable and must cover large pieces of the landscape, including whole basins, islands
or continents. Numerically simulated DEM evolution and its comparison with the observed
landscape morphologies will eventually permit the estimation of the main model parameters
for each landscape.

Landscape evolution modeling based on photographs goes back to Dutton and Gilbert
[1877]. The observation of real landscapes and photographs and clever qualitative reasoning
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Chapter 7. Simulation of landscape evolution on digital elevation models obtained with S2P

(a) Initial Digital Elevation Model
(DEM).

(b) River network obtained by the
classic method which identifies it
with the drainage basin area.

(c) The steady state value under
uniform rain of the water elevation
θ(x, y) when water runs on the
landscape without any erosion.

(d) Final landscape. (e) Last evolution of the land-
scape (elevation derivative with
respect to t) just before stopping,
where black denotes large values
and white small values.

(f) Map λ(x, y) of the sediment
load in water at the beginning of
the erosion process.

Figure 7.1 – This simulation, on a digital elevation model extracted from the SRTM database (see B) of
Piton des Neiges, La Réunion, of resolution 90 m shows all state variables that are being displayed in a
numerical landscape evolution model. The bottom row shows the evolution for parameters rain r = 10,
erosion ε = 0.1, creep c = 0.1, after removal by erosion of 5% of the landscape. See section 7.2 for more
explanations on the parameters.
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7.1. Introduction

Figure 7.2 – The simulation of the correct equations with the right parameters should maintain a stable
morphology (on stable landscapes). The challenge is to identify automatically the parameters for each
stable landscape. This figure shows on the left a digital elevation model of Madeira island extracted from
the SRTM database. On the right is the simulated model after 40% of the emerged ground has been
eroded and transported away. The morphology of the two landscape models is visually similar.

led Gilbert [1909] to establish a mix of quantitative and qualitative principles governing all
landscapes. The first mathematical explanation of the convexity of hilltops, ascribed to creep,
is attributable to Davis [1892]. Ever since the analysis of Gilbert, landscape evolution models
have involved mainly two competing factors: on the higher slopes, where water currents are
weak and dispersive, soil creep dominates and the profiles are convex. On lower slopes, water
flow concentrates and profiles become concave leading to the formation of valleys. Gilbert
proved that creep was dominant over other factors, such as wind and rain beat.

In this chapter we show experiments on high resolution Pléiades DEMs. We base our
numerical experiments on a recent LEM derived through a simplification of a rich list of
complex numerical LEMs and software proposed in the past twenty years. The prominent
ones are LEGS [Paik 2012], SIGNUM [Refice et al. 2012], SIBERIA, CAESAR [Hancock et al.
2011], CASCADE [Braun and Sambridge 1997], DELIM [Howard 1994], ZSCAPE, LANDSAP
[Luo 2001], GOLEM [Tucker and Slingerland 1994], APERO [Carretier and Lucazeau 2005],
EROS [Crave and Davy 2001], and Fastscape [Braun and Willett 2013]. The model which
we follow is introduced in [Chen et al. 2014a] and detailed in [Chen et al. 2014b], where it is
demonstrated that most features of previous numerical LEMs can be summarized in a system
of three partial differential equations governing water runoff, erosion and sedimentation. We
shall recall these equations in the next section. The objective of generic LEM models is to
identify the parameters responsible for the morphology of a landscape.

The aforementioned numerical LEMs and software contain dozens and sometimes hun-
dreds of landscape specific parameters. Yet an exhaustive numerical exploration cannot
identify more than four or five independent parameters. The LEM which we shall use in-
volves only four parameters. The numerical LEM yields for each initial DEM z(x, y, 0) and
each set of parameters an evolved DEM z(x, y, t) under the conjugate effects of erosion and
sedimentation. It also yields the final maps of the water height θ(x, y, t) and of the sediment
load λ(x, y, t) for each given steady rain rate r. Figure 7.1 shows such a simulation on a
digital elevation model of the central peak of La Réunion, the Piton des Neiges, extracted
from the SRTM database (see B). It was processed by the test system of three equations
(7.3) – (7.5) described in section 7.2.

The validity of such a numerical program is sustainable if one can show that a landscape
evolution model indeed gives a correct account of landscape evolution on various geological
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time ranges. Yet, this would require the observation of DEMs on geological time scales
incommensurable with human time scales. Fortunately, we found that a simple (but costly)
numerical procedure can deliver a sound estimate of the parameters of a landscape. The
(currently manual) procedure explores potential and reasonable parameter sets, and evolves
for each one the landscape until a fixed percentage of the landscape has been scraped and
transported by the erosion-sedimentation process. If the landscape morphology is stable and
if the right parameters have been found, one can expect that the evolved landscape maintains
its morphology (same valleys, similar slopes, etc.). This manual procedure should evolve into
a systematic exploration on a large set of (stable) landscapes. This will require an adequate
criterion to decide if a morphology is stable under the simulated weathering process. A
tentative norm for such morphology stability measurements could be the Sobolev semi-norm∫

|∇(z(x, y, t)− z(x, y, 0))|dxdy (7.1)

where z(x, y, t) is the DEM elevation at time t and t = 0 denotes the observed DEM.
We already succeeded in some examples to find manually the right parameter set. On

a digital elevation model of Madeira island, extracted from the SRTM database (see B), we
tested our three equations model with many different parameter sets, until we found one for
which the landscape morphology was stable even after 40% of the emerged ground had been
eroded and transported away. A visual exploration shows a completely stable morphology
after this drastic evolution. These results are presented in Figure 7.2.

Yet our first numerical experiments on Pléiades data turn out to have been applied on
a very young and unstable volcanic landscape, the La Réunion island. For such an unstable
landscape, where basins are still in formation, we can nevertheless find sets of parameters for
which the existing basins seem to extend in a natural way. One can thus envisage various
evolutions of this landscape after the volcanic activity gets extinct. Figure 7.3 displays such
plausible evolutions toward a stable landscape, mainly depending on the balance between the
creep, rain and erosion rates.

7.2 The main landscape evolution equations

The numerical LEM used here was introduced in [Chen et al. 2014a] and extended in [Chen
et al. 2014b]. In the forthcoming equations, lowercase letters denote functions of the landscape
depending on two geographic coordinates x, y and on time t. ∇φ denotes the gradient of a
scalar function φ(x, y), ∆φ its Laplacian, and ∇ · v the divergence of a vector field v(x, y).
The function θ(x, y, t) denotes the water height at (x, y) and time t, and similarly z(x, y, t) is
the bedrock surface elevation. The landscape altitude, i.e. land surface elevation plus water
height, is thus given by z + θ, and |∇(z + θ)| is the landscape slope. The sediment load in
water is denoted by λ, so that λ

θ is the sediment density in water. Finally v is the water
velocity. All of these state variables depend on (x, y, t), but for the sake of simplicity, we
shall in general omit the triplet (x, y, t) in the equations.

There are also landscape specific parameters in the equations, that for simplicity we
assume constant in time and space on each landscape. These parameters, that can be tuned
to find the right set, are the creep rate c, the erosion rate ε, the rain rate r, the sedimentation
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rate s and the erosion exponent m. Since m = 1
2 was fixed, the numerical model actually

depends on four parameters.
We picked the simplest possible version for the generalized Gauckler-Manning, Saint-

Venant law [Gauchler 1867] so that the water velocity is simply the negative of the slope,

v = −∇(z + θ). (7.2)

There is no simpler way to express the common sense observation that water runs downs the
slope. The system used in all experiments governing the evolution of the landscape elevation
z, the water depth θ and the sediment load λ in water is composed of three equations:

• the water conservation and transport law

∂θ

∂t
= ∇ · (θ∇(z + θ)) + r (7.3)

• the landscape evolution equation with creep, incision law and sediment deposition

∂z

∂t
= c∆z − εθm|∇(z + θ)|2m + s

λ

θ
(7.4)

• the conservation of sediment law

∂λ

∂t
= ∇ · (λ∇(z + θ)) + εθm|∇(z + θ)|2m − sλ

θ
(7.5)

Simulating this system still depends on five parameters, the erosion exponent m, the rain
rate r, the creep rate c, the sedimentation rate s, and the erosion rate ε. A stopping time
must also be specified and we decided to fix it as the percentage of DEM erosion, namely
the ratio p of the average eroded elevation in the DEM to the initial average elevation above
its minimal level. We explored typical values of 5% to 30% that make the evolution visually
conspicuous. Since m = 1

2 the actual number of parameters remains four.
The first equation (7.3) in this three equation system is the simplest possible water runoff

formulation, which can be viewed as a minimal version of Saint-Venant shallow water equa-
tions. It simply states that water runs off at each point (x, y) in the direction opposite to its
elevation gradient ∇(z+ θ)(x, y). The source term r expresses that rain is falling at constant
rate all over the landscape. Of course nothing prevents using a space or time variable r(x, y, t)
if such rainfall data rates are available.

The second equation (7.4) contains all of the water-ground interactions. The first one is
Gilbert’s creep evolution

∂z

∂t
= c∆z (7.6)

by which a landscape tends to get smooth and round by a diffusion process. The constant c
reflects a diffusion speed depending on soil conditions and on the previously mentioned various
perturbing factors (rain splash, wind, chemical weathering, . . . ). Such a creep term is found,
among others, in [Fernandes and Dietrich 1997], the GOLEM numerical simulation system
[Tucker and Slingerland 1994, Moglen et al. 1998, Simpson 2003, Culling 1960, Willgoose
et al. 1991]. The second term −εθm|∇(z + θ)|2m in (7.4) expresses the stream incision law
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[Niemann et al. 2001, Dietrich and Perron 2006]. It states that the erosion rate in a channel
increases with the flux of water in the channel and with the local gradient. The preferred
exponent in many models is m = 1

2 . The third term in the second equation (7.4) −sλθ is
Exner’s sedimentation law by which the sedimentation rate is proportional to the density
of sediment λ

θ in water. To summarize, the second equation expresses that the elevation
z(x, y, t) evolves under the conjugate actions of creep, erosion and sedimentation.

The third equation (7.5) simply expresses the conservation and transport law of the
sediment λ(x, y) carried by the water. The first term is the runoff term, strictly analogous to
the one present in (7.3) for water runoff, as sediment is carried by water at the same horizontal
velocity. The second and third terms are the opposite of the terms present in (7.4). Indeed,
the terrain scraped by erosion becomes transported sediment, and can sediment to become
terrain again.

The simulations of Figure 7.3 illustrate the variety of morphologies that can be reached
from an initial DEM by varying the parameters of the two-equation model, namely equations
(7.3 – 7.4) (in that way, no sedimentation occurs, which makes sense in the sloppy La Réu-
nion). Some of the evolutions maintain a qualitative landscape morphology similar to the
original, while others create new basins and rivers and evolve the DEM toward a different
morphology. For example results 7.3(b) and 7.3(c) are obtained by fixing the same erosion
percentage, 20%. But the first is still very similar to the original, showing a slow morpholog-
ical evolution, while the second has created or expanded basins, as the landscape evolves to
a mature form. In the last result, the exponent m = 0.6 in the incision law has been changed
from m = 0.5 in the other experiments. Observe that this modification is enough to modify
valley spacing on the left slope. It seems sound to deduce from this variety of results that,
with only four control parameters, a large variety of landscape morphologies can be modeled
by a three-equation model.

7.3 La Réunion at Pléiades resolution

This section presents two experiments for a comparative study of numerical landscape evo-
lution simulation on the same scene, the Piton des Neiges of La Réunion, at three different
resolutions. The results show a coherence of the aspect of the evolved landscapes at all reso-
lutions. But they also show that the numerical landscape evolution leads to the emergence of
a very fine resolution network. So the better the initial resolution, the better the prediction.
We have shown the results of landscape evolution simulations on a digital elevation model
of La Réunion extracted from the SRTM database (i.e. with resolution 90 m per pixel) in
Figure 7.3. Figures 7.4 and 7.5 show analogue results at much higher resolutions on digital
elevation models obtained from Pléiades stereo pairs by using the S2P stereo reconstruction
pipeline described in chapter 6. The algorithm was applied to entire Pléiades images down-
sampled by factors 32 and 8, yielding digital elevation models at resolutions of respectively
16 m per pixel and 4 m per pixel.

In Figure 7.4, we display first a Pléiades image of a stereo pair of Piton des Neiges,
La Réunion. An image at circa 8 m per pixel is obtained from it by numerical zoom out
by a factor 16. With this zoom out the image stereo pair has become virtually noiseless.
Thus our automatic digital elevation model reconstruction chain S2P (see chapter 6) yields
a fairly dense reconstruction. Nevertheless, interpolation remains necessary to remove holes
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7.3. La Réunion at Pléiades resolution

(a) Initial digital elevation model extracted from the
SRTM database. The resolution is 90m per pixel.

(b) Evolved landscape for (r, ε, c, p) = (5, 1, 10, 20).

(c) Evolved landscape for (r, ε, c, p) = (1, 1, 2, 20). (d) Evolved landscape for (r, ε, c, p) = (1, 1, 0.5, 30).

Figure 7.3 – This experiment on the Piton des Neiges, La Réunion, illustrates the variety of morphologies
that can be reached from an initial DEM by varying the parameters of a three-equation model. Notice
how some of the evolutions maintain a similar landscape, while others create new basins and rivers and
evolve it toward a different morphology. For example results (b) and (c) are obtained with the same final
amount of scrapped land, 20%. But (b) is still very similar to the original landscape (a), showing a slow
morphological evolution, while (c) has created or expanded basins, as the landscape evolves to a mature
form. In the last experiment (d), the exponent m = 0.6 has been changed. In all other experiments it is
m = 0.5. Observe that this modification seems to modify valley spacing on the left slope. See section 7.2
for more detail on the equations and parameters.
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left by the stereo matching in dark regions (not lit directly by the sun) and in zones with
very fine texture, which both correspond to a low SNR, making block matching fail. The
image 7.4(c) shows a plausible DEM evolution, which is stopped when 10% of the terrain has
been removed by erosion. The parameters in the equation are rain r = 1, erosion ε = 1, creep
c = 16, sedimentation s = 1. The images 7.4(e) and 7.4(f) show the water network at the end
of the evolution θ(x, y) and the sediment density contained in water λ(x, y), revealing still
better the fine structure of the hydrological network, as sediment has high concentration in
the fine network. This experiment illustrates the sensitivity of numerical landscape evolution
to the initial resolution. Clearly the simulated network tends to increase the DEM resolution
by recreating a fine channel network that was missing in the original DEM. This suggests
that much will be gained by increasing still the resolution, as it is by now possible with
Pléiades Earth stereo imaging. The nominal resolution of Pléiades being 0.7 m, nothing
prevents from simulating landscape evolution at this resolution. This makes sense, because
water runoff is very shallow except in big rivers, and therefore definitely affected by landscape
roughness at the very scale of Pléiades observation. We shall be contented here to compare
our previous landscape evolution at 16 m to the result of the same landscape evolution model
applied this time to a circa 4 m resolution digital elevation model, shown on Figure 7.5. The
stereo pair from which S2P computed the elevation model was obtained by zoom out from
the same Pléiades images presented in Figure 7.4. The DEM therefore gets a four times
finer resolution and was again interpolated to remove the holes where stereo matching failed.
Again, a plausible evolution toward a stable landscape is shown, after 10% of the terrain has
been removed by erosion. The parameters in the equation are rain r = 1, erosion ε = 1,
creep c = 32, sedimentation s = 1. We display the landscape evolution results in the same
format as in Figure 7.4: water network at the end of the evolution θ(x, y); sediment contained
in water λ(x, y), revealing the still finer structure of the hydrological network. While both
networks look compatible, it is clear that the landscape evolution at a finer scale is different.
If follows from this observation, as we already anticipated, that applying LEMs at 50 cm
scale is probably necessary to obtain a realistic simulation and get to the critical scales at
stake in landscape evolution. This without any doubt requires a huge but feasible numerical
machinery, and it requires stereo pairs at Pléiades resolution or finer.
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(a) Piton des Neiges, La Réunion. Crop of size 36 000×
36 000 pixels of one of the two Pléiades panchromatic
images of the stereo pair. The original resolution is
of circa 0.5m per pixel. The image shown here has
been zoomed out for display. Copyright ©CNES 2011-
15, distribution Airbus DS / Spot Image.

(b) Digital elevation model obtained with S2P from
Pléiades images zoomed out by a factor 16 (resolution
of circa 8m per pixel). Bright pixels correspond to high
altitudes while dark pixels correspond to low altitudes.
Black pixels indicate that no altitude was computed,
due to lack of information (occlusions, low light, reflec-
tions, untextured areas, repetitive patterns. . . ).

(c) Same digital elevation model, interpolated to fill the
holes left by S2P in the regions where the stereo match-
ing algorithms did not compute matches. The interpo-
lation was performed using the Absolutely Minimizing
Lipschitz Extension (AMLE) algorithm [Almansa et al.
2002].

(d) A plausible evolution, where 10% of the terrain
has been removed by erosion. The parameters in the
equation are rain r = 1, erosion ε = 1, creep c = 16,
sedimentation s = 1.
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(e) Water height θ(x, y) at the end of the evolution.
Bright pixels represent high values, as in terrain
elevation models, showing the tree structure of the
water network in white.

(f) Sediment load λ(x, y) contained in water, re-
vealing the fine structure of the hydrological net-
work. White denotes large values and black small
values.

Figure 7.4 – Results of the landscape evolution simulation on an elevation model of the Piton des Neiges,
La Réunion, of resolution 16 m per pixel, obtained from S2P (see chapter 6). The input Pléiades images,
of size 36 000× 36 000 pixels, have been downsampled by a factor 16 before being processed. The digital
elevation model produced by S2P was downsampled by a factor 2 before running the landscape evolution
simulation.

128



7.3. La Réunion at Pléiades resolution

(a) Digital elevation model computed by S2P and inter-
polated with AMLE [Almansa et al. 2002]. The input
Pléiades images, of size 9000× 9000 pixels and resolu-
tion 0.5m per pixel, were downsampled 8 times bringing
the resolution to 4m per pixel.

(b) A plausible evolution toward a stable landscape,
after 10% of the terrain has been removed by erosion.
The parameters in the equation are rain r = 1, erosion
ε = 1, creep c = 32, sedimentation s = 1.

(c) Water height θ(x, y) at the end of the evolution.
Bright pixels represent high values, as in terrain eleva-
tion models, showing the water network in white.

(d) Sediment load λ(x, y) contained in water, revealing
the fine structure of the hydrological network. White
denotes large values and black small values.

Figure 7.5 – Results of the landscape evolution simulation on a smaller area of the Piton des Neiges, La
Réunion, at a resolution of 4 m per pixel.
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8 Conclusion

This thesis studies all the elements needed to build a complete stereo pipeline for images
taken with pushbroom sensors by Earth observation satellites. The main achievement of
this work is the S2P software (chapter 6) which is currently used in production at CNES,
the French space agency, to supply large scale digital elevation models to a broad range of
academic and civilian users.

Nevertheless, many problems are still open. The solution proposed in chapter 2 to refine
the orientation parameters of a pushbroom camera relies on ground control points. But
the acquisition of ground control points is an expensive and tedious task that requires a
lot of manual interventions. Future work should investigate the ways to refine the absolute
localization of satellite images while reducing the need for manual interventions.

The inconsistencies between the orientation parameters of the images of a stereo dataset
were shown in chapter 4 to perturb the matching process. It was shown that, on small image
tiles, the induced transformation is close to a translation in image space. But it was also
shown that for large image tiles the translation approximation is not valid. The correct error
model for complete images should be investigated in future work.

The core of the 3D reconstruction problem is the stereo matching step, for which the
popular SGM algorithm and its variant MGM were studied in chapter 5. There is still room
for improvement, as shown by the error rates obtained on the Middlebury benchmark (version
3), reported on figures 5.10 (page 97) and 5.12 (page 101). Indeed, stereo matching is still
a very active research field, with many papers published each year at the major computer
vision and image processing conferences.

As most of the bad pixels are detected by rejection filters such as the left-to-right consis-
tency check [Fua 1993] or the median filter [Scharstein and Szeliski 2002] (see section 5.4.5),
the produced disparity maps usually present many holes, i.e. areas in which no depth infor-
mation is available. For many applications, such as the water runoff simulations presented
in chapter 7, these holes in the elevation model have to be filled. An automatic way to in-
terpolate the missing data should be investigated. This is a challenging problem because the
interpolation strategy must be adapted to the nature of the scene, as shown by the example
presented in figure 8.1.

An alternative way to retrieve missing data in a computed 3D model is to compute another
model of the same area from different images, acquired at a different date, from a different
orbit, or by another remote sensor. More generally, the fusion of multi-date 3D models
computed from several stereo datasets could eventually lead to a completely dense model.
The main difficulty of the fusion process was illustrated by figure 4.3, page 70: the 3D models
computed from different pairs of images may not be properly aligned, due to inaccuracies
of the RPC functions. Each model computed by S2P might have an absolute bias that the
relative pointing correction algorithm of chapter 4 did not correct. Thus, prior to fusion, all
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(a) Pléiades view from a
stereo pair over Manhat-
tan.

(b) 3D point cloud computed by S2P
from the Pléiades stereo pair, non
dense.

(c) Dense result obtained from (b) by
interpolating with TVL1.

Figure 8.1 – The interpolation strategy has to be adapted to the type of scene. In this example the
dense results obtained with usual methods ignore the fact that the occluded surfaces are vertical. Copyright
©CNES 2011-15, distribution Airbus DS / Spot Image

the models have to be registered in 3-space on top of one of them.
A possible approach could be to find sparse correspondences between the reference frames

of the multi-date stereo datasets, using SIFT [Lowe 2004, Rey Otero and Delbracio 2014].
These correspondences can be transported in 3-space thanks to the 3D models computed
by S2P. A transformation of 3-space can then be estimated from the set of 3-space corre-
spondences. The correct class of transformations has still to be investigated, but promising
results were obtained using rigid transformations. Classical approaches for this 3D registra-
tion problem are the Iterated Closest Point (ICP) algorithm [Chen and Medioni 1992] and the
Scale Space Merging algorithm [Digne et al. 2010, Digne 2014]. ICP estimates a parametrized
global transformation between two 3D models, while scale space merging estimates a global
deformation of the scene based on low spatial frequencies.
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A Guidance algorithm

In our implementation of the pushbroom camera geometric simulator, the true attitude
coefficients Φ̄ are not set directly by the user. Instead, the user chooses an initial pointing
direction Ψx,Ψy and a heading γ which gives the direction of the movement of the projection
of the pushbroom sensor on the ground, with respect to the local North. The attitude
coefficients are computed from Ψx,Ψy and γ thanks to Algorithm 12.

Algorithm 12: How to compute attitude coefficients from a given heading and initial pointing.
Input: Ψx,Ψy: initial pointing direction

γ: heading
h0: rough altitude of the scene
∆t, δt: duration of the acquisition and dwell time
a, i, λ0: orbit parameters
α0: satellite initial position on the orbit
n: number of samples used to estimated the attitude polynomials
d: degree of the polynomials used to describe the attitude functions

Output: ϕ,ψ, ω : [0,∆t]→ R3: attitude polynomial functions
begin

1 X = (X,Y,Z)> ← target_point_orbital_frame(Ψx,Ψy, h0) // algorithm 13
2 for k ∈ {0, . . . , n− 1} do
3 v← pushbroom_direction_on_the_ground(X, γ, k∆t

n−1) // algorithm 15
4 ϕk, ψk, ωk ← attitude_from_point_and_speed(X,v) // algorithm 14
5 X← X + pixel_projection_width(R(ϕ,ψ, ω)) ∆t

(n−1)δt
v // algorithm 16

6 Z← Z− (RE + a)

7 X← Protational, orbital(
(k+1)∆t

n−1 , λ0, i, α0)−1Protational, orbital(
k∆t
n−1 , λ0, i, α0)X

8 Z← Z + (RE + a)

9 for θ ∈ {ϕ,ψ, ω} do
10 θ ← least squares degree d polynomial fit of points { k∆t

n−1 , θ
k}k=0,...,n−1

11 return ϕ,ψ, ω
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Algorithm 13: Orbital coordinates of the intersection of the optical axis and the ground
Input: Ψx,Ψy: initial pointing direction

h0: altitude of the scene
a: flying altitude of the satellite

Output: X: coordinates of the intersection of the optical axis and the ground
begin

1 E = (0, 0, RE + a)>

2 v = (tan(Ψy),− tan(Ψx), 1)>

3 X← intersection of the line directed by v and the sphere with center E and radius
RE + h0

Algorithm 14: Compute the satellite attitude from a targeted point and a pushbroom direc-
tion
Input: X = (X,Y,Z): point on Earth, given by its coordinates in the orbital frame

v: movement of the pushbroom array, projected on the ground, given in the
orbital frame.
Output: ϕ,ψ, ω: attitude angles
begin

1 ϕ← − arctan(YZ )

2 ψ ← arcsin( X
‖X‖)

3 n← X− (0, 0, RE + a)>

4 w = n× v
5 X = −n× R(ϕ,ψ, 0)(0, 1, 0)>

6 Y = −n× R(ϕ,ψ, 0)(1, 0, 0)>

7 if w ·Y = 0 then
8 ω ← π

2
9 else

10 ω ← arctan(w·Xw·Y )

11 if v ·Y sinω < v ·X cosω then
12 if ω < 0 then
13 ω ← ω + π
14 else
15 ω ← ω − π

16 return ϕ,ψ, ω
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Algorithm 15: Pushbroom direction on the ground
Input: X: orbital coordinates of the ground point currently targeted

γ: heading, i.e. direction of the pushbroom array movement, on the ground
t: time elapsed since the beginning of the acquisition, in seconds

Output: v: orbital coordinates of a vector giving the pushbroom movement direction,
projected on the ground

begin
1 E← (0, 0, RE + a)>

2 λ, θ ← longitude, latitude of Protational, orbital(t, λ0, i, α0)(X− E)

3 v← (0, sin γ, cos γ)>

4 return Protational, orbital(t, λ0, i, α0)

cλ −sλ 0
sλ cλ 0
0 0 1

cθ 0 −sθ
0 1 0
sθ 0 cθ

v

Algorithm 16: Compute the width of the projection of a pixel on the ground
Input: M: change of coordinates matrix between orbital frame and camera frame

x = (x, y): coordinates of the pixel in the image plane
Output: width, in meters, of the projection of the pixel on the ground, in the

pushbroom direction (orthogonal to the pushbroom movement)
begin

1 v← M(−x,−y, f)>

2 E← (0, 0, RE + a)>

3 X← intersection of the line directed by v and the sphere with center E and radius
RE

4 Π← plane normal to X− E passing by X
5 v1 ← M(−x− w

2 ,−y, f)>

6 v2 ← M(−x+ w
2 ,−y, f)>

7 p1 ← intersection of the line directed by v1 with the plane Π
8 p2 ← intersection of the line directed by v2 with the plane Π
9 return ‖p1 − p2‖
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B The SRTM database

A freely available model of the whole surface of the Earth was acquired by the Shuttle
Radar Topography Mission (SRTM) in the early 2000’s [Farr et al. 2007]. This international
research effort obtained a digital surface model on a near-global scale from latitude 56°S
to latitude 60°N and generated a complete digital topographic database of the Earth. The
resolution of the data is three arcseconds, i.e. 90 m.

Given the longitude λ and latitude θ of a point on the ground, we can thus interpolate
its altitude from a 90 m sampling, obtaining a mapping hSRTM from the Earth surface to R:

hSRTM:R2 −→ R

(λ, θ) 7→ h.
(B.1)

This mapping can be combined with the RPC localization and projection functions of a given
image u to estimate the altitude of the 3D point corresponding to a specified pixel x. Using
a fixed point algorithm, we can define a mapping hSRTM,u from the domain of image u to R
that associates an altitude to each pixel:

hSRTM,u:R2 −→ R

x 7→ h.
(B.2)

The SRTM data can thus be used, together with the RPC localization and projection
functions, to estimate the altitude range of the 3-space points imaged in a given tile of the
image u. This estimation is needed for the computation of the virtual matches used in the
image rectification algorithm 6. The SRTM resolution is 90 m, which corresponds to 130
pixels in a Pléiades nadir image. Thus using a regular grid on the image domain Ω, with a
step smaller than 130 pixels, and evaluating the hSRTM,u mapping on it allows to get all the
available altitude samples. Then we can extract the extrema altitudes on the image domain
Ω:

hm = inf
x∈Ω

hSRTM,u(x), (B.3)

hM = sup
x∈Ω

hSRTM,u(x). (B.4)

This altitude range is expanded by 100 m in each direction, to take into account the low
sampling of SRTM data: an offset of 100 m should be enough to compensate SRTM smoothing,
except for the few areas containing very high skyscrapers.
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C Notations

As far as possible we try to use the same notations as Hartley and Zisserman in their ref-
erence book on multiple view geometry [Hartley and Zisserman 2004]. Table C.1 summarizes
them.

Table C.1 – Notations used in the thesis

Notation Meaning
t time in seconds from the beginning of the acquisition of the current image
x image point, usually given by its row and column coordinates
x, y row and column coordinates of an image point
X 3-space point, given either by its geographic or Cartesian coordinates

X,Y,Z Cartesian coordinates of a 3-space point
λ, θ longitude, latitude of a point in the Earth-centered rotational frame
h height of a point above the WGS 84 reference ellipsoid
f focal length
y0 principal point coordinate in the sensor frame
w pixel width
ϕ(t) sensor roll angle at time t measured in the local orbital frame
ψ(t) sensor pitch angle at time t measured in the local orbital frame
ω(t) sensor yaw angle at time t measured in the local orbital frame

R(ϕ,ψ, ω) 3D rotation defined by intrinsic roll, pitch and yaw angles
Φ set of attitude coefficients {(ϕk, ψk, ωk)}k=0,...,3

Ψx,Ψy initial direction of the optical axis in the local orbital frame
γ direction of the pushbroom sensor projected on the ground w.r.t. to North
u direction of a back-projected ray from an image point
a flying altitude of the satellite above the Earth surface
i inclination of the orbital plane
λ0 longitude of the reference node
α0 initial angular position of the satellite on the orbit
αt current angular position of the satellite
∆t duration of the acquisition
TS orbital period of the satellite
RE radius of the Earth (assumed to be spherical)
µ standard gravitational parameter of the Earth
TE duration of an Earth stellar day
E Earth’s center of mass
S satellite center of mass
L localization function, converting image to geographic coordinates
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Chapter C. Notations

Table C.1 – (continued)

Notation Meaning
P projection function, converting geographic to image coordinates
P0 initial estimation of the projection function
Jx,yL Jacobian of L with respect to x and y
D swath width of the satellite
n number of ground control points
d degree of a polynomial function

σimage std dev of the zero-mean Gaussian noise added to the image coordinates
σworld std dev of the zero-mean Gaussian noise added to the ground coordinates
η maximum of the polynomial error functions added to the true attitudes
u, v two stereo rectified images
w, h images width and height

Ω domain of the images: {0, ..., w − 1} × {0, ..., h− 1}
N number of pixels, i.e. w × h
p,q pixels
d disparity value
dp value of disparity map d in pixel p
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