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ABSTRACT

We propose an edge detector based on the selection of well
contrasted pieces of level lines, following the proposal of
Desolneux-Moisan-Morel (DMM) [1]. The DMM edge de-
tector has the problem ofover-representation, that is, every
edge is detected several times in slightly different positions.
In this paper we propose two modifications of the original
DMM edge detector in order to solve this problem. The first
modification is a post-processing of the output using a general
method to select the best representative of a bundle of curves.
The second modification is the use of Canny’s edge detector
instead of the norm of the gradient to build the statistics. The
two modifications are independent and can be applied sep-
arately. Elementary reasoning and some experiments show
that the best results are obtained when both modifications are
applied together.

Index Terms— Edge detection, Canny, computational
gestalt

1. INTRODUCTION

Edge detection is the task of finding the boundaries between
the objects that appear in a digital image. From a mathe-
matical point of view, the detection of edges amounts to find
the discontinuities of a function. Because discontinuities are
not well defined for discrete digital images, some ingenuity
is needed to compute them, and this accounts for the dispar-
ity of edge detection methods. People have been using two-
dimensional edge detection for years for many tasks. For ex-
ample, to obtain a visually appealing “primal sketch” of a pic-
ture, to reduce the amount of information present in a picture,
to get a manageable list of “features” to perform registration
of two images, or shape matching; and finally as a first step
towards the segmentation of the image into regions.

Most, if not all, edge detectors are based on finding the
points of the image where the gray-value changes fast. Equiv-
alently, finding the points where the norm of the gradient is
high. Usually, this involves thresholding the response of a
discrete differential operator. Canny’s edge detector [2,3] is
the most widely used in this class. It needs three parameters:
the scale of an initial Gaussian filtering, and two thresholds

of the gradient norm to select a set of connected pieces of
boundaries. The optimal values of these parameters depend
heavily on the image content.

In the quest for a parameter-free edge detector, Des-
olneux, Moisan and Morel proposed to use computational
gestalt theory for edge detection. Their approach started
with the observation that the discontinuities of a functionare
formed by pieces of level lines where the norm of the gradient
is high. The algorithm introduced in [1] consists in traversing
the family of all the pieces of all the level lines, and picking
those pieces where the gradient is high. This selection is done
by comparing the gradient of each piece to the distribution
of the gradient over the whole image, in such a way to avoid
any manual thresholding. This method is fast and gives good
results, but it has a problem of edge replication. The aim of
this note is to address this problem.

Let us outline the plan of this work. We start in Section 2
by recalling DMM edge detector. In Section 3 we explain
how to filter the output of this edge detector to remove repli-
cated edges. In Section 4 we propose a slight modification of
the original detector in order to obtain better localized curves.
Finally, in section 5 we compare the results of Canny’s and
Desolneux’s edge detector with ours.

2. THE DMM EDGE DETECTOR

Let us briefly recall the DMM edge detector introduced in [1].
Following this reference, the set of curves which are the out-
put of this detector will be called themeaningful edges of the
image.

Let Ω be a rectangular grid of pixels. LetI : Ω →
{0, . . . , 255} be a gray-scale discrete image andg : Ω →
[0,+∞) be the norm of its gradient (henceforth called the
contrast), computed via finite differences. As in [1], level
lines are the boundaries of the level sets{x ∈ Ω : I(x) ≥ λ},
λ ∈ {0, . . . , 255} of I. The distribution of values ofg will
be treated as a background model of noise. For that, we
will need the repartition function ofg, defined byH(µ) =
#{x∈Ω | g(x)≥µ}

#Ω and the total numberNp of connected pieces
of level lines (which is computable from the fact that a curve
of l discrete points hasl(l − 1)/2 possible connected pieces,



each piece being determined by its two endpoints). The DMM
algorithm tries to find the well contrasted (in a statistical
sense) pieces of level lines of the image and it depends on a
positive parameterǫ. We can summarize it as:

Algorithm D (Meaningful edges)

1. For each level lineC of I:
(a) For each connected pieceP of C:

(i) Let µ the minimum contrast onP andl its length

(ii) ComputeNFA(P ) = NpH(µ)l

(iii) If NFA(P ) < ǫ keep the curveP , otherwise dis-
card it.

(b) Discard the piecesP of C for which there exists an-
other pieceP ′ such thatP ∩ P ′ 6= ∅ andNFA(P ′) <
NFA(P ).

2. Output the non-discarded piecesP .
This algorithm is straightforward, but it requires some ex-

planation, specially step1.(a)(ii). The quantityH(µ)l is the
probability that the minimum contrast on a random curve of
lengthl is µ. The acronymNFA stands for “Number of False
Alarms”, and its use is justified by the following result, ex-
plained in [4]: Under a reasonable noise model, the expec-
tation of the number of curve segments output by the algo-
rithm D (when run on noise) is≤ ǫ. Notice that step(ii) of
algorithmD computes a positive real number for each piece
of level line. This quantity can be interpreted as a “score” of
how meaningful is the contrast piece: the closer to zero, the
better. Then, step(iii) defines a statistical test in the form
of a threshold: only curves whose score is better thanǫ are
accepted.

Concerning the efficiency of the algorithm, we have to
say that if the pieces of curve on step(a) are traversed in an
appropriate order, step(b) can be omitted without affecting
the output; but this is an implementation detail.

3. THE EXCLUSION PRINCIPLE

The output of DMM edge detector is usually highly redun-
dant: the edges appear represented as bundles of curves. Here
we introduce an exclusion principle to reduce the redundancy
of the output, by picking the best representative of each bun-
dle. It is based on a similar principle used in a segment detec-
tor [5, 6] in order to reduce output redundancy.

The proposed exclusion principle works by dividing the
image domain into small square regions (e.g. of the origi-
nal pixel size, but not necessarily), and imposing these two
requirements on the final set of curves: (1) Each square be-
longs to at most one curve, and (2) Each curve passes the
NFA test described above. Here we say that a squareQ be-
longs to a curveC whenC crosses throughQ. Of course,
the first requirement is not usually fulfilled by the originalset
of curves. The exclusion method works by removing parts of
curves until the first requirement is fulfilled. Then, it removes

the remaining pieces of curves that do not pass the test. See
Figures 1 to4 for a graphical explanation.

There are in general non-unique ways to reduce the orig-
inal set of curves so that the first requirement is true. We
propose the following greedy strategy to force uniqueness:

Algorithm E (Exclusion principle)

1. Start with the set of all curves output by algorithmD

2. While there are still curves that pass the test:
1. Pick the curveC that passes the test with highest score

2. The curveC owns all the squares that it crosses

3. Delete the parts of all the other curves that cross
through squares owned byC and update their scores
accordingly.

4. OutputC and remove it from the set

3. Delete the remaining curves

Remark 1 In the previous algorithm, the “curves” we speak
about are not necessarily connected. For example, when we
remove a piece in the middle of a curve, the remaining two
pieces are still considered “one curve”. This can be seen on
the upper curve at Fig. 4(b).

The problem of over-representation was already noted in
[1], were the authors proposed a possible solution. The pro-
posal consisted of looking at the tree of level lines (see [7]),
and allowing only one detection to occur inside each branch
of that tree. However, this criterion may fail in two cases:
when there is a single branch of the tree containing separate
objects (e.g., the two boundaries of an annulus), and when a
branch is cut due to the noise (e.g., the boundary of a blurry
disk containing a noisy pixel). In the first case the criterion
will miss a boundary and in the second case it will find a du-
plicated boundary. The proposed exclusion criterion does not
have any of these two problems. However, there remains still
a problem to solve: when a blurred edge is wider than the
scale used for the exclusion principle, multiple representa-
tives are picked for this edge (see Fig. 5(e)) This is addressed
on the following section.

4. COUPLING DMM AND CANNY

Our second improvement is aimed to solve the following
problem. Let us consider a synthetic image that contains a
black object on a white background, and the boundary of
the object is blurred, giving rise to all the intermediate gray
levels (see Fig. 5(c)). All the level lines surrounding the
object are meaningful because they have a high contrast com-
pared with the rest of the image, which is flat. Thus, even if
we apply algorithmE, the method will detect the boundary
replicatedw/s times, wherew is the width of the boundary
ands the scale of the exclusion principle.

To avoid this replication we propose the following mod-
ification to AlgorithmD: instead of using the norm of the



(a) Two curves “covering the
same object”

(b) Two curves “covering dif-
ferent objects”

Fig. 1: The two synthetic cases that we are going to consider
below

Fig. 2: Marking of the squares according to which curves
cross each one.

Fig. 3: Assignment of at most one curve to each square, thus
fulfilling the first requirement.

(a) Only the lower curve
passes theNFA test

(b) Both curves pass theNFA

test

Fig. 4: Run of theNFA test for the remaining pieces of curve,
thus fulfilling the second requirement.

gradient, use the output Canny’s edge detector. More pre-
cisely, we compute Canny’s filter with the parameters set at
their extreme values: omit the initial Gaussian filtering and
perform no gradient thresholding at all. This extreme setting
of parameters gives an image with a lot offalse positives: the
filter responds too much to noise. However, this is not a prob-
lem, because the response inside textured regions is formed
by mostly disconnected pixels, which are not covered by long
level lines. On the other hand, when there is a long and well
contrasted edge, it is completely covered by the Canny’s de-
tected pixels, and any level line crossing through them is de-
tected. Furthermore, when there is a wide blurred edge, only
its central skeleton of width one pixel is detected by Canny
(compare(c) and(d) on Fig. 5); so that the output produced
by an edge will be a bundle of curves spanning a width of one
pixel at most, independently of the width of the blurred edge.

Algorithm X (Meaningful edges with Canny)

The same as algorithmD but usingg = output of Canny’s
filter instead of the gradient norm.

5. EXPERIMENTAL RESULTS

The two modifications we have described here are indepen-
dent. Each of them improves the output of the original DMM
detector, and the combined use of both gives the best results.
Let us finally show how do these modifications act upon two
concrete examples. The first example, analyzed on Fig. 5, is
a synthetic image of a black disk on white background, con-
volved with a large Gaussian kernel. The original detector
finds the boundary replicated over200 times. Each of the
proposed modifications reduces the over-representation ofthe
result. The combined use of both techniques produces the de-
sired result of a single boundary.

The second example, analyzed on Fig. 6, is the lena im-
age. Here we can readily appreciate a great simplification of
the output thanks to the exclusion criterion. The effect of us-
ing Canny’s filter instead of the gradient is more subtle. For
instance, the top of the hat closes completely and the shadow
on the shoulder is interpreted as a very wide edge.

The only parameter of the whole method isǫ. The ef-
fects of setting this parameter are the same as with the orig-
inal DMM detector, which are discussed at length at [4].
Briefly, except in synthetic or extremely textured images it
is safe to set it always toǫ = 1. This was the setting we used
in all our experiments.

The two advantages of the proposed method over Canny’s
are that it only needs one parameter and that the output is
structured as a small set of curves in sub-pixel precision (in-
stead of a set of pixels). The advantage over DMM is that the
output is smaller.



(a) smooth disk (b) close-up

(c) Algorithm D:244 curves (d) Algorithm X: 101 curves

(e) D + E:5 curves (f) X + E: 1 curve

Fig. 5: Comparison of the discussed methods on a synthetic
image of a blurred disk.
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