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Abstract

The tree of shapes of an image is an ordered structure which permits an efficient ma-
nipulation of the level sets of an image, modeled as a real continuous function defined on a
rectangle of IRN , N ≥ 2. In this paper we construct the tree of shapes of an image by fusing
both trees of connected components of upper and lower level sets. We analyze the branch
structure of both trees and we construct the tree of shapes by joining their branches in a
suitable way. This was the algorithmic approach for 2D images introduced by F. Guichard
and P. Monasse in their initial paper, though other efficient approaches were later developed
in this case. In this paper, we prove the well-foundedness of this approach for the general
case of multidimensional images. This approach can be effectively implemented in the case
of 3D images and can be applied for segmentation, but this is not the object of this paper.
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1 Introduction

Ordered tree structures play an important role in several contexts in image processing. They
permit a hierarchical organization of information and the development of fast algorithms. Let
us review some of them.

In most image processing based applications, an image is usually viewed as a set of pixels
placed on a rectangular grid. The pixel provides a very local information: taking it as elementary
unit places the scale of representation far from the interpretation or decision scale. In recent
years, an increasing number of applications rely on more structured image representations. For
instance, region-based or level-lines image representations offer two advantages with respect to
pixel based ones: the number of regions or level-lines is much lower than the number of original
pixels, and they represent a first level of abstraction with respect to the raw image information.

Let us mention two data structures which have proved to be useful in region based image
processing: the region adjacency graph and tree based structures. The region adjacency graph
(RAG) is the right data structure needed to encode a partition of the image domain: the
nodes represent regions and two nodes are connected by an edge if their associated regions are
neighbors. This structure is well adapted to many segmentation algorithms: starting with an
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initial partition organized as a RAG, and merging regions according to an homogeneity criterion
we derive another partition represented by a RAG. Since this structure can only represent a single
scale of the image, other tree based structures have been developed to represent a hierarchy of
partitions. Quadtrees, or Partition Trees [26] are examples of such structures.

One of the most sound alternatives to pixel based representations of images comes from
mathematical morphology. Mathematical morphology can be considered as the study of the
lattice of real functions defined in a given domain [29] and the operators acting on them. On the
other hand, it addresses the problem of the basic atoms of information that describe the image.
According to Mathematical Morphology, an image u : Ω → IR, Ω ⊆ IRN , is representative of
an equivalence class of images v obtained from u via a contrast change, i.e., v = g(u) where g,
for simplicity, will be a continuous strictly increasing function [13, 29] modeling global illumi-
nation changes. The contrast of an image depends on the sensor’s properties, on the lightning
conditions, on the objects’ reflection properties, etc., and these conditions are usually unknown.
This led the physicist and gestaltist M. Wertheimer [34] to state as a principle that the grey
level is not an observable: images are observed up to an arbitrary and unknown contrast change.
Mathematical Morphology recognized contrast invariance as a basic requirement and proposed
that image analysis operations should take into account this invariance principle [29]. Under this
assumption, an image is characterized by its level sets (see Section 3) which constitute the basic
objects (atoms) for image processing and analysis. Later, in order to account for local changes
in illumination, several authors [6, 27, 29] proposed a more local description of the basic objects
of an image, more precisely, they proposed to consider the connected components of (upper or
lower) level sets as basic objects of the image.

In many cases, for 2D images, a connected component of a level set can be described in
terms of its boundaries which, by an abuse of language, we call level lines. By Sard’s theorem,
this is the case if the image u is a smooth function, but more general cases can be included
with the right definition of level lines, i.e., as boundaries of level sets. The family of level lines
of the image can be given an ordered tree structure since they are ordered by inclusion. This
is essentially the tree of shapes of the image which has been implemented for 2D images in
[24, 22] (and [32] using an slightly different approach). It gives a complete and non-redundant
representation of the image and is contrast independent. The tree of shapes merges into a single
tree the information contained in the trees of connected components of upper ({x : u(x) ≥ λ},
λ ∈ IR) and lower ({x : u(x) ≤ λ}) level sets.

In the case of 2D images, many image processing tasks like edge detection, segmentation,
or registration have been restricted to the family of level lines (or its equivalent formulation
by the tree of shapes). Indeed, edge detection computed as a subfamily of level lines has
been the object of several works [12], and the computed edges have been used for recognition
purposes [20, 5]. Level lines have also been used efficiently for segmentation [3], or registration
[23, 20]. All these works deal with two-dimensional images. In order to extend this approach
to the multidimensional case, we study in this paper the ordered structure of the family of
connected components of level sets of a continuous function defined in a domain of IRN (N ≥ 2)
homeomorphic to the unit ball and justify mathematically the algorithmic approach to the
construction of the tree of shapes of the image. This order data structure encodes in an efficient
way the family of its level surfaces as the external boundaries of its upper and lower level sets.
Motivated by its applications to segmentation, it has been implemented for three-dimensional
images in [21]. Figures 1 and 2 show a Section of a 3D CT angiography image and some of its
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Figure 1: A Section of a 3D CT angiography image from which we display some level surfaces
in Figure 2.

Figure 2: Three level surfaces of the 3D image whose 2D section is displayed in Figure 1 (we used
AMIRA visualization software). The tree of shapes is a data structure which is able to handle
all these level surfaces and use them for several tasks in image processing like segmentation or
registration.

level surfaces. The data structure for 3D images is able to handle efficiently all of them with a
memory cost essentially proportional to the number of voxels of the image.

Let us finally summarize the structure of this paper. In Section 2, we introduce the basic
order (trees, intervals, branches) and topological preliminaries used in the sequel. In Section
3 we introduce the trees of connected components of upper an lower level sets and the tree of
shapes of an image. In Section 4 we study the order completion of the above mentioned trees,
which is necessary to give (in Section 5) a detailed description of its maximal branches, the right
tool to construct the tree of shapes by fusion of the trees of connected components of upper an
lower level sets. In Section 6, the branch structure is interpreted in connection with the singular
facts of the corresponding upper and lower tree. The construction of the tree of shapes by fusion
of both upper and lower trees is the object of Section 7. Finally, Section 8 is devoted to a quick
overview of the literature on data structures for images and surfaces.
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2 Preliminaries

2.1 Trees as ordered structures

For basic concepts on ordered structures we refer to [28].

Definition 2.1. Let (T ,≤) be an ordered set. We say that (T ,≤) is a tree if

(i) T has a largest element,

(ii) Given C,D ∈ T , the supremum, denoted by C ∨ D exits in T ,

(iii) If C,D ∈ T have a minorant in T , then either C ≤ D or D ≤ C. In that case we shall
say that C and D are nested.

If C,D ∈ T have no minorant we shall write C ∧ D = ∅. If we add ∅ as an element of T ,
then the notation C ∧D has a sense and is always equal to C, D or ∅. The elements of the tree
will be called nodes. Observe that, thanks to (iii), there are no cycles in a tree.

Let (T ,≤) be a tree. As usual, if A ≤ B ∈ T , we define the interval [A,B]T by

[A,B]T = {S ∈ T : A ≤ S ≤ B} .

Definition 2.2. Let (T ,≤) be a tree, A,B ∈ T . We say that B contains a bifurcation if there
are S, T ∈ T , S, T ≤ B such that S ∧ T = ∅. We say that there is a bifurcation between A and
B in T if there is S ∈ T such that S ≤ B and S ∧ T = ∅.

Definition 2.3. Let (T ,≤) be a tree, A,B ∈ T . We say that [A,B]T is a branch of T if there
is no bifurcation between A and B.

For simplicity, having fixed the tree T , [A,B] will denote an interval of T .

Proposition 2.4. Let (T ,≤) be a tree. Let [A1, B1], [A2, B2] be two branches of T such that

[A1, B1] ∩ [A2, B2] 6= ∅.

Then [A1 ∧ A2, B1 ∨ B2] is a branch.

Proof. Let S ∈ T be such that A1 ≤ S ≤ B1 and A2 ≤ S ≤ B2. Thus B1 ∧ B2 6= ∅, and,
therefore, B1 and B2 are nested. We observe that A1 and A2 are also nested. Indeed, since
A2 ≤ S ≤ B1, and since there is no bifurcation in [A1, B1], we have that A1 ∧ A2 6= ∅. Then A1

and A2 are nested. By symmetry, we may assume that either

A1 ≤ B1 ≤ A2 ≤ B2, or (i)

A1 ≤ A2 ≤ B1 ≤ B2, or (ii)

A1 ≤ A2 ≤ B2 ≤ B1. (iii)

If (i) holds, then
A1 ≤ S ≤ B1 ≤ A2 ≤ S ≤ B2,

and B1 = A2 = S. This case can be subsumed under the case (ii). If (iii) holds, then
[A1 ∧ A2, B1 ∨ B2] = [A1, B1] is a branch. Thus, we may assume that (ii) holds. We prove that
there is no bifurcation in [A1, B2].
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Let R a node of T such that R ≤ B2. Since [A2, B2] is a branch, R ∧ A2 6= ∅. By definition
of tree, either A2 ≤ R or R ≤ A2. In the first case, A1 ≤ R, while, in the second case, R ≤ B1

and, since [A1, B1] is a branch, R∧A1 6= ∅. This holds for any R ≤ B2, proving that [A1, B2] is
a branch.

Propositions 2.4 permits us to define the maximal branch containing a given node S ∈ T .
Indeed, we define BT (S), the maximal branch containing S, as

BT (S) = ∪{[A,B] : [A,B] is a branch of T s.t. S ∈ [A,B]}. (2.1)

Following [28], we say that the tree (T ,≤) is order complete if given any totally ordered,
respectively totally ordered and minorized, family F ⊆ T , the supremum, respectively the
infimum, of F exists in T . The supremum and the infimum of F will be denoted by supT F ,
respectively infT F .

2.2 Topological preliminaries

Let Ω ⊆ IRN be an open set such that Ω is homeomorphic to the unit ball of IRN (N ≥ 2). Note
that, in particular, Ω is compact, connected and locally connected. Moreover, Ω is unicoherent.

Definition 2.5. ([18, §41,X]) A topological space Z is said to be unicoherent if it is connected
and for any two closed connected sets A,B in Z such that Z = A ∪ B, A ∩ B is connected.

The connected components of a set A ⊆ IRN will be denoted by CC(A). If x ∈ A, the
connected component of A containing x will be denoted by cc(A,x), and by extension we shall
write cc(A,x) = ∅, if x 6∈ A. If ∅ 6= C ⊆ A and C is connected, the connected component of A

containing C, denoted by cc(A,C), is cc(X,x), with x ∈ C. Sometimes we will forget the point
x and write X = cc(A) to mean that X ∈ CC(A).

In this paper, unless explicitly stated, all topological notions are referred to Ω. In particular,
∂ denotes the boundary operator in the relative topology of Ω.

Definition 2.6. Let A ⊆ Ω. We call holes of A in Ω the components of Ω \A. Let p∞ ∈ Ω \A

be a reference point, and let T be the hole of A in Ω containing p∞. We define the saturation of
A with respect to p∞ as the set Ω\T and we denote it by Sat(A, p∞). We shall refer to T as the
external hole of A and to the other holes of A as its internal holes. By extension, if p∞ ∈ A, by
convention we define Sat(A, p∞) = Ω. Note that Sat(A, p∞) is the union of A and its internal
holes.

The reference point p∞ acts as a point at infinity. In all what follows, we assume that the
point p∞ ∈ Ω on which the saturations are based is fixed, i.e., all saturations will be computed
with respect to p∞. To simplify our notation, we shall write Sat(A) instead of Sat(A, p∞). We
shall also speak of holes of A instead of holes of A in Ω. Ii Figure 3 we illustrate the saturations
of a set A with respect to the point at infinity p.

Definition 2.7. Let A ⊆ Ω and p∞ ∈ Ω \ A. The external boundary of A, denoted by ∂eA, is
the boundary of the external hole of A, thus it coincides with ∂Sat(A). The internal boundaries
of A are the boundaries of its internal holes.

The following result summarizes the main properties of the saturation operator. Its proof
can be found in [22, 2, 7]. The unicoherence of Ω is the fundamental property that guarantees
that the boundary of a hole of a connected set is connected and this implies (vi) and (ix).
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A Sat(A)

Figure 3: A set A (in light gray) and its saturation with respect to p.

Lemma 2.8. Let A,B ⊆ Ω. The saturation operator satisfies the following properties:

(i) If A is open (resp. closed) in Ω, then Sat(A) is open (resp. closed) in Ω.

(ii) Monotonicity: If A ⊆ B, then Sat(A) ⊂ Sat(B)

(iii) Idempotency: Sat [Sat(A)] = Sat(A)

(iv) Assume that A is connected and T is a hole of A. If T is an internal hole, Sat(T ) = T ; if
T is the external hole, Sat(T ) = Ω.

(v) If A is connected, then Sat(A) is also connected.

(vi) If A is an open (closed) connected subset of Ω, then ∂sat(A) is connected.

(vii) If T is a hole of A, then ∂T ⊆ ∂A. As a consequence, ∂Sat(A) ⊆ ∂A.

(viii) Assume that Sat(A) 6= Ω. Then Sat(A) ⊆ Sat(∂A), and, if A is closed, we get Sat(A) =
Sat(∂A).

(ix) Assume that A is open or closed. Let C ∈ CC(A), and x ∈ Sat(C) \ C. Then there
exists O ∈ CC(Ω \ A) such that x ∈ Sat(O) ⊆ Sat(C). Moreover, if A has a finite number of
connected components, and Y is an internal hole of C, then there exists O ∈ CC(Ω \ A) such
that Y = Sat(O).

(x) If A is a closed set and C ∈ CC(A), then any hole of C can be expressed as a countable union
of saturations of connected components of Ω \ A.

(xi) Let Kn be a decreasing sequence of continua, K = ∩nKn. Then Sat(K) = ∩nSat(Kn).

Remark 2.9. Notice that Lemma 2.8.(ii) and (viii) says that if A is closed in Ω and does
not contain p∞, then Sat(A) is determined by the boundary of A. More precisely, Sat(A) is
determined by the external boundary of A, since using (ii) and (viii) of last Lemma we have
Sat(A) = Sat(Sat(A)) = Sat(∂Sat(A)) = Sat(∂eA). Now, if A is an open set in Ω which does
not contain p∞, Sat(A) is also determined by its external boundary. Indeed, if Y = Ω \ Sat(A)
is the external hole of A. Notice that Y is closed. By the previous observation Y = Sat(Y, x) =
Sat(∂Y, x) = Sat(∂Sat(A), x) where x is any point in A. Thus Sat(A) = Ω \ Sat(∂Sat(A), x) =
Ω \ Sat(∂eA,x).

3 Upper and lower level sets, its tree structure and the of shapes

an image

To fix ideas, we shall model an image u as a map from Ω to IR and we shall assume for the
purposes of this paper that u is a continuous function in Ω. The lower and upper level sets of u
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are the sets

[u < λ] =
{

x ∈ Ω, u(x) < λ
}

[u ≥ λ] =
{

x ∈ Ω, u(x) ≥ λ
}

.

Lower level sets are open, while upper level sets are closed. The asymmetry is justified by the
structure it induces on the shapes of the image (see Theorem 3.3 below). Upper (resp. lower)
level sets are an equivalent description of the image, since we can reconstruct it by the formula

u(x) := sup{λ ∈ IR : x ∈ [u ≥ λ]} (resp. u(x) := inf{λ ∈ IR : x ∈ [u < λ]}).

Let us denote
CCULS(u) = {X : X ∈ CC([u ≥ λ]), λ ∈ IR}

and
CCLLS(u) = {X : X ∈ CC([u < λ]), λ ∈ IR}.

Observe that if λ ≥ µ and X ∈ CC([u ≥ λ]), Y ∈ CC([u ≥ µ]), then either X ∩ Y = ∅ or
X ⊆ Y . Similarly, if X ∈ CC([u < λ]), Y ∈ CC([u < µ]), then either X ∩ Y = ∅ or Y ⊆ X.
Hence, we have:

Proposition 3.1. Both (CCULS(u),⊆) and (CCLLS(u),⊆) are trees.

To fuse the information of both trees into a single structure, in [24, 22], the authors intro-
duced the so-called tree of shapes of an image. In Figure 4 we display both trees of connected
components of upper and lower level sets. We also display the tree of shapes to be defined in
next Section.

3.1 The tree of shapes of an image

Definition 3.2. Given an image u, we call shapes of inferior (resp. superior) type the sets

Sat(cc([u < µ], x)) (resp. Sat(cc([u ≥ λ], x))),

where λ, µ ∈ IR, x ∈ Ω. We call shape of u any shape of inferior or superior type. We denote
by S(u) the shapes of u.

We note that, by Lemma 2.8.(i), shapes of superior type are closed, while shapes of inferior
type are open. Notice also that, since by Lemma 2.8.(v) shapes are connected, the only shapes
of both types are ∅ and Ω.

Let us recall the following result proved in [22, 2].

Theorem 3.3. Any two shapes are either disjoint or nested. Hence, (S(u),⊆) is a tree.

The tree of shapes S(u) was introduced as a data structure in [24] in order to operate with
the level sets of u. The authors presented this data structure in the case Ω ⊆ IR2, though it
could be extended in principle to any dimension. For the 3D case, this has been done in [21].
We are going to give the details of this construction and justify it mathematically. For that, we
shall study the maximal branches of the trees of connected components of upper and lower level
sets of u and we shall fuse them to obtain the tree of shapes of u. An example of the tree of
shapes is illustrated in Figure 4.

Observe that, having fixed the point p∞ on which the saturation is based, the shapes of the
image depend on p∞. But, as it has been shown in [22, 2], the tree of shapes of u encodes an
information which does not depend on p∞, namely the external boundaries of the shapes of the
image.
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Figure 4: From left to right: a synthetic 2D image, its upper tree (with arrows down), its
lower tree (with arrows up), and the set of shapes, which are saturations of upper and lower
regions. To define the saturation we have used a point p∞ inside the small triangular region.
The saturation of each region is defined by its external boundary, marked in bold. Notice that
the shapes have a tree structure, indicated by dotted lines. The dashed arrows show some of the
hole relation between connected components of the upper and lower trees. The dotted lines of
the tree of shapes come from either arrows of the original tree, or from the dashed arrows that
define the external boundaries (see Section 7).

Remark 3.4. Shapes could be defined for upper semicontinuous functions and Theorem 3.3
holds also in that case. Since the results in Section 5 are proved for continuous functions we
shall restrict the study of the tree to this case. To apply these results to discrete images, one
has to interpolate them [22, 11].

4 The order completion of the trees

In order to study the branch structure of the trees CCULS(u), CCLLS(u), we want to express
its maximal branches, defined as unions of intervals, as intervals but we cannot do this because
they are not order complete. For that, let us compute its order completion (we refer to [28] for
definitions) in the order complete Boolean algebra (P(Ω),⊆) of all subsets of Ω.

Form now on, let T denote any of the trees CCULS(u), CCLLS(u), or S(u).

Definition 4.1. We define a limit node of T as the supremum, or the infimum, in (P(Ω),⊆) of
a totally ordered family (assuming it minorized in the infimum case) of nodes of T . The limit
nodes of the tree S(u) will be called limit shapes of u.

Observe that any node is a limit node. The order completion of T , denoted by T c is formed
by the limit nodes of T .
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4.1 The order completion of the upper and lower trees

Proposition 4.2. (i) If X is a limit node of CCULS(u), then either X ∈ CCULS(u) or X ∈
CC([u > λ] for some λ ∈ IR. Thus, the order completion of the tree CCULS(u), is given by

CCULSc(u) := CCULS(u) ∪ {X : X ∈ CC([u > λ]), λ ∈ IR}.

(ii) If X is a limit node of CCLLS(u), then either X ∈ CCLLS(u) or X ∈ CC([u ≤ λ] for some
λ ∈ IR. Thus, the order completion of the tree CCLLS(u), is given by

CCLLSc(u) := CCLLS(u) ∪ {X : X ∈ CC([u ≤ λ]), λ ∈ IR}.

Moreover, for both trees, any two limit nodes are nested or disjoint. Hence, the completions are
also trees.

Proof. Being identical, we just give the proof of (i). If X is a limit node of CCULS(u), then
X is an inf or a sup of an ordered set of upper connected components which we may assume
countable. If X = ∩nXn where Xn ∈ CC([u ≥ λn]) with λn ↑ λ, then X ∈ CC([u ≥ λ]). To
prove it, let x ∈ X and u(x) ≥ λ. Then Xn = cc([u ≥ λn], x) and cc([u ≥ λ], x) ⊆ ∩nXn = X.
Now, since Xn is a decreasing sequence of continua, we know that X is a continuum contained
in [u ≥ λ] [18]. This implies that X ⊆ cc([u ≥ λ], x).

If X = ∪nXn where Xn ∈ CC([u ≥ λn]) with λn ↓ λ, then X ∈ CC([u > λ]). To prove this, let
x ∈ X1. Observe that Xn = cc([u > λn], x). For any n, Xn ⊆ [u > λ], thus

⋃

n∈IN Xn ⊆ cc([u >

λ], x). On the other hand, [u > λ] being open and Ω locally connected, cc([u > λ], x) is an open
set. Hence, for any y ∈ cc([u > λ], x), there is some continuum Ky ⊆ cc([u > λ], x) containing x

and y. Since Ky ⊆
⋃

n∈IN [u > λn] and it is a compact set, we can extract a finite covering of Ky,
and as the sequence [u > λn] is nondecreasing, there is some n such that Ky ⊆ [u > λn]. Since
Ky is connected and contains x, we have that y ∈ Ky ⊆ cc([u > λn], x) = Xn. We conclude that
cc([u > λ], x) ⊆

⋃

n∈IN Xn.
The proof of last statement is straightforward and we do not give the details.

Thanks to Proposition 4.2 we may compute the maximal branch containing a given node
S ∈ T . If T = CCULS(u), then infT c BT (S) ∈ CCULS(u) and we may compute supT c BT (S) ∈
T c. If T = CCLLS(u), then supT c BT (S) ∈ CCLLS(u) and we may compute infT c BT (S) ∈ T c.
Hence, we may write

BT (S) = [inf
T c

BT (S), sup
T c

BT (S)]T c ∩ T .

If there is no confusion we shall write a maximal branch as B = [A,B] with the implicit under-
standing that A,B ∈ T c and [A,B] denotes [A,B]T c ∩T . Under some assumption on u, a more
detailed description of maximal branches will be given in Propositions 5.7 and 5.8. An example
of the maximal branches of an image is given in Figure 5.

4.2 The order completion of the tree of shapes for weakly oscillating functions

Definition 4.3. Let u ∈ C(Ω) and M ⊆ Ω. We say that M is a regional maximum (resp.,
minimum) of u at height λ if M is a connected component of [u = λ] and, for all ε > 0, the set
[λ − ε < u ≤ λ] (resp., [λ ≤ u < λ + ε]) is a neighborhood of M . The regional extrema of u are
the regional maxima and minima of u
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Figure 5: A function and its upper and lower trees with its maximal branches.

Definition 4.4. We say that u ∈ C(Ω) is weakly oscillating if it has a finite number of regional
extrema.

The following proposition was proved in [2, 8] and it characterizes the limit shapes of u. Its
proof uses both Lemma 2.8.(ix) and (x) and Lemma 5.2 below. We shall not include the proof
here.

Proposition 4.5. Let u ∈ C(Ω) be a weakly oscillating function. Then the limit shapes of u are
sets of the form Sat(C) where either C ∈ CC([u ≥ λ]), or C ∈ CC([u > λ]), or C ∈ CC([u ≤ λ]),
or C ∈ CC([u < λ]). Moreover, any two limit nodes of S(u) are either nested or disjoint. Thus,
the order completion of S(u), denoted by Sc(u) is also a tree.

5 Weakly oscillating functions and the structure of its trees

Definition 5.1. We call leaf of the tree T , or simply, a leaf, any limit node L = infT c [A,B]
containing no other node of T .

Leaves are, thus, minimal elements in T c. Our purpose is to describe the leaves and maximal
branches of the upper and lower trees.

Lemma 5.2. Let u ∈ C(Ω) be a weakly oscillating function. Then for each λ ∈ IR, if X ∈
CC([u > λ]) or X ∈ CC([u ≥ λ]) is nonempty, then X contains a regional maximum of u. A
similar statement holds for lower level sets. Thus, for each λ ∈ IR, there is a finite number of
connected components of [u ≥ λ] and each component has a finite number of holes.

Proof. Let X ∈ CC([u > λ]) be nonempty. Then µ := maxx∈X u(x) > λ is attained at a point
p ∈ X. Let Y = cc([u = µ], p). Observe that Y ⊆ X. On the other hand, u ≤ µ near Y , since
otherwise we would find a point q ∈ X with u(q) > µ. We conclude that for all ε > 0 the set
[µ− ε < u ≤ µ] is a neighborhood of Y , hence Y is a regional extremum of u. In particular, the
number of connected components of [u > λ] is finite.

Let us prove that each connected component of [u ≥ λ] contains a regional extremum of u.
By the previous paragraph, we know that the connected components of [u ≥ λ] which intersect
[u > λ] contain a regional extremum and are finite in number. We denote them by X1, . . . ,Xk.
Let X ∈ CC([u ≥ λ]) be such that X ⊆ [u = λ]. Let us prove that X is a regional extremum of
u. Obviously, X is a connected component of [u = λ]. Let η > 0 be such that d(∪k

i=1Xi,X) ≥ η.
We have that for all ε > 0 the set [λ − ε < u ≤ λ] is a neighborhood of X. Otherwise, there
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exists a sequence pn → p ∈ X such that u(pn) > λ. Then for each n, pn ∈ ∪k
i=1Xi and,

thus, d(pn,X) ≥ η, a contradiction since pn converges to a point in X. We conclude that any
connected component of [u ≥ λ] contains a regional maximum, and, thus, there must be a finite
number of them.

The corresponding statements for lower level sets follow from the previous ones applied to
−u.

Let λ ∈ IR. Let X be a connected component of [u ≥ λ] and let H be a hole of X. Observe
that ∂H ⊆ ∂X ⊆ X. Since X ∩ H 6= ∅ and X,H are connected, then X ∪ H = X ∪ H is
connected. If H ⊆ [u ≥ λ], then H ⊆ X, a contradiction. Hence H ∩ [u < λ] 6= ∅. We conclude
that each hole of X contains a component of [u < λ]. Hence there may be only a finite number
of them.

Lemma 5.3. Let u ∈ C(Ω) be a weakly oscillating function. Let X ∈ CC([λ ≤ u ≤ µ]), λ ≤ µ,
and let H be a hole of X. Then H is the saturation of a connected component either of [u < λ]
or of [u > µ].

Proof. By Lemma 2.8.(x) there exist a sequence of connected components {On}n of [u <

λ]∪ [u > µ] such that Sat(On) are increasing and H = ∪nSat(On). Observe that On are two by
two disjoint. Without loss of generality we may assume that On are all connected components
of [u < λ]. Thus, by Lemma 5.2, there are only finitely many of them, and there is a set
O ∈ CC([u < λ]) such that H = Sat(O).

Lemma 5.4. Let u ∈ C(Ω) be a weakly oscillating function. Let X be a connected component
of [λ ≤ u ≤ µ], λ ≤ µ, and let L be a hole of X. Then there is some η > 0 such that either

i) Sat(X,L) = Sat(cc([u ≥ λ],X), L), and u < λ on Lη := {p ∈ L : d(p,X) < η}, or

ii) Sat(X,L) = Sat(cc([u ≤ µ],X), L), and u > µ on Lη := {p ∈ L : d(p,X) < η}.

In the first case of the alternative holds, we say that L is a hole of negative type, in the
second case we say that L is a hole of positive type.

Proof. We may assume that L 6= ∅, otherwise all saturations in the statement are equal to Ω
and the result is true. Assume that λ < µ. By Lemma 5.3, we may write L = Sat(O) where
either O ∈ CC([u < λ], or O ∈ CC([u > µ]). To fix ideas, assume that O ∈ CC([u < λ] (in
particular, this implies that [u < λ] 6= ∅). Then ∂L ⊆ ∂O ⊆ ∂[u < λ] ⊆ [u = λ]. Let us prove
that, for some η > 0, u < λ on Lη.

Let us prove that the connected components of [u ≥ λ] are either disjoint to L, or contained
in L. Let Y be a connected component of [u ≥ λ] intersecting L. Then Y ⊆ L. Otherwise, let
p ∈ Y ∩ L, q ∈ Y \ L, and let K be a continuum containing p and q and contained in Y . In
this case, we have that K ∩ O 6= ∅, a contradiction since K ⊆ [u ≥ λ]. Indeed, if K ∩ O = ∅,
then K is contained in a hole of O. Since Ω \ L is a hole of O containing q ∈ K, we have that
K ⊆ Ω \ L, and this is a contradiction since p ∈ K ∩ L.

Observe that if Y ∈ CC([u ≥ λ]), Y ⊆ L, then ∂Y ∩ ∂L = ∅. Indeed, on one hand, we
have dist(Y,X) > 0 (otherwise, if this distance is null, then X ∩ Y 6= ∅, hence X ⊆ Y ⊆ L, a
contradiction). This implies that ∂Y ∩ ∂X = ∅. On the other hand, we have ∂L ⊆ ∂X. Hence,
∂Y ∩ ∂L = ∅. Since, by Lemma 5.2, [u ≥ λ] has a finite number of connected components, we
deduce that dist([u ≥ λ] ∩ L, ∂L) > 0, and, therefore, we have Lη ⊆ [u < λ] for some η > 0.
This implies that L is a hole of cc([u ≥ λ],X), and Sat(X,L) = Sat(cc([u ≥ λ],X), L).
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Let us consider the case λ = µ. By assumption X is a connected component of [u = λ] and
L is a hole of X. Let y ∈ X. Then X = ∩nXn where Xn = cc([λ ≤ u ≤ λ + 1

n
], y). Let p ∈ L.

Then, by Lemma 2.8.(xi), we know that Sat(X, p) = ∩nSat(Xn, p). Without loss of generality,
we may assume that p 6∈ Xn for all n ≥ 1. But, according to the first part of the proof, we
have that either Sat(Xn, p) = Sat(cc([u ≥ λ], y), p), or Sat(Xn, p) = Sat(cc([u ≤ λ + 1

n
], y), p).

In the first case, we conclude that Sat(X, p) = Sat(cc([u ≥ λ], y), p). In the second case, using
again Lemma 2.8.(xi), we have that ∩nSat(cc([u ≤ λ + 1

n
], y), p) = Sat(cc([u ≤ λ], y), p). Hence,

Sat(X, p) = Sat(cc([u ≤ λ], y), p).

When Sat(X, p) = Sat(cc([u ≥ λ], y), p), L is a hole of cc([u ≥ λ], y). Hence ∂L ⊆ ∂[u < λ]
and the argument above proves that there is some η > 0 such that u < λ on Lη = {p ∈ L :
d(p,X) < η}. When Sat(X, p) = Sat(cc([u ≤ λ], y), p), L is a hole of cc([u ≤ λ], y). Then
∂L ⊆ ∂[u > λ] and again the previous argument proves that there is some η > 0 such that u > λ

on Lη = {p ∈ L : d(p,X) < η}.

Proposition 5.5. Let u ∈ C(Ω) be a weakly oscillating function. Then

(i) If X is a leaf of the tree CCULS(u), then X is a regional maximum of u and X = cc([u = λ])
for some λ ∈ IR.

(ii) If X is a leaf of the tree CCLLS(u), then X is a regional minimum of u and X = cc([u = λ])
for some λ ∈ IR.

(iii) If X is a leaf of the tree S(u), then X is a regional extremum of u and X = cc([u = λ]) for
some λ ∈ IR.

Proof. (i) By Proposition 4.2, if X is a leaf of the tree CCULS(u), then X ∈ CC([u ≥ λ])
for some λ ∈ IR. If u(x) > λ for some x ∈ X, then the node cc([u ≥ u(x)], x) is nonempty
and contained in X. Thus u = λ on X and X ∈ CC([u = λ]). If X = Ω, our statement is
obviously true. If X 6= Ω, then by Lemma 5.4 all holes of X must be of negative type. Hence
cc([u > λ − ǫ],X) = cc([λ − ǫ < u ≤ λ],X), for any ǫ > 0, and cc([u > λ − ǫ],X) is an open set
containing X.

Being similar to the proof of (i), we skip the proof of (ii).

(iii) Assume that X is a leaf of S(u). Then, by Proposition 4.5, then X = Sat(Y ) where either
a) Y = cc([u ≥ λ]) or b) Y = cc([u ≤ λ]) for some λ ∈ IR. If we are in case a), then we may
argue as in (i). If we are in case b) we may argue as in (ii). We conclude that X is a regional
extremum of u.

Lemma 5.6. Let u ∈ C(Ω) be a weakly oscillating function. Let λ ∈ IR and let Xλ,i, Xλ,j ,
i = 1, ..., r, j = 1, ..., s, be the the family of connected components of [u ≥ λ], resp. [u < λ].
There is ε > 0 such that for any µ ∈ (λ − ε, λ], there are exactly r connected components Xµ,i,
i = 1, . . . , r of [u ≥ µ], where Xµ,i contains Xλ,i and Xλ,i = ∩µ<λXµ,i. Moreover each Xµ,i

contains the same family of regional extrema as Xλ,i, i = 1, . . . , r. There are also s connected
components Xµ,j , j = 1, . . . , s, of [u < µ], where Xµ,j is contained in Xλ,j and Xλ,j = ∪µ<λXµ,j .
Moreover each Xµ,j contains the same family of regional extrema as Xλ,j , j = 1, . . . , s.

Proof. Let i ∈ {1, ..., r}. For each µ < λ, let Xµ,i be the connected component of [u ≥ µ]
containing Xλ,i. Then, obviously, we have

Xλ,i ⊆ ∩µ<λXµ,i.
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Now, since Xµ,i is a decreasing sequence of continua their intersection is also a continuum [18].
Moreover, it is contained in [u ≥ λ]. Therefore,

∩µ<λXµ,i ⊆ cc([u ≥ λ], pi) = Xλ,i,

and we have the equality of both sets. As a consequence, there is an ε > 0 such that for each
µ ∈ (λ − ε, λ], the sets Xλ,i, i = 1, ..., r, are contained in different connected components of
[u ≥ µ]. Moreover, since the number of connected components of each [u ≥ µ] is finite, we may
choose ε > 0 such that for each µ ∈ (λ−ε, λ] the set [u ≥ µ] consists of r connected components,
each one of them containing a different component of [u ≥ λ]. Since u is weakly oscillating,
for ǫ > 0 small enough, the regional extrema of u in each Xµ,i, i = 1, . . . , r, is constant for
µ ∈ (λ − ǫ, λ].

Again, using that ∪µ<λ[u < µ] = [u < λ], for ǫ > 0 small enough and µ ∈ (λ− ǫ, λ), we have
that [u < µ] ∩ Xλ,j, j = 1, ..., s, are the connected components of [u < µ]. As above, we know
that the regional extrema of u in each [u < µ]∩Xλ,j coincide with the regional extrema in Xλ,j ,
j = 1, . . . , s, for ǫ > 0 small enough and µ ∈ (λ − ǫ, λ).

Proposition 5.7. Assume that u ∈ C(Ω) is a weakly oscillating function. The tree CCULS(u)
has a finite number of leaves and a finite number of maximal branches. If B = [A,B] is a
maximal branch of CCULS(u) with A,B being limit nodes, then

a) either B = cc([u ≥ λ]) = Ω or B ∈ CC([u > λ]) for some λ ∈ IR, there is no bifurcation
between A and B, and if B′ = cc([u ≥ λ], B), then [A,B′] contains a bifurcation. We have
B′ = inf[B,Ω]. In this case, we call B (resp. B′), a bifurcating limit node (resp. a bifurcating
node) at level λ. Moreover, B cannot be a leaf unless u is constant.

b) A ∈ CC([u ≥ λ]) for some λ ∈ IR and either A is a leaf, or for any X ∈ CCULS(u), X ( A,
[X,A] contains a bifurcation. In this second case, we call it a bifurcating node (at level λ).

Proof. Leaves of CCULS(u) are regional maxima of u, hence there are finitely many of them.
Let B = [A,B] be a maximal branch in CCULS(u). By Proposition 4.2 either B ∈ CC([u ≥ λ])
or B ∈ CC([u > λ]) for some λ ∈ IR. If B ∈ CC([u ≥ λ]) and λ > infx∈Ω

u(x), then, using
Lemma 5.6, we would be able to extend the branch B to the right. Hence, λ = infx∈Ω

u(x), i.e.

B = Ω. If B ∈ CC([u > λ]), then [A,B] does not contain a bifurcation. Let B′ = cc([u ≥ λ], B),
then [A,B′] must contain a bifurcation, otherwise B would not be maximal. The argument in
Lemma 5.6 proves that B′ = inf[B,Ω]. The last assertion follows from Proposition 5.5.

Now, observe that A ∈ CC([u ≥ λ]) for some λ ∈ IR. Since B is maximal, if A is not a leaf,
then for any X ∈ CCULS(u), X ( A, [X,A] contains a bifurcation.

Since u has a finite number of regional maxima, there are finitely many maximal branches
in CCULS(u), since any two of them are disjoint.

Let us prove the corresponding result for CCLLS(u).

Proposition 5.8. Assume that u ∈ C(Ω) is a weakly oscillating function. The tree CCLLS(u)
has a finite number of leaves and a finite number of maximal branches. If B = [A,B] is a
maximal branch of CCLLS(u) with A,B being limit nodes, then

a) either B = cc([u ≤ λ]) = Ω or B ∈ CC([u < λ]) for some λ ∈ IR, there is no bifurcation
between A and B, and if B′ = cc([u ≤ λ], B), then [A,B′] contains a bifurcation. We have
B′ = inf(B,Ω] where (B,Ω] = [B,Ω] \ {B}. In this case, we call B (resp. B′), a bifurcating
node (resp. a bifurcating limit node) at level λ. Moreover, B cannot be a leaf unless u is constant.
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b) A ∈ CC([u ≤ λ]) for some λ ∈ IR and either A is a leaf, or for any X ∈ CCLLS(u), X ( A,
[X,A] contains a bifurcation, indeed it contains at least two connected components of [u < λ].
In this second case, we call it a bifurcating node (at level λ).

For simplicity, we shall say simply bifurcating node independently of being a node or a limit
node.

Proof. Leaves are regional minima of u, hence there are finitely many of them. Let B = [A,B] be
a maximal branch in CCLLS(u). By Proposition 4.2 either B ∈ CC([u ≤ λ]) or B ∈ CC([u < λ])
for some λ ∈ IR. If B ∈ CC([u ≤ λ]) and λ < supx∈Ω

u(x), then, using the arguments in Lemma

5.6, we would be able to extend the branch B to the right. Hence, λ = supx∈Ω
u(x) and B = Ω.

If B ∈ CC([u < λ]), then [A,B] does not contain a bifurcation. Let us prove that [A,B′]
contains a bifurcation where B′ = cc([u ≤ λ], B). If B′ = Ω and it does not contain a bifurcation
we are in the previous case for B (we could take B = B′). Thus, we may assume that B′ = Ω
and [A,B′] contains a bifurcation; or B′ 6= Ω, that is λ < supx∈Ω

u(x). Let us consider this
last case. By (the proof of) Lemma 5.6, there is an ǫ > 0 such that if µ ∈ (λ, λ + ǫ), then
cc([u < µ], B′) does not contain any other connected component of [u ≤ λ] besides B′ and
contains the same regional extrema as B′. Let C = cc([u < µ], B′) with λ < µ < λ + ǫ. It
[B,C] does not bifurcate, we would be able to extend [A,B] to the right. Thus, we may assume
that [B,C] contains a bifurcation, i.e., there is Y ∈ CC([u < α]) with Y ∩ B = ∅ and Y ⊆ C.
Notice that we have α ≤ µ. If λ < α ≤ µ and Y ∩ [u ≤ λ] 6= ∅, then we consider V as the
connected component of [u ≤ λ] inside Y . Then C contains V and B′, but this is not possible
in view of Lemma 5.6. If Y ⊆ [λ < u ≤ µ], then Y contains a regional minimum not in B′,
hence also C does it, a contradiction with Lemma 5.6. Thus, we may assume that α ≤ λ. Let
V = cc([u < λ], Y ). Since Y ∩ B = ∅, we have that V ∩ B = ∅. If cc([u ≤ λ], V ) is disjoint
to B′, then C contains two connected components of [u ≤ λ], a contradiction with Lemma 5.6.
Otherwise, B′ = cc([u ≤ λ], V ), and in this case [A,B′] contains a bifurcation since B and V

are disjoint. Finally, the argument in Lemma 5.6 proves that B′ = inf(B,Ω]. The last assertion
in a) follows from Proposition 5.5.

Since A is a limit node, then A ∈ CC([u ≤ λ]) for some λ ∈ IR. Let us prove that if A is
not a leaf, then for any X ∈ CCLLS(u), X ( A, [X,A] contains a bifurcation, i.e., there is
Y ∈ CCLLS(u), Y ⊆ A and Y ∩ X = ∅. Observe that infA u < λ, otherwise A ∈ CC([u = λ])
and A is a leaf. If there are more than one connected component of [u < λ] in A, our assertion
is true. Thus, we may assume that there is only one connected component of [u < λ] in A. Let
S ∈ [A,B], S ∈ CC([u < λ′]) with λ < λ′. Observe that [X,S] contains a bifurcation otherwise
we could enlarge [A,B] to the left. Let Y ∈ CCLLS(u) be such that Y ⊆ S and Y ∩ X = ∅.
Notice that we may write that X ∈ CC([u < α]) with α ≤ λ and Y ∈ CC([u < µ]) for some
µ < λ′ (if µ = λ′, then Y = S, contradicting the fact that X ∩ Y = ∅). Since there is only one
connected component of [u < λ] in S (otherwise there would be a bifurcation in [A,S] since A

identifies one of them), we have that Y ⊆ A or Y ⊆ [λ ≤ u < µ]. In the first case, we have
that there is a bifurcation in [X,A]. Let us consider the second case: if Y ∩ A = ∅, then [A,B]
contains a bifurcation. Hence Y ∩ A 6= ∅. Since Y is a node and A a limit node, then either
A ⊆ Y , a contradiction since X ⊆ A and X ∩ Y = ∅, or Y ⊆ A, in which case Y ∈ CC([u = λ]),
Y = A and A would be a leaf. We conclude that there are more than one connected component
of [u < λ] in A and [X,A] contains a bifurcation.

Since u has a finite number of regional maxima, there are finitely many maximal branches
in CCLLS(u), since any two of them are disjoint.
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6 Signatures and singular values of the trees

We may interpret the branch structure of CCULS(u) and CCLLS(u) in terms of the singularities
of both trees. For that, let us describe the concepts of critical values of the upper and lower
trees.

Definition 6.1. For X ∈ CC([u ≥ λ]), we call upper signature of X and note sig+(X) the
set sig+(X) = {E : E is a regional maximum, E ⊆ X}. If [u ≥ λ] is an upper level set of u,
we define its signature as sig+([u ≥ λ]) = {sig+(C)|C ∈ CC([u ≥ λ])}. We write sig+(λ) =
sig([u ≥ λ]).

For X ∈ CC([u < λ]), we call lower signature of X and note sig−(X) the set sig−(X) = {E :
E is a regional minimum, E ⊆ X}. If [u < λ] is a lower level set of u, we define its signature
as sig−([u < λ]) = {sig−(C)|C ∈ CC([u < λ])}. We write sig−(λ) = sig([u < λ]).

The following Lemma is a consequence of Lemma 5.6:

Lemma 6.2. Let u ∈ C(Ω) be a weakly oscillating function. Let λ ∈ IR. There is ε > 0 such
that sig+(µ) and sig−(µ) are constant for all µ ∈ (λ − ε, λ].

Definition 6.3. Let u ∈ C(Ω) be a weakly oscillating function. We say that λ ∈ IR is a
critical value of the upper (resp. lower) tree of u if there is a sequence µn ↓ λ such that
sig+([u ≥ µn]) 6= sig+([u ≥ λ]) (resp. sig−([u ≥ µn]) 6= sig−([u ≥ λ])) for each n = 1, 2, .... We
denote the criticalities of the upper (resp. lower) tree by CUT (u) (resp. CLT (u)).

Since as λ decreases, sig+(λ) increases, resp. sig−(λ) decreases, there are only finitely many
possible changes in sig+ and sig−. Thus we have:

Proposition 6.4. Let u ∈ C(Ω) be a weakly oscillating function. The number of critical values
of the upper and lower trees of u is finite.

Hence if λ is a critical value of CCULS(u) (resp. of CCLLS(u)), then there is an ǫ > 0 such
that sig+(µ) (resp. sig−(µ)) is constant and different from sig+(λ) (resp. sig−(λ)) for any
µ ∈ (λ, λ + ǫ) and sig+(µ) = sig+(λ) (resp. sig−(µ) = sig−(λ)) for any µ ∈ (λ − ǫ, λ].

Proposition 6.5. We have that λ ∈ CUT (u) (resp. λ ∈ CLT (u) ) if and only if there is either
a leaf or a bifurcating node of CCULS(u) (resp. CCLLS(u)) at level λ.

In other words, the signature is constant along maximal branches.

Proof. Since sig+(cc([u ≥ λ])) increases as λ decreases, the only possible changes in sig+(λ) as
λ decreases reflect the following facts: a) the birth of a new connected component of [u ≥ λ] at
level λ, or b) two different connected components of [u ≥ µ] for µ ∈ (λ, λ + ǫ) merged at level λ.
In the first case, there is a leaf of CCULS(u) at level λ. In the second case, we have a bifurcating
node CCULS(u) at level λ. The converse assertion is clear from Proposition 5.5. The assertions
for CCLLS(u) are proved in a similar way.

7 Construction of the tree of shapes by fusion of upper and

lower trees

Because of Lemma 5.2, we may write the statement (ix) of Lemma 2.8 when A is an upper or
lower level set of a weakly oscillating function.
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Lemma 7.1. Let u ∈ C(Ω) be a weakly oscillating function. If X ∈ CC([u ≥ λ]) and Y is
an internal hole of X, then there is O ∈ CC([u < λ]) such that Y = Sat(O). Similarly, if
X ∈ CC([u < λ]) and Y is an internal hole of X, then there is O ∈ CC([u ≥ λ]) such that
Y = Sat(O).

Since the shapes of the tree S(u) are the saturations of the nodes of CCULS(u) and CCLLS(u),
we can construct S(u) by fusing the information of the upper and lower trees. This operation
can de done very simply because of the precise branch structure of both trees described in
Propositions 5.7 and 5.8. The overall procedure is illustrated in Figure 6.

Since we are going to use simultaneously intervals of both trees, we shall denote by [A,B]ut

the interval of the upper tree determined by nodes A,B ∈ CCULS(u), and [A,B]lt the interval
of the lower tree determined by nodes A,B ∈ CCLLS(u).

To fix ideas, let us assume that p∞ is the global minimum of u and let Λ = cc([u =
infx∈Ω

u(x)], p∞). Observe that Λ is a leaf of CCLLS(u). Let CCLLSΛ(u) = CCLLS(u)\ [Λ,Ω]lt.

All nodes of [Λ,Ω]lt have Ω as saturation. If C ∈ CCLLSΛ(u), then all nodes previous to it do
not contain Λ. Thus, CCLLSΛ(u) is a union of maximal branches of CCLLS(u). Notice that
the only node of CCULS(u) containing p∞ is Ω.

The tree CCULS(u) and CCLLSΛ(u) are broken into maximal branches of the form [A,B]it,
i = l, u, where A is either a leaf or a bifurcating node and B may be a bifurcating node or
not, in which case it coincides with Ω. As we have pointed out in Proposition 6.5, the maximal
branches start and end at the singularities of the trees. Each branch B = [A,B]it, i ∈ {u, l},
determines the set of shapes Sat(B) := {Sat(C) : C ∈ B} of S(u).

Given a maximal branch B+ = [A,B]ut of CCULS(u), let us join to it the corresponding
branches of CCLLS(u). First assume that A is a leaf (at level λ) of CCULS(u). If A has no
internal holes, then A = Sat(A) is a shape of upper type. If A has internal holes Y1, . . . , Yr (they
do not contain p∞), by Lemma 7.1, they correspond to saturations of connected components of
lower level sets of u, i.e., to saturations of nodes in CCLLS(u). Let O1, . . . , Or ∈ CC([u < λ])
be such that Yj = Sat(Oj), j = 1, . . . , r. Since by Proposition 5.5, A is a regional maximum
of u with internal holes, then each Oj is a bifurcating node of CCLLS(u). Moreover, since Oj

contains a regional minimum it is the terminal node of a maximal branch B−
j of CCLLSΛ(u).

We attach to Sat(A) the set of shapes of lower type Sat(B−
j ). Finally, if A is a bifurcating

node, then we may treat A as we treat B′; let us explain this. Recall that B is a bifurcating
limit node with bifurcating node B′ = cc([u ≥ λ], B). Let B+

k = [Ak, Bk]ut, k = 1, . . . , s, be all
maximal branches of CCULS(u) which bifurcate at B′ (one of them coincides with B+). Notice
that B′

i = cc([u ≥ λ], Bi) = B′ for any i ∈ {1, . . . , s}. Let Zi = Sat(Ui) where Ui ∈ CC([u < λ]),
i = 1, . . . , q, be all internal holes of negative type of B′. Notice that Ui is not necessarily the
terminal node of a maximal branch B−

i of CCLLSΛ(u).
Lets us link the families Sat(B+

k ) and Sat(B−
i ) to the tree of shapes. By reordering if neces-

sary, we may assume that {Sat(Bk) : k = 1, . . . , p} are disjoint and {Sat(Bj) : j = p + 1, . . . , s}
are contained in some Sat(Bk) for k ∈ {1, . . . , p}. The families of shapes Sat(B+

k ), k = 1, . . . , p,
are linked to Sat(B′). For each j ∈ {p + 1, . . . , s}, Bj ∈ CC([u > λ]) and determines a hole of a
connected component of [u ≤ λ], thus it is a hole of a limit node of CCLLS(u).

Observe that we have Sat(Bk) 6= Ω for all k = 1, . . . , s. Let j ∈ {p + 1, . . . , s} and let
kj ∈ {1, . . . , p} be such that Sat(Bj) ⊆ Sat(Bkj

). Then Sat(Bj) is a hole in a limit node
N ∈ CC([u ≤ λ]) of CCLLS(u). Moreover N ⊆ Sat(Bkj

), and therefore N is a limit node
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=⇒
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Figure 6: Top: a) Left: A given image. b) Right: the upper and lower level set trees of the
image. Medium: c) Left: We identify the set of shapes that contain p∞ (dotted line) and d)
Right: the maximal branches that have to be linked with the other tree (black dots) in both
trees. Bottom: e) Left: We link the maximal branches of both trees. f) Right: The final tree of
shapes.
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of CCLLSΛ(u). Then, we attach Sat(B+
j ) to the limit shape Sat(N). The previous argument

applies in both cases: λ = inf u, or λ > inf u.
Even if the shapes corresponding the negative internal holes of B′ will be considered with

the lower tree, let us make some comments. If the internal hole Zi is disjoint to all Sat(Bk),
k ∈ {1, . . . , p}, then Ui is the terminal node of a maximal branch B−

i of CCLLSΛ(u). We link
Sat(B−

i ) to Sat(B′). If Zi = Sat(Ui) is contained in some Sat(Bk), k ∈ {1, . . . , p}, then Ui is
present in CCLLSΛ(u) and will be handled with the lower tree in next paragraph.

Given a maximal branch B− = [A,B]lt of CCLLSΛ(u), let us link it with the corresponding
branches of CCULS(u). First assume that A is a leaf (at level λ) of CCLLS(u). If A has no
internal holes, then A = Sat(A) is a limit shape of lower type. If A has internal holes, they
are of positive type, i.e., they correspond to saturations of connected components B1, . . . , Br of
[u > λ]. The sets Bj are bifurcation limit nodes which are terminal in maximal branches B+

j of
of the tree CCULS(u). Observe that any two Sat(Bj) cannot be nested since they are internal
holes of A. As we explained for the upper tree, we attach Sat(B+

j ) to Sat(A).
Now, let us consider the case where A is a bifurcating node (not a leaf). In this case

A ∈ CC([u ≤ λ]) and there are at least two connected components of [u < λ] in A. Observe that,
since A is an initial (limit) node of a maximal branch of CCLLSΛ(u), then all branches arriving
to it are also in CCLLSΛ(u), as is B−. Thus, we repeat the arguments that we used for the
bifurcating limit nodes B′ of CCULS(u): we link the maximal branches of CCLLSΛ(u) which
arrive at Sat(A). Notice that the positive holes have already been linked when we considered
CCULS(u).

Finally, let us consider the bifurcating node B ∈ CC([u < λ]) at level λ ∈ IR and its associated
bifurcating limit node B′ = cc([u ≤ λ], B). If B′ ∈ CCLLSΛ(u) we proceed as in the previous
case. Thus, we are lead to assume that B′ ⊇ Λ. Let us consider the maximal branches B−

k in
CCLLSΛ(u) ending at Bk (one of them ends in B) which arrive at B′, k = 1, . . . , r, for some
r. Let B−

0 the maximal branch of CCLLS(u) ending at B0 ∈ CC([u < λ]) where B0 ⊇ Λ and
B0 ⊆ B′. Each Bk, k = 1, . . . , r, determines a negative hole of a connected component Ck of
[u ≥ λ]. We link Sat(B−

k ) to Sat(Ck). Observe that any connected component of [u ≤ λ] which
contains any of the Bk’s contains also B0 and its saturation is the whole Ω. Thus we cannot link
any of the families Sat(B−

k ) to a lower shape and we have to link them to a upper shape. Notice
that this argument also covers the situation in which a set Sat(Bi) ⊆ Sat(Bj), i, j ∈ {1, . . . , r},
i 6= j.

Observe that: 1) the final structure contains the saturations of all connected components
of upper and lower level sets, 2) there are no cycles since if we have linked Sat(A) to Sat(B)
is because Sat(A) ⊆ Sat(B), 3) If A ∈ CCLLS(u), B ∈ CCULS(u), or viceversa, and we have
linked Sat(A) to Sat(B), we have chosen Sat(B) to be the minimal shape containing A.

8 A quick overview of the literature

The use of a topographic description of images, surfaces, or 3D data has been introduced and
motivated in different areas of research, including image processing, computer graphics, and
geographic information systems (GIS), e.g., [2, 4, 1, 6, 9, 11, 14, 17, 20, 24, 22, 26, 27, 30]. The
motivations for such a description differ depending on the field of application. In all cases these
descriptions aim to achieve an efficient description of the basic shapes in the given image and
their topological changes as a function of a physical quantity that depends on the type of data
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(height in data elevation models, intensity in images, etc.).
In computer graphics and geographic information systems, topographic maps represent a

high level description of the data. Topographic maps are represented by the contour maps, i.e.,
the isocontours of the given scalar data. The contour map is organized in a data structure,
either the contour tree [17, 15], or the Reeb graph [33, 25]. The contour tree represents the
nesting of contour lines of the contour map. According to [17], each node represents a connected
component of an upper (or lower) level set [u ≥ λ] ([u ≤ λ]), and links between nodes represent
a parent-child relationship, a link going from the containing to the contained set in the upper
tree, or viceversa if we consider the lower tree. The contour tree can be considered as an
implementation of Morse theory, in the sense that it encodes the topological changes of the
isocontours of the data, and relates these topological changes to the criticalities of the function.
For practical applications, the data structure has to be implemented with a fast algorithm and
with minimal storage requirements. In [15] this is accomplished with a variant of the contour
tree where the criticalities (maxima, minima, saddles, computed in a local way) are computed
first.

A related data structure is the Reeb graph, which represents the splitting and merging of
the isocontours. The Reeb graph of the height function u is obtained by identifying two points
p, q ∈ Ω such that u(p) = u(q) if they are in the same connected component of the isocontour
[u = u(p)]. Thus, a cross-sectional contour corresponds to a point of an edge of the Reeb graph,
and a vertex represents a critical point of the height function u. The Reeb graph was proposed
in [33] as a data structure for encoding topographic maps. In the context of computer graphics,
Morse theory has also been used to encode surfaces in 3D space [30]. In [30], the authors also use
a tree structure like the Reeb graph complemented with information about the Morse indexes
of the singularities and including enough (information about) intermediate contours to be able
to reconstruct by interpolation the precise way in which the surface is embedded in 3D space.

In image processing, the topographic description was advocated as a local and contrast
invariant description of images (i.e., invariant under illumination changes), and has lead to an
underlying notion of shapes of an image as the family of connected components of upper or
lower level sets of the image [6, 27]. An efficient description of the family of shapes in terms of
a tree was proposed in [24, 22], further developed in as a tree of level lines (or isocontours of
the interpolated image) [19] and studied in [2, 22]. A different but equivalent approach (for 2D
images) was presented in [32]. The work in [16] can be considered as a mathematical description
of the (iso) contour tree in the case of two-dimensional functions.

In [11], Morse theory has also been used as a basic model to describe the geometric structures
of 2D and 3D images, and in general, of multidimensional data, assuming that the given data
are interpolated by a continuous real valued functions. Applications have been given in different
domains, in particular, to visualize structures in 3D medical images.
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