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Abstract We propose a new edge detector for 3D gray-
scale images, extending the 2D edge detector of Desol-
neux et al. (J. Math. Imaging Vis. 14(3):271-284, 2001).
While the edges of a planar image are pieces of curve, the
edges of a volumetric image are pieces of surface, which are
more delicate to manage. The proposed edge detector works
by selecting those pieces of level surface which are well-
contrasted according to a statistical test, called Helmholtz
principle. As it is infeasible to treat all the possible pieces
of each level surface, we restrict the search to the regions
that result of optimizing the Mumford-Shah functional of
the gradient over the surface, throughout all scales. We as-
sert that this selection device results in a good edge detector
for a wide class of images, including several types of med-
ical images from X-ray computed tomography and magnetic
resonance.
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1 Introduction

Edge detection is the task of finding the boundaries between
the objects that appear in a digital image. Segmentation is
a different, but closely related problem, which consists in
finding the objects themselves. Both problems have differ-
ent constraints and applications. From a mathematical stand-
point, edge detection finds the discontinuities of a function
and segmentation finds a partition of the domain. Edge de-
tection, being of a lower-level nature than segmentation, is
aimed at picking structures all over the image and usually
needs no initialization. People have been using 2D edge de-
tection for years (see [33]) for many tasks. For example, to
obtain a visually appealing “primal sketch” [29, 42] of a pic-
ture, to reduce the amount of information present in an im-
age, to get a manageable list of “features” to perform regis-
tration [3, 8, 31] of two images, or shape matching [38, 44];
and finally as a first step towards the segmentation of the im-
age into regions. For an account of its applications to com-
puter vision see [24].

While traditional edge detection was initially introduced
for 2D images, most of the techniques can be extended to 3D
images. However in three-dimensional images, the bound-
aries between objects are not curves in the plane but sur-
faces in space. In that setting, the summarizing property of
edges is even more important because these images can not
be easily visualized as a whole (without resorting to spe-
cialized rendering techniques). On the contrary, a set of sur-
faces in space is easy to visualize, specially if the user can
rotate interactively the whole image domain. Even when the
surfaces are nested it is useful, because the surfaces can be
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endowed with transparency. Thus, edge detectors are an in-
valuable tool in 3D visualization, for they provide an effi-
cient way to glance through the content of whole images.
Aside from visualization, 3D edges are used also for other
tasks, e.g. registration [32] or landmarking [49].

Let us briefly review the main approaches to edge de-
tection. A gray level image can be realistically modeled as
a real-valued function #(x) where X represents an arbitrary
point of a rectangle £2 in R (N = 2 for usual pictures, 3 for
medical images and movies for example) and u(x) denotes
the gray level at x. In this continuous setting, when an image
u : 2 — R is a smooth function, edges are usually defined
in terms of a differential operator. Most, if not all, of them
are based on one of the following three:

The norm of the gradient |Du| = /u% +u3 produces an
image which is interpreted as a measure of the “edgeness”
at each point of the image domain. Many detectors (e.g.,
Sobel [18], Prewitt [50], Roberts [51], Kirsch [36] and the
morphological gradient [6]) can be interpreted as numeri-
cal schemes to approximate this norm. The main advantage
of these operators is that they are fast and easy to compute.
Their main limitations are that their output is difficult to use
and blurry edges are not well localized.

The Laplacian. According to Marr-Hildreth [42], edges
can be defined as zero-crossings of the Laplacian Au =
Uyx + ttyy. This method has the advantage of being able to
directly produce curves which are well-localized, but it may
lead to false detections (e.g., at almost flat zones where noise
dominates).

Canny’s operator D%*u(Du, Du) = u%uxx + 2uyuyuyy +
u%uyy is the second derivative of u along its gradient lines.
Its zero-crossings are called Haralick’s edges [27], and they
are better localized than the zero-crossings of the Lapla-
cian [28].

Since Canny’s operator is the second derivative of u
along its gradient lines, it vanishes where the first deriv-
ative of u is maximal in the direction of the gradient. In-
stead of computing second derivatives, these maxima can be
found directly by looking at the values of the derivative at
the neighboring pixels in the gradient direction and discard-
ing those pixels that have higher contrasted neighbors. This
process, called non-maximum suppression, forms the basis
of an efficient implementation of Canny’s filter. The explicit
details of the method (see [19] and [9]) are somewhat in-
tricate because the choice of previous filtering is critical to
ensure the best localization. The result of this non-maximum
suppression is then pruned using two threshold parameters
in a process called hysteresis. Thus, Canny’s edge detec-
tor, while being able to give very good results, uses three
parameters which are usually set by hand, specifically for
each image, by visual inspection: The first parameter is the
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width of the (necessary) initial linear filtering, whose op-
timal value depends on the overall amount of noise in the
original image, and the other two parameters are thresholds,
whose optimal value depends on the distribution of the con-
trast.

Edge detectors usually give as edges a set of pixels, and
those have to be connected to produce a set of curves. Active
contours or snakes were developed to obtain a boundary seg-
menting a region of the image (or a set of regions) [13, 16,
34, 35, 41]. They are interfaces (curves in 2D images, sur-
faces in 3D images) that evolve to minimize an energy func-
tional. The minimization is usually performed using gradi-
ent descent starting from a given initialization. The choice
of a good initialization is thus critical because the energy
functional may have several local minima. Other particu-
lar approaches, based on segmentations, include finding a
partition of the image domain that globally minimizes an
energy, as in graph cuts [7]; or finding watersheds (i.e.,
connected components of lower level sets) of the gradient
norm [53, 55].

Desolneux, Moisan and Morel proposed in [20] a new
method for edge detection (named DMM, from now on),
based on a general theory (see [21, 26, 40]) aimed at giv-
ing sensible values to perceptual thresholds. It is possible to
apply that theory directly to set the hysteresis thresholds for
Canny’s filter, but DMM is more elaborate in that it finds a
separate threshold for each edge, according to its size and its
contrast. The main steps of this method are the following:

(1) The family of level lines of the image and the distrib-
ution of the modulus of the gradient are computed and
stored.

(i1) Then, all arcs of level lines are subsequently tested, one
by one, to verify that they are well contrasted. The arcs
that pass the statistical test are the output of the algo-
rithm (they are named meaningful edges).

This algorithm contains no tunable parameters because the
minimum contrast required for a given curve to be meaning-
ful is determined automatically by the statistics of the image
contrast. With respect to Canny’s detector, it has the advan-
tage of not producing an unstructured set of edge points, but
a set of continuous planar curves on the image domain (e.g.,
with sub-pixel precision). Let us mention that, in order to
refine the computation of the boundary of an object, a mean-
ingful level line may be used as an initialization for a classi-
cal active contour model [23]. It is worth noting that [20] in-
troduced two variants of this algorithm, testing either whole
level curves or arcs of them, and the respective outputs were
named meaningful boundaries and meaningful edges. Our
method is based on the second, more general, variant.

Our purpose is to follow the main steps of DMM algo-
rithm in order to construct an edge detector for 3D images.
Thus, the first step of our edge detector will be to com-
pute the family of its level surfaces. For that, we require
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the use of an image representation (and its associated data
structure) that enables us to compute and store them effi-
ciently for later manipulation. Data structures are commonly
used in image processing, each of them being adapted to a
class of image operations (e.g. the Fourier transform is well
adapted to the application of linear filters). Level surfaces
are defined as the boundaries of the connected components
of the (upper and lower) level sets of the image. They give
a complete and non-redundant representation of the image
which is contrast independent. The family of level surfaces
of the image is organized in a data structure called the “tree
of shapes” [14] of the image which extends to the 3D case
the tree of shapes defined for 2D images in [46] and [45].
This structure merges into a single tree the information con-
tained in the trees of connected components of upper and
lower level sets and is well adapted to compute morpholog-
ical operations on the image. Even if we identify it as the
tree of shapes, this structure is nothing else than a region
adjacency graph for the level lines of the image. The theo-
retical foundation of this data structure is described in de-
tail in [4] and [14], and its practical implementation for the
2D case in [45] and independently in [54], under the name
of monotonic tree. Other closely related data structures are
those developed by Cox-Karron-Ferdous [17], by Pascucci-
Cole-McLaughlin [48], by Carr-Snoeyink-Axen [12], and
by Sarioz-Kong-Herman [52]. The idea of using trees to en-
code the complexity of 3D structures dates back to the ori-
gins of image processing [15].

The proposed edge detector takes a three-dimensional
image as input and produces a set of surfaces as output. The
produced surfaces can be defined in the following way: first
we build a list of all the possible connected patches of all
the level surfaces of the gray scale image. Then we run a
statistical test on each of these patches to decide whether it
is well-contrasted or not. The output of the algorithm is the
set of patches that pass the test. The method has a single
parameter ¢ whose meaning is the sensitivity of the edge de-
tector, defined as the number of bad edges that are expected
to be produced. By “bad edges” we mean edges whose dis-
tribution of gradients can be explained by a model of noise,
in a very precise sense described below. It is customary to
set ¢ = 1, so that at most one output surface can be expected
to be a result of noise. This paper explains how to imple-
ment such a selection process efficiently, and what kind of
pre and post-processing can help to make the algorithm run
much faster and produce better output. As most edge de-
tectors, our method is based on the idea that edges occur
at sharp intensity changes (or discontinuities) of the image
intensity.

Our method relies on the following assumption: in an
ideal case (e.g., a perfect acquisition method giving infinite
resolution images without noise) the boundaries of the ob-
jects could be obtained by thresholding the image intensity.

Tasnaie [ [
Vessel LOST

Y -2
Vessel OK
Neck LOST ¢

Fig. 1 Two different isosurfaces of the same medical image. Note that
each choice of threshold segments well some part of the image, but no
threshold gives a globally correct segmentation

This assumption holds for a wide class of real world im-
ages, like many medical images, namely, X-ray computed
tomographies and magnetic resonances, where the acquisi-
tion apparatus measures the density of a physical or chemi-
cal property of objects in space. In practice, however, a sin-
gle threshold does not suffice, because there are artifacts due
to the reconstruction of the image, and the limitations in-
herent to its finite representation. For example, thin vessels
having the same width as a voxel appear in the images much
darker than the interior of large vessels, even if the contrast
agent concentration or the measured property is the same in
both places. See Fig. 1 for an illustration of this fact. Note
that not all 3D images satisfy this assumption. For example,
in ultra-sound images the objects are defined mostly by tex-
tures, and for these the proposed method will likely not give
good results (nor the existing methods described above).

This paper is organized as follows. In Sect. 2 we recall the
basic ideas related to the construction of the tree of shapes
of an image. In Sect. 3 we describe a general statistical test
which we use to decide which subsets (from within a given
family) of an image are well-contrasted. In Sect. 4 we ex-
plain how to produce a family of subsets to run the previ-
ous statistical test on. Together, both sections contain the de-
scription of the proposed method. Section 5 describes a sim-
ple pre and post-processing of the data and results which im-
proves the performance of the proposed method. In Sect. 6
we illustrate our method with a set of synthetic and real data.
Finally, we summarize our conclusions in Sect. 7.

2 Preliminaries

The purpose of this section is to give a brief description of
the family of level surfaces of a 3D image and its organi-
zation as a tree of shapes [4, 45]. Since we are considering
3D images, let us consider a gray scale image u : 2 — R
where the image domain §2 is a closed rectangle in R3. The
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upper and lower level sets of the image u are defined respec-
tively as

[u=A={xeR2 :ux =21}
[u<A]l=1{xe€2 : ux) <Ai}

for A € R. We assume that u : £2 — R is an upper semi-
continuous function, that is, we assume that its upper level
sets [u > A], L € R, are closed sets. Equivalently, the lower
level sets [u < A] are open sets. This allows to give a short
description of the main objects contained in the tree of
shapes [4, 45]. Moreover it covers the case of discrete sup-
ported images. Indeed, we may always transform a discrete
supported image u(i, j, k), (i, j, k) € {1,...,N}3 into an
upper semi-continuous function in £2 = [0, N]? by defin-
ing u(xy, xa,x3) = u(i, j, k) when (x1,x0,x3) € (i — 1,i) X
(j —1,j) x (k—1,k), and taking at a common boundary
element (be either, face, edge or vertex) the highest value of
the neighboring points.

Given a point x € 2 and a set A C §2, we denote by
cc(A, x) the connected component of A that contains X, or
the empty setif x & A.

Heuristically, the tree of shapes of a 3D image, u, is a data
structure which encodes in a tree the family of its level sur-
faces. To be able to handle discontinuous functions, more
specifically, upper semi-continuous ones, we define level
surfaces as the external boundaries of the connected com-
ponents of the level sets of the image. This leads us to the
notion of shape, which consists in filling-in the holes of the
connected components of the upper and lower level sets of u.
The operation of hole filling was called saturation in [4, 45].
Thus, level surfaces are the boundaries of shapes and giving
them is equivalent to give the family of shapes. Notice that
it is easy to imagine them when the image is smooth.

Definition 1 Let A C £2. We call holes of A in £2 the com-
ponents of 2\ A. Let poo € £2\ A be a reference point, and
let T be the hole of A in §2 containing p~,. We define the
saturation of A with respect to poo as the set £2\7 and we
denote it by Sat(A, px). We shall refer to T as the exter-
nal hole of A and to the other holes of A as the internal
holes. By extension, if ps, € A, by convention we define
Sat(A, poo) = £2. Note that Sat(A, pso) is the union of A
and its internal holes.

Definition 2 Given an image u : £2 — R and py € §2, we
call shapes of inferior (resp. superior) type the sets
Sat(ce([u < 1], X), po)  (resp. Sat(cc([u > 1], X), Pso))

where A € R, x € £2. We call shapes of u any nonempty
shape of inferior or superior type. We denote by S(u) the
family of shapes of u.
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Fig.2 Anexample of a tree of shapes. Left: the graph of a 2D function
with its corresponding shapes. Right: the tree of shapes corresponding
to the figure on the left, the nodes of the tree are numbered following a
post-order traversal

The reference point po, acts as a point at infinity and
can be fixed anywhere without affecting the description of
the tree of the level surfaces encoded in the tree of shapes
[4, 45]. In practice, we have taken p as the origin of coor-
dinates, which lies at corner of the image. Observe that since
£2 is a rectangle the boundary of any shape of an image is
connected. Moreover, as it is proved in [4, 45], if a shape S
is closed, then S = Sat(dS, px). This is the mathematical
translation of the fact that a shape is essentially equivalent
to its boundary, the level surface.

The main result of this construction, proved in [4], says
that any two shapes are either disjoint or nested. From this
result, we can conclude that the set of shapes of an (upper
semi-continuous) image has an inclusion tree structure. If
the image is discrete, then we can represent the tree as a
finite structure; the shapes are the tree nodes and the parent-
child relationship, represented by the links between nodes,
is determined by inclusion. The root of the tree is §2, and
there is no loop: if A, By, B, C are shapes and A C B; C
C,i =1, 2, then the sets B; and B, must be nested, since
they are not disjoint. See Fig. 2 for the tree of shapes of a
simple 2D image.

Let us note that, for discrete images, the number of
shapes is at most equal to the number of voxels; thus it can
be stored efficiently in a tree data structure using a space
proportional to the original image.

3 Well-Contrasted Subsets of an Image:
An A-contrario Approach

As we explained in the introduction, the proposed edge de-
tector consists of two steps: first we produce a family of can-
didate surfaces and then we select the most contrasted ones
(if any) among this family. In this section we give a general
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Fig. 3 Well-contrasted level curves of an image. These figures display
three different sets of 10 points thrown in the domain of the Lena im-
age. Left: points thrown randomly. Middle: points thrown randomly in
places where the gradient is high. Right: points on a well-contrasted
level curve. The first subset will fail the test described on Sect. 3, and
the other two subsets will pass it. However, only the third subset will
be presented to the test by the method described on Sect. 4

definition of well-contrasted subsets of an image according
to a statistical test. In Sect. 4 we construct a family of sur-
face patches to which we may apply the contrast test. The
two sections together form the core of the method.

Let us define the concept of well-contrasted subset of an
image. The definition is a slight generalization of the one
given in [20, 21] based on an a-contrario model: Knowing
the distribution function for the image contrast, we would
sample the contrast values of the image at a randomly se-
lected set of points, and we would look whether the sam-
ple had a distribution with exceptionally high contrast. In
that case, this set of samples would be accepted as a well-
contrasted set. Numerically, this reduces to selecting the sets
which are large and whose minimum contrast is high. For
a thorough discussion of the statistical foundation of this
method, see [26], where it was described using the vivid
name ‘“conspiracy of random”. For the intuitive idea in our
case, see Fig. 3. Notice that this a-contrario model is not
based on an image of noise, but on noisy curves over the
original image.

The norm of the gradient defines a contrast for every
point on the image domain. We regard the values of the
contrast at each voxel as independent and identically dis-
tributed random variables, X;, whose distribution is given
by the histogram of the contrast. This notation will be used
throughout this section. This is a good model when a few
voxels are chosen randomly over the image domain, but it
fails when the voxels are not chosen independently (for in-
stance, if they are specially chosen along the boundary of
an object). This failure is precisely what we look for, as the
method can be regarded as an hypothesis testing of the inde-
pendence assumption.

In the following paragraphs we describe a general setting
to detect whether a sample from a distribution has abnor-
mally large values. This device can be used to detect excep-
tionally well-contrasted subsets of an image. The proposed
edge detector is a particular case of this when the subsets
are the level surfaces of the image (or their connected parts).

To measure the contrast of sets of points we use an arbi-
trary statistic f, which for now is a parameter of the method:

contrast({X;}) := f(X1,..., Xn).

This statistic serves to summarize the whole contrast distri-
bution of the set of points into a single real number. It may
help to think that f is increasing in each of its components,
but this is not logically needed for the following proposi-
tions to hold. Possible choices of f are the minimum X i),
the mean value n~! > X;, the median X (n/2)» OF some other
quantile X oy From the statistic f we need its distribu-
tion functions Fj;:

Fo(u) :=P(f (X1, ..., Xn) = 1)

which are decreasing functions of a real variable with val-
ues in the [0, 1] interval. Notice that these are the comple-
ment of the usual cumulative distribution function of f(X;).
We also define for every positive integer n a meaningfulness
function M,, as

My(x1,...,xn; 6, N) :=loge —log N

—log F,, (f(x1, ..., %))

which is a real-valued function of n real variables (and two
real parameters ¢, N). In the following, when the subindex n
of both F and M can be deduced from context, it will be
omitted.

Now we define our statistical test. Suppose that we are
going to deal with N sets of samples of the contrast:

Si={X{,...X,} i=1,...,N

Definition 3 We define the meaningfulness of the set S; as
MXE, .., X;'Li; e, N). We say that the set S; is meaningful
when its meaningfulness is positive. If we want to empha-
size the parameters ¢ and f we will talk about e-meaning-
fulness of S; in the f-sense, or of whether the set S; is e-
meaningful in the f-sense.

Notice that the set S; is meaningful when
N-F(f(X},.... X)) <e

and this is the usual definition of “meaningfulness” given
in [20, 21]. The quantity on the left hand side of the previous
inequality is then called the Number of False Alarms of the
set ;.

Definition 3 is justified by the following proposition.

Proposition 1 Under the same statistical model as Defini-

tion 3, the expectation of the number of e-meaningful sets is
smaller than ¢.
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The proof of the proposition is an easy consequence of
this elementary result.

Lemma 1 Let Y be a random variable and let G be its dis-
tribution function G(y) =P(Y > y). Then, fort € [0, 1]

P(GY) <t)<t

Proof of the Proposition 1 Let V be the random variable that
counts the number of e-meaningful sets. Notice that V is a
function of the variables X ’j We want to prove that E(V) <
e. Let V; be the random variable that equals 1 if the set S;
is e-meaningful and O otherwise, thus

E(V)=EWV)+---+E(Vy)
Now we have

E(V;)=P(Vi=1)=P(N-F(f(X{,....X})) <¢)

=P<F(f(xi,...,xﬁ;.)) < i) <£
i N N

where the last step is the application of the lemma to the ran-

dom variable Y = f(X A ¢ ;i), whose distribution func-

tion if G(y) = F(y). Substituting this result in the previous

formula we get

& &

The above proof is adapted from the proof given in [10]. O

The original definition of meaningfulness given in [20]
used the statistic f = min. There is a reason to allow for dif-
ferent choices of f, that can give more robust detectors; see
for example Sect. 5.1 where it is used with a statistic other
than f = min. In the case of the minimum, the function F
can be obtained directly from the distribution of the contrast,
which is approximated using its histogram:

number of voxels with [Du| > u

H =P(X > =
() (X=p) total number of voxels

Then we have

Fo(n)=H(w)"

where n is the number of points in the subset (the number
of arguments of the function f). This minimum is a special
case of the quantiles:

Proposition 2 (Distribution of quantiles) Let Xq,..., X,
be independent and identically distributed random vari-
ables with distribution function H(u) = P(X1 > ) and let
X1y, ..., X@) be the outcomes of these variables ordered
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Fig. 4 An image where level lines selection using f = min fails to
detect a boundary which is visually obvious. Left: the image. Right: its
contrast

increasingly. Then X () is a random variable whose distribu-
tion function is given by a binomial tail of parameter H (1):

k—1

PXpy=pmw =) (’Z)(l — H(w) H(w)"™ (1

i=0

in particular, we have the distribution of the minimum com-
puted before: P(X 1y > w) = H(u)".

The right hand side of (1) can be written in terms of the
incomplete beta function (see [1]) as Iy ,(n — k + 1,k).
We used the GSL library [25] which provides a function call
for it.

Remark 1 In allowing for a choice of statistic f we are
motivated by the fact that the minimum contrast is not a
robust descriptor: if one single point of the set has very
low contrast, the whole set is discarded regardless of the
contrast of all other points. We refer to Fig. 4 for a syn-
thetic image illustrating this phenomenon. In that figure we
have a well-contrasted object, surrounded by level curves
whose gradient is maximum at almost the totality of their
points. However, all the curves cross a blurred region of
the image, where the gradient can be made to be arbitrarily
low. Then, none of these curves will be detected as mean-
ingful. There are two approaches to deal with this kind of
problem: either we work with parts of level curves instead
of whole level curves, or we choose a different statistic
such f = 10th quantile. The first approach is the one cho-
sen in this paper, but the use of a robust statistic f is much
faster and, in some cases, gives similar results.

4 Computing Meaningful Patches of Level Surfaces

This section treats the main difference between the 2D and
3D versions of the edge detector.

4.1 Hierarchies of Partitions

The objects of our study are parts of level surfaces. This
is the place where our method differs from the 2D case: a
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connected subset of a surface can be much more convoluted
than a connected subset of a curve (which is determined by
its two endpoints). This means that we can not treat all the
connected subsets of each level surface, as is done in 2D:
the search space would be too large. The first aid in the re-
duction of this search space comes from the observation that
we are not really interested in all the subsets of a surface
that pass the e-meaningfulness test, but only in those that
are “maximal” in the following sense:

Definition 4 ([20]) Let S be a level surface of the image.
A connected subset S C S is maximal meaningful when it is
meaningful and

— it does not contain a strictly more meaningful connected
subset,
— itis not contained in a more meaningful connected subset.

Proposition 3 ([20]) Maximal meaningful subsets in the
min-sense are disjoint inside its level surface.

Definition 4 was given in [20] when the set S is a level
curve and S an edge curve, that is, a connected subset of S;.
In that case the NFA is given by the function

F(u,l)=N-H(uw) 2)

where N is the number of edge curves of the image. Since
edge curves are connected subsets of level curves, N can be
computed for a given image. Definition 4 is analogous to the
one given in [20]. For the time being, we assume that N is a
constant that can be computed. Then, the proof of Proposi-
tion 3 is the same as in [20] and is based on the observation
that, for a fixed value of w, the function F(u, /) is nonde-
creasing in /.

Proposition 4 Let S be a level surface of the digital im-
age u. Maximal meaningful subsets of S are connected com-
ponents of upper level sets of the modulus of the gradient
restricted to S.

Observe that there may not be any meaningful connected
subset of S, in which case the proposition is vacuously true.
In case there is one, then the connected subset with the
smallest NFA is maximal meaningful.

Proof Let S be a maximal meaningful subset of S, and let
u =minyes |Vu(x)|. If y is a neighboring point of S with
|Vu(y)| > u, we could add the point y to S without increas-
ing the NFA, contradicting the fact that S is maximal mean-
ingful. Thus, all neighboring points of S have a modulus of
the gradient lower than w, and the statement of the proposi-
tion holds. (]

Fig.5 The maximal meaningful subsets of a level surface may not cor-
respond to physical features. Left: a level surface of an image colored
by the contrast. Middle: the (connected) maximal meaningful subset
of this surface. Right: the node of the Mumford-Shah hierarchy with

maximal significativity

root=trivial partition

lambda=max

of one piece
\ leafs= pieces of the finest
partition
\
/
\
! \
/
lambda=1

Fig. 6 A hierarchy of partitions whose depth is indexed by a scale
parameter A. The leaves of the tree represent the points of the discrete
surface, and the root of the tree represents the whole surface. Notice
that the total number of nodes, being a binary tree, is proportional to
the number of leaves (exactly the double minus one)

Proposition 4 suggests an strategy for computing the
maximal meaningful subsets of S. We can find one of them
on the collection of upper level sets of |Vu| restricted to S,
and then searching recursively into its complementary.

But it turns out that the maximal meaningful subset of a
level surface tends to be topologically very complex, with
many holes and a complicated boundary. This happens be-
cause there is no restriction on the form of a maximal mean-
ingful subset, besides being connected. See Fig. 5.

The proposed approximation, suggested by the observa-
tion above, is to restrict ourselves to a reduced class of well-
behaved subsets. A reasonable way to produce such a class
of connected subsets of all sizes is a hierarchy of partitions
(Fig. 6).

Definition 5 A hierarchy of partitions over a set M is a fam-
ily H of subsets of M such that

- MecH.

— There is a subclass L C H, whose elements are disjoint
and cover M. They are called the leaves of the hierarchy.

— Any element of H which is not a leaf can be represented

as a disjoint union of leaves.

Any pair of elements of H are either disjoint or nested.

@ Springer
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Fig. 7 Each node of the tree in Fig. 6 represents a connected patch of
surface. Once we have selected the most meaningful node (in this fig-
ure, the enlarged one), we can remove all the nodes that are not disjoint
with this one. They are all the ancestors and descendants, marked by
the dotted line in this figure. Then we are left with the rest of the nodes
in the tree

Restricting the family of connected subsets of level sur-
faces S to a hierarchy of partitions we define F'(u,[) asin 2,
with N equal to the sum of all nodes of the hierarchies asso-
ciated to all S.

Once we have a hierarchy of partitions for a given level
surface, it is easy to select the maximal meaningful objects
of this partition in a greedy way (see Fig. 7). We first com-
pute the meaningfulness of each object, which can be done
in linear time in the case f = min. Then we pick the object
which is most meaningful. This clears from the search all
the descendants and ancestors of this object within the tree
of subsets, because we want a set of disjoint patches. Then
we pick the most meaningful object in the remaining part
of the tree, and we keep doing that iteratively until no more
patches can be picked.

4.2 Mumford-Shah Surface Partition Hierarchy

In the previous paragraph, we have proposed to restrict the
search of well-contrasted subsets of a level surface to a hier-
archy of partitions over it. Our purpose now is to construct
a particular hierarchy based on a family of nested segmenta-
tions computed using the simplified Mumford-Shah energy
functional [37, 47] applied to the contrast function g = |Vu|
on a level surface.

Let M be a surface and suppose we want to approximate
a real-valued function g : M — R using piecewise constant
functions. If a partition of M into regions is given, the best
piecewise constant approximation to g is obtained by select-
ing the mean value of g as the value over each region. The
piecewise constant Mumford-Shah functional assigns an en-
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ergy to such a partition of M, depending on a non-negative
parameter A:

E(Partition.Ql,...,.Qn):Z/ g —mil>+ 1) i,
i U ij

where m; is the mean value of g on the region £2;, and /;;
is the length of the common boundary of the regions £2;
and £2;. Notice that the first term is the variance of the ap-
proximation (that decreases for finer partitions) and the sec-
ond therm is the length of all the boundaries (that decreases
for coarser partitions). The Mumford-Shah segmentation of
g at scale A is defined as the partition of M that minimizes
the energy above. The parameter A acts as a scale of the ap-
proximation. For A = 0, the optimal partition is given by the
connected regions of M where g is constant. As A grows,
we get coarser and coarser partitions until we find the triv-
ial partition that has M as a single patch. These partitions
do not necessarily form a hierarchy, that is, the finer can
not necessarily be obtained as refinements of the coarser.
In [37], Koepfler, Lépez and Morel proposed to act as if
these partitions were, in fact, hierarchical. Then, it is pos-
sible to start from the finest possible partition, compute its
Mumford-Shah energy, and coarsen the partition by merging
the pair of regions that make the energy decrease as much as
possible.

From the previous expression of the functional, we can
compute how does the value of E change when we merge
two contiguous regions of the partition. After some alge-
braic manipulation, we find that when we merge the regions
£2; and £2; to obtain a new region £2;; the increment of E is

|£2:1182;1

E (after) — E (before) = ———
[$2;] + 182]

2
|m; —m |~ — Aljj
When this increment is negative it means that the approxi-
mation has improved after the merging, so that it is worth
to merge. Therefore, to justify merging regions i and j they
must fulfill the condition

12,112 |m; —m|?
[82;] + 182] lij

<X 3

The left-hand side of this inequality is a number independent
from X, which can be stored for each edge of the region-
adjacency graph. Doing so iteratively, starting from the dis-
crete partition, one can store the whole history of the merg-
ings in a tree structure. This results in a hierarchy (see Fig. 6)
which is a good approximation of the set of all Mumford-
Shah optimal segmentations varying A.

We have used the setting above to segment the contrast
over each level surface M of the image. The level surfaces
are constructed, to sub-pixel accuracy, using a slightly modi-
fied version of the Marching Cubes [39] algorithm, designed
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12 13 14 15 16 17
18 19 20 21

Fig. 8 Adaptation of the Marching Cubes table to the topology of up-
per semi-continuous interpolation. This table is used to compute the
boundaries of shapes at a high resolution. To obtain sub-voxel preci-
sion, as customary, the vertices are not located at the midpoints of the
cube edges, as shown in the figure, but at a linearly interpolated places
between the corresponding gray-values. The triangulated surfaces ob-
tained by this method have the same topology as the Shapes of the tree
defined on Sect. 2, and this is not true for other versions of the table

to be consistent with our upper-semi-continuous interpreta-
tion of the discrete image. See Fig. 8 for the details. The
lengths of curves over M are defined (as in [5, 43]) using
the edges of the dual graph of the triangulation, given by
barycentric subdivision. The function g is the contrast inter-
polated trilinearly at the vertices of the triangulation from
its values on the image rectangular grid. We could also have
used a vector-valued image g, for example involving second
derivatives, but its usefulness is yet a subject of further study.
See [30] for a related work on the selection of good vector-
valued image descriptors in the context of surface evolution.

As far as we know, this is the first time that the Mumford-
Shah functional is used to segment data defined on surfaces.

4.3 3D Edge Detection Algorithm

On Sect. 3 we have explained how to detect when a set of
points within a given family is significantly well-contrasted.
On Sect. 4 we have explained how to produce a large but
manageable family of subsets to apply this test to. The sets
of this family are patches of level surfaces, of all sizes,
where the image contrast is as homogeneous as possible.
Putting these two ingredients together we obtain the pro-
posed edge detector:

Input:

— Original gray scale image, u

— Sensitivity parameter, ¢ > 0, (¢ = 1 by default)
Output:

— A set of patches of surface, I

smooth edge

gradient norm Canny

Fig. 9 Combination of our method with Canny’s. We can use the out-
put of Canny detector as the contrast for our method, thus enhancing
the localization of the detected features. In this figure we show the de-
tected curves of a synthetic 2D smooth edge in both cases

Algorithm:

1. Compute the image of contrast g = [Vu].

2. Let N be twice the sum of the surface areas of all the
level surfaces. This will be the total number of tests to be
done.

3. For each connected component S of each level surface of
the gray scale image:

(a) Generate a mesh of triangles to represent S
(b) Interpolate the contrast at the vertices of the triangu-
lated surface S
(c) Compute the Mumford-Shah tree, T, of the contrast
function on §
(d) Perform the statistical test with f = min to all the
nodes of T
(e) While there are still nodes in T':
(i) Pick the node g of T that passes the statistical
test with highest score
(i1) Output the patch of surface corresponding to g
(iii) Remove from T the node ¢ and all its ancestors
and descendants.

Notice that this modular design allows us to try some
variations of the algorithm. For instance, we can use a dif-
ferent statistical test (as described on Sect. 5), or a different
set of surface patches (for example, the shapes of the tree).
Another variation that gives specially good results consists
in setting the contrast g equal to the output of Canny oper-
ator, instead of the norm of the gradient. See Fig. 9 for an
example where this makes a difference.

5 Pre and Post-processing Steps

The proposed method can be readily implemented as de-
scribed. But in that case we observe that it is fairly slow and
the output it gives is redundant (the detected edges are repli-
cated in slightly different positions). To improve these two
practical aspects we suggest filtering out the level surfaces
of the tree that will not produce edges, and applying an ex-
clusion criterion that forces that any voxel of the image only
“belongs” to one output edge.

@ Springer
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Fig. 10 Three thresholds of the
same image. The first two
thresholds show some image
content. The third one shows
mainly background noise. The
level surface on the third image
has one large and very
convoluted component and
many small and almost spherical
components

T T

5.1 Pruning the Original Tree of Level Surfaces

Let us study the cost of our algorithm. An image of m voxels
has O(m) level surfaces (in fact, it has exactly m when all

the values are different). A typical level surface has O (m %)
points (this is the area of one side of a cube of volume m).
This is a very rough estimate, which happens to underes-
timate the complexity of the algorithm for real images, for
further empirical analysis on this topic see [11] and for a
mathematical justification see [2]. Thus, the cost of travers-
ing all the points of all level surfaces is about O (m 3 ), which
is very large, and therefore too slow to scan the surfaces. Re-
call that a typical size for medical images is m = 1283. We
can make the algorithm much faster by discarding from the
beginning those level surfaces which we know beforehand
that will not produce any useful patches.

Here we discuss three ways to prune the input tree to re-
duce the number of processed surfaces: pruning very small
surfaces, filtering the tree using robust statistics, and pruning
the tree using the gray-level values. These are independent
steps. The first one does not require any a priori information,
but can incorporate it. The other two steps may be applied
or not whether we have the required a priori information.

The first pre-processing step we propose is pruning the
smallest shapes of the tree. When working with the tree of
shapes of real images, one notices that usually most of the
shapes in the tree have a small volume and belong to the
noise that appears inside homogeneous regions (see Fig. 10,
right). We can realize this behavior by plotting the number
of shapes of each volume, as done in Fig. 11. A good model
for the number of small shapes in a textured region of vol-
ume M is a power law of the form p(v) = 61}%, meaning
that there are about p(v) shapes of volume v (see also [2]).
This model seems to be independent of the kind of noise
and is quite accurate (for the purpose of realizing that most
shapes in the tree are rather small) for v < 20. On Fig. 11 the
number of small shapes for some images is plotted as dots,
and the estimated power-law is plotted as a continuous line.
The only differences that we observe are due to images with
large saturated regions, where there is no texture.
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Fig. 11 Number of shapes of each size, for some images. The interest-
ing pattern is that all the curves start decreasing more or less linearly

with slope —% (on the log—log scale shown here). This means that the

number of shapes of each size decreases very fast, as there are ocw ™!+

shapes of volume v, for small v, and these small shapes belong to the
texture of noise. This also means that most of the shapes on the tree
are small: in a typical tree of shapes, about half of the shapes enclose a
single voxel

All of these surfaces (say, of volume less than 10 vox-
els) are too small to pass the statistical test, so they can be
discarded from the beginning. This will effectively discard
most level surfaces of the image. While there is no study
of the computational cost after this optimization, in prac-
tice this pruning helps to make the algorithm more tractable:
for relatively small images of size 603 our implementation
on a PC takes between one and five minutes, and we could
process images of up to 1283 voxels in less than one hour.

The number “10” in the previous paragraph is only an
example. An appropriate bound can be computed from
the image data. For instance, when f = min and ¢ =1,
a set of size / and minimum contrast p is meaningful
when NH(n)! < 1, or equivalently when / > —log(N)/
log(H (w)). Thus, if w1 is the last-to minimum contrast of
the whole discrete image, then —log(N)/log(H (1)) is a
lower bound for the size of a meaningful subset. This lower
bound is not trivial when N H(u1) > 1, which is usually the
case. When f is another robust statistic, this bound is not
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easy to compute analytically, but it can nevertheless be ob-
tained by a pre-computed table lookup to find the inverse
of Fy(t). These bounds on the area of meaningful level
surfaces provide equivalent bounds for the minimal volume
of a meaningful level surface, because for a discrete image
the perimeter of a surface is bounded by its volume (each
boundarying voxel is also part of the interior).

A second pre-processing step that can be applied consists
in pruning out low contrasted shapes. As in [20], the sta-
tistical tests of Sect. 3 can be applied to the set of all level
surfaces (without breaking those into pieces). The purpose
of this pre-processing is to reduce the number of level sur-
faces that will be analyzed by the Mumford-Shah hierarchy,
hence reducing the computational time. This may be a risk
when the discarded surfaces have well-contrasted parts. But
it could be justified if we have the a priori information that
this is not the case.

The third pre-processing step, which is only useful in
some common special cases, is pruning the tree of shapes
using a-priori information. This data structure allows to use
easily some a-priori information about the intensity ranges
of the desired objects that may drastically reduce computa-
tional burden. For example, if we know that all gray values
in some interval belong to noise, or to structures we are not
interested in, we can immediately discard the level surfaces
of those values. In X-ray computed tomography images,
where the gray values have physical meaning, this means
that we can discard most bones and background structures
from the beginning and significantly reduce computation
time and increase the quality of the output.

5.2 Filtering the Output Using the Exclusion Principle

The output of our edge detector (and that of DMM) is usu-
ally highly redundant in the following sense: edges appear
represented as bundles of surfaces (or curves). Here we in-
troduce an exclusion principle to reduce the redundancy of
the output, by picking the best representative of each bundle.
It is based on a similar principle used in a segment detec-
tor [22] to reduce output redundancy. As this method works
exactly in the same way in 2D and 3D, we only describe
here the 2D case where we can support the explanation with
figures. For the 3D case, it suffices to replace “curve” by
“surface” and “square” by “cube”.

The proposed “exclusion principle” works by dividing
the image domain into small square regions (e.g. of pixel
size, but not necessarily so), and imposing these two require-
ments on the final set of curves:

(1) Each square belongs to at most one curve
(i) Each curve passes the statistical test

Note that we say that a square P belongs to a curve C
when C crosses through P. Of course, the first requirement

(b) Two curves “cov-
ering different ob-
jects”

(a) Two curves “cov-
ering the same ob-

Fig. 12 The two synthetic cases that we are going to consider below

Fig. 14 Assignment of at most one curve to each square, thus fulfilling
the first requirement

—

7

/

(b) Both parts pass
the statistical test

(a) Only the lower
curve passes the sta-
tistical test

Fig. 15 Performing the statistical test for the remaining pieces of
curve, thus fulfilling the second requirement

is not usually fulfilled by the original set of curves. The ex-
clusion method works by removing parts of curves until the
first requirement is fulfilled. Then, it removes the remaining
pieces of curves that do not pass the test. See Figs. 12, 13,
14 and 15 for a graphical explanation.

There are in general non-unique ways to reduce the orig-
inal set of curves so that the first requirement is true. We
propose the following greedy strategy to force uniqueness:

1. Start with the set of all curves
2. While there are still curves that pass the test:
(a) Pick the curve C that passes the test with highest
score
(b) The curve C owns all the squares that it crosses
(c) Delete the parts of all the other curves that cross
through squares owned by C
(d) Output C and remove it from the set
3. Delete the remaining curves

@ Springer
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Remark 2 In the previous algorithm, the “curves” we speak
about are not necessarily connected. For example, when we
remove a piece in the middle of a curve, the remaining two
pieces are still considered “one curve”. This can be seen on
the upper curve at Fig. 15(b).

Remark 3 The proposed exclusion principle has a scale pa-
rameter, namely the size of the grid. We make the natural
proposal to set it to the same size as the voxels of the origi-
nal image.

5.3 Merging the Patches (or Edge Linking)

Our edge detector does not produce a segmentation of the
image domain into parts, but a set of boundaries. This may
be enough for some applications like visualization or detec-
tion of structures, but it does not correspond to a segmenta-
tion. Let us discuss here a procedure to paste together a set of
patches of level surfaces to produce a closed output surface
(or a set of them). The method is based on a reconstruction
algorithm introduced in [56].

Let S C £2 be a set of edges and let dg : £2 — R be the
distance function to S. Suppose that S covers part of the
boundary of an object. A common approach to recover the
whole boundary of the object is to search for closed sur-
faces I' that are local minima of the following functional

E()(I")=/ ds(x)dA
r

where dA denotes the area element. These minima can
be found by starting from an initial guess, a user-supplied
closed surface which approximately contours the object, and
then letting it evolve by gradient descent of E. The Gateaux
derivative of E is

Vdg(x)- N +ds(x)x

where N is the outwards unit normal to I" and « its mean
curvature. In an implicit formulation, where I" is the zero
level set of a function ¢, the gradient descent of E( can be
described by the evolution of the following PDE:

9 = <Vd5 . Yo + dgsdiv <&>>|V¢|
ot Vol Vol

Further regularization (mainly for display purposes) can
be added to the model if we replace the functional above by
adding the term A |, ¢ dA to the above functional, A > 0. For
large values of A the functional approaches the area times A,

and its optima approach minimal surfaces. For small values
of A, only sharp edges are smoothed out.

Remark 4 This reconstruction method is not definitive (it
will fail at junctions where more than three regions meet),
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but it usually improves the quality of the visualization by
smoothing out the ragged appearance of the surface patches.
It has two important problems to be used in full generality
for this application. The first problem is the choice of the
initial surface. Examples of reasonable initial surfaces are
the boundary of the image or the most meaningful shape of
the tree, but either method can fail when there are multiple
objects to be detected, specially when they are nested. The
second problem is that the functional Eg has a global min-
imum of zero (attained at the empty surface). In practice,
this means that the minimization can collapse if the surface
“misses” the objects that we want to reconstruct. We are cur-
rently working on a modification of the functional to am-
mend this problem, in order to achieve an almost-automatic
reconstructor.

6 Experiments and Discussion

We display and comment the results of our method when ap-
plied to four sample images, two synthetic images, a mag-
netic resonance and an X-ray computed tomography. In the
synthetic images the task is to find the boundaries that gener-
ated them. In both medical images the task is to find the bor-
der of a vessel that contains a cerebral aneurysm. We com-
pare the results with those obtained by simple thresholding
and by Canny’s filter.

The first example is a synthetic image built in the follow-
ing way. A sphere of radius 15 has been drawn at the cen-
ter of a 403 black image, and the interior of the sphere has
been colored in three different homogeneous regions. Then,
a Gaussian noise of variance 10 has been added to the image,
to add some texture. Figure 16 shows a slice of this image,
and the output of the proposed edge detector. Notice that the
output is a set of three smooth level surfaces, corresponding
to the boundaries of the four large homogeneous regions on
the image. This first example is a best case for our method,
and serves as a check that the algorithm is working well. No-
tice that no global threshold can produce all the boundaries
of the image, and that Canny’s detector misses the junctions.

Fig. 16 Best case for our algorithm. Segmentation of a piecewise con-
stant image with added texture. From left to right: slice of the image,
output of the proposed edge detector, output of Canny’s edge detector.
The 3D images are clipped to show the interior of the object
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Fig. 17 Worst case for our algorithm. Segmentation of a piecewise
constant image with an added ramp function. From left to right: slice
of the image, output of the proposed edge detector, two isosurfaces of
the image

Fig. 18 Effect of the post-processing pipeline on the synthetic
worst-case image (Fig. 17). Left: before exclusion principle, 207
patches. Middle: after exclusion principle, 9 patches. Right: after edge
linking, one single surface patch. In this figure, the edge linking is per-
formed using a higher resolution than the input image and without any
smoothing. When using the same resolution as the input image, an al-
most perfectly spherical surface is obtained

The second example is a synthetic image built in the fol-
lowing way. A black sphere of radius 19 has been drawn at
the center of a 50° white image, and then we added to it
a ramp function of slope 1. This means that the contrast of
both the background and the inside of the sphere are constant
(equal to 1) and the borders have a much higher contrast.
Then the image has been made more textured by adding a
Gaussian noise of variance 5 and blurring it with a Gaussian
of width 3. Two level surfaces of this image are shown in
the right part of Fig. 17. Notice that no level surface can
surround the whole sphere, but that many surfaces contain
a band touching the sphere. This image is an example of a
worst case for our algorithm (and a best case for Canny’s).
However, the algorithm manages to find the good parts of all
level surfaces, as shown on Figs. 17 and 18.

Remark 5 The two synthetic images above are intentionally
low-resolution to emphasize the sub-pixel accuracy of the
output.

The first real example we show is the computed tomog-
raphy image discussed in the introduction (see Fig. 1). Its
size is 180 x 84 x 72. It is a noisy image with several ar-
tifacts (e.g. dark shadows, radial anisotropic noise), due to
the reconstruction algorithm. The proposed edge detector

Fig. 19 A real CT image. From left to right: Maximum intensity pro-
jection, vertical slice, horizontal slice. The slices show several artifacts,
and the anisotropy of noise

Fig. 20 Edge detection on the CT image. Left: Output of the pro-
posed edge detector. Right: Output of Canny’s edge detector, using
hand-tuned parameters to obtain the best result for this image. The
main advantage of the proposed method, besides the lack of tunable
parameters, is the format of the output: instead of a large set of vox-
els we have a small set of triangulated surfaces, sampled at sub-voxel
precision

finds the correct boundaries at several difficult places, but
still misses some small arteries. See Fig. 19 for a discussion
on the image, and Fig. 20 for the output of the proposed
edge detector, and a comparison with Canny’s. After linking
the patches via the functional described on Sect. 5, we find
a single surface which is better than the best manually-set
global threshold, see Fig. 21.

The second real image is an anatomic MRI image of
size 111 x 65 x 57. While this image is not as noisy as the
previous one, it has an artifact which produces a problem
like that of the second synthetic example. Namely, the image
domain is partitioned into three bands, where the gray lev-
els have a different starting point (so that the histograms are
displaced). Even if this is an artifact easily tractable in a pre-
processing stage, the proposed edge detector produces good
results when applied directly on the raw data. See Fig. 22
for slices and projections, and Fig. 23 for the result of the
proposed edge detection, compared to a manually selected
isosurface.

7 Conclusion and Future Work

We have proposed a new edge detector that selects the well-
contrasted patches of all level surfaces of a 3D image. The

@ Springer
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Fig. 21 Output of the experiment on Fig. 20, after joining the edges
via Osher-Zhao functional. The result is a clean set of five disjoint sur-
face patches

. ey

Fig.22 A real MRI image. Left: Maximum intensity projection. Right:
Average projection (notice the different averages over three bands).
The results of our edge detector on this image appear on Fig. 23

proposed method is free of parameters and is based on the a-
contrario methods developed by Desolneux et al. [20]. The
edges obtained are robust and can be used for later purposes
such as segmentation, registration, or visualization of the
main structures of the image. We have also discussed an al-
gorithm for edge linking to produce a closed surface passing
nearby a given set of edges. We have illustrated the results
with a series of experiments on synthetic and real data.

The proposed method raises a series of questions that
need to be further studied. First, we are currently working
on an improvement of the interpolation method proposed
by [56], in order to avoid its dependence on the initializa-
tion and its local minima. Second, a systematic testing on
sets of real and synthetic images, evaluating the results us-
ing different quantitative criteria, is also the object of further
research.

A third line of future research concerns the efficiency of
the presented algorithms. Medical images tend to be very
large, e.g., a floating-point image of size 256> needs 64 MB
to be stored. Even if our algorithms have been implemented
to be as fast as possible, they are too slow to be used on regu-
lar computers for processing images of that size. We believe
that any significant speed improvement needs to rely on a
multi-scale representation of the data. For that, we would
like to interleave the tree of shapes with a scale-space rep-
resentation. This would lead to an efficient scheme to obtain
finer and finer results starting from an initial coarse guess of
the edges. Even if the finest scale was to be achieved at the
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Fig. 23 Processing of the real MRI image from Fig. 22. Top: manu-
ally selected isosurface that segments well the upper part of the image.
Middle: output of the proposed edge detector, 14 surface patches. No-
tice that the two structures which are not vessels (they are parts of
bones) can be easily removed manually. Bottom: result of edge linking
via Osher’s functional

end, this order of computation would be much faster than
the current method, because large volumes of low contrast
would be discarded at the coarser scales. In the current im-
plementation, most of the running time is spent in discard-
ing the extremely complicated high-resolution level surfaces
that lie in the large and low contrasted parts of the image.
To achieve interactive running times this is the problem that
needs to be solved.
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