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Anisotropic Cheeger Sets and Applications*

Vicent Caselles’, Gabriele Facciolof, and Enric Meinhardt!

Abstract. The main purpose of this paper is to develop the mathematical analysis of anisotropic total variation
problems with a degenerate metric and the computation of the associated Cheeger sets. We illustrate
our analysis with the computation of Cheeger sets with respect to different anisotropic norms of
relevance in applications to image processing. In particular, we describe the computation of global
minima of geodesic active contour models, and we illustrate the use of Cheeger sets for the problem
of edge linking.
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1. Introduction. Given a nonempty open bounded subset  of RV, we call Cheeger con-
stant of €2 the quantity

. P(F)
(1.1) Co = min o
Here |F| denotes the N-dimensional volume of F', and P(F") denotes the perimeter of F. The
minimum in (1.1) is taken over all nonempty sets of finite perimeter contained in 2. A Cheeger
set of  is any set G C € which minimizes (1.1). Observe that G is a Cheeger set of  if and
only if |G| > 0 and G minimizes
(1.2) }rngl?zP(F) — CqlF|.

Existence of Cheeger sets follows directly from the direct methods of calculus of variations.
Uniqueness of Cheeger sets is a more delicate issue and is not true in general (a counterexample
is given in [39] when € is not convex), though it has recently been proved that it is generically
true [19] (that is, true modulo a small perturbation of the domain €2). However, uniqueness of
Cheeger sets inside convex bodies of RY was proved in [20] when the convex body is uniformly
convex and of class C? and in [2] in the general case. The case of convex bodies of R? was
studied in [3, 39].

The computation of Cheeger sets has recently been the object of several papers [15, 17].
One of the possible algorithms consists in solving the variational problem
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1212 V. CASELLES, G. FACCIOLO, AND E. MEINHARDT

(1.3) min {/ \Duy+/ |u dHN‘1+3/(u— 1)2dx}.
weBV(Q)NL2(Q) [ Jq 90 2 Jo

This strictly convex lower semicontinuous functional has a unique minimizer v € BV (2) N
L?(9) satisfying 0 < u < 1. Moreover, for any s € (0, 1] the level set s := {x € Q : u(x) > s}
is a solution of

1.4 in P(F) — u|F
(1.4) glglg()ull,

where p := A(1 — s) and the infimum is taken over the sets F' C Q of finite perimeter in
RYN [4, 21]. When taking A € (0,+00) and s € (0,1] we are able to cover the whole range
of p € [0,00) [4]. Since the family of level sets E; is nested, the solution of (1.4) is unique
for any p € (0,400) up to a countable exceptional set. Moreover, when A is big enough, the
level set associated to the maximum of u, {z € Q : u(x) = |Ju|lw}, is the maximal Cheeger
set of © [4, 20]. Observe that this provides an algorithm for computing the maximal Cheeger
set (and also the solution of the family of problems (1.4)). In particular, using Chambolle’s
algorithm [26] to minimize (1.4), one passes to a dual variational problem which can be solved
by a simple iterative scheme.

Our purpose in this paper is to study Cheeger sets in the context of image processing, in
particular, their connections with active contours and edge linking. For that we use the theory
of anisotropic perimeters developed in [5, 10] to extend model (1.3) to general anisotropic
perimeters, including as particular cases the geodesic active contour model with an inflating
force [22, 23, 41], a model for anisotropic diffusion, and a model for edge linking. Thus, we
will use the results in [5, 10] to study the problem

(1.5) min/ \Dulqg—i-/ o, v |ul dHN ! + i/(u— 1)% hdz,
v Ja o0 2 Jo

where ¢ : Q x RV — R is a metric integrand in Q which is symmetric in &, i.e., ¢(x, —€) =
é(x, &) for any ¢ € RY and any = € Q; Jo [ Duls denotes the anisotropic total variation with
respect to the integrand ¢ (see section 3); and h € L>(Q), h(x) > 0 a.e., with [, ﬁ dx < oo.

We denote by v*? the outer unit normal to  at points of Q. To shorten the expressions
inside the integrals we shall write h,u instead of h(z),u(x), with the only exception being
é(x, ). Again we prove that if u is a solution of (1.5), then the level sets {z € Q : u(z) > s},
s € (0, 1], are solutions of

1. in Py(F) — p|F
(1.6) min Py (F) — pl Fp,

where p := A(1 — s), P4(F) is the anisotropic perimeter of F' (see section 3), and |F|, =
Jrh(z)dz. As in the Euclidean case, the solution of (1.6) is unique for any s € (0,1] up
to a countable exceptional set. Moreover, when A is big enough, the level set associated to
the maximum of u, {z € Q : u(r) = ||u]|w}, is the maximal (¢, h)-Cheeger set of Q. A
(¢, h)-Cheeger set in  is a minimizer of the problem

Py(F —
(1.7) inf{ ’(;E’ ) : F C Q of finite perimeter, |F|;, > 0},
h
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ANISOTROPIC CHEEGER SETS AND APPLICATIONS 1213

and the value of this infimum is the (¢, h)-Cheeger constant, denoted by Cg’h. The computa-
tion of the maximal (¢, h)-Cheeger set (together with the solution of the family of problems
(1.6)) can be computed using Chambolle’s algorithm [26]. To simplify our expressions, instead
of (¢, h)-Cheeger set and constant, we will say ¢-Cheeger set and constant.

In order to develop the previous approach we have to assume that the metric integrand
¢(x,€) is continuous and coercive near the boundary of €2, which amounts to saying that for
x €  near 02 we have

(1.8) alé] < é(x,6) < BlE] VEERY, 0<a<p.

Then we adapt the results in [5, 10] in order to study the variational problem (1.5). This
problem was studied in [49] for the case when ¢ is continuous and satisfies (1.8) for all (z,€) €
QxRN In case that ¢ is coercive everywhere we can minimize (1.5) in the space of functions of
bounded variation BV (Q2). In the present situation, where we do not assume that ¢ is coercive,
we have to extend this space and consider functions u € L*(Q) such that Jo | Duly < co. We
denote this space by BVy(€2). Observe that, since we are studying the Dirichlet problem, we
need that functions u € BVy4(Q2) have a trace on J€2. Thus, by assuming that ¢ is coercive
near the boundary of €2, the finiteness of the anisotropic total variation implies that u is
a bounded variation function near 02 and therefore has a trace on 0f2. The interest in
degenerate (noncoercive) metric integrands ¢ comes from the applications, where it can be
natural to assume that ¢ vanishes on a subset of 2 (arcs of curve if N = 2 or surface patches
it N =3).

We illustrate this formalism with three examples: (a) the geodesic active contour model;
(b) the anisotropic diffusion case; and (c) a model for edge linking.

(a) The geodesic active contour model. Let I : Q@ — RT be a given image in L>(Q), G be
a Gaussian function, and

(1.9) o(x) !

VI V(G
(where in G * I we have extended I to RY by taking the value 0 outside 2). Observe that

g € C(©) and inf _gg(z) > 0. The geodesic active contour model [22, 23, 41] with an
inflating force (see [30]) corresponds to the case where ¢(z,&) = g(x)[¢|, |Du|y = g(x)|Dul,
and h(z) = 1, x € Q. The purpose of this model is to locate the boundary of an object of
the image at the points where the gradient is large. The presence of the inflating term helps
to avoid minima collapsing into a point. The analysis of this model was done in [18, 24, 41]
using the level set formulation of (1.6). In this case we write Py(F') instead of Py(F'), and we
have Py(F) := fa*F gdHN=1, where 9*F is the reduced boundary of F' [7].

In this case the ¢-Cheeger sets are a particular instance of geodesic active contours with
a constant inflating force p = Cgl’l. An interesting feature of this formalism is that it permits
us to define local ¢-Cheeger sets as local (regional) maxima of the function w. They are
¢-Cheeger sets in a subdomain of 2. They can be identified with boundaries of the image,
and the above formalism permits us to compute several active contours at the same time (the
same holds true for the edge linking model).

A more general active contour model, based on Finsler metrics, was introduced in [48].
In this paper, the authors minimized the Finsler metric using dynamic programming. A
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1214 V. CASELLES, G. FACCIOLO, AND E. MEINHARDT

different numerical approach based on graph cuts, and valid for submodular Finsler metrics,
was proposed in [42].

(b) An anisotropic diffusion model. The model (1.5) contains the case ¢(x,§) = |AzE],
where A, is a symmetric positive definite matrix for each x € 2. A particular instance when
N = 2 is the anisotropic diffusion model given by A, = VX (2) ® V- (z) + g(z)V(z) ® V(z),

where V (z) = — V@) and V (z)* denotes the counterclockwise rotation of V() of angle 7.
1+|VI(z)[2 2

Notice that by the structure of A, we could also take the clockwise rotation.

(¢) An edge linking model. Another interesting application of the above formalism is to
edge linking. Given a set I' C Q (which may be the output of an edge detector formed by
arcs of curve if O C R? or surface patches if 2 C R?), we define dr(x) = dist(x,T") and the
metric integrand ¢(z,§) = dr(x)|£|]. In this case, we experimentally see that the ¢-Cheeger
set determined by this weighted metric has a boundary formed by a set of curves (N = 2) or
surfaces (N = 3) linking T".

Let us mention the formulation of active contour models without edges proposed in [28] by
Chan and Vese, whose solution can be related to the general formulation (1.6). Let [ : Q — R™

be a given image and g € C'(§2) be such that inf__g g(z) > 0. The authors proposed minimizing

(1.10) min & (F,c1, ) := Py(F;Q) + )\/ (I(x) —c1)?dz + X (I(x) — cp)? dz,
FCQ,c1,c2€R F O\F

where the minimum is taken over the sets F' of finite perimeter in 2, with ¢1,co € R, A > 0,

and Py(F,Q) := fa*FnQ g dHN =1 is the weighted perimeter of F' in Q. Although in the initial

proposal [28] the authors took g = 1 (in this case (1.10) is the restriction of the Mumford-Shah

functional to a binary segmentation of the image), the extension to a weighted perimeter was

natural and has been considered, for instance, in [13]. If the set F' is fixed, then the minimum

of & (F,c1,cp) with respect to c1,co € R gives us the values ¢; = % and & =
I(x)d

%, and we may write

111 0 E(F e (pe

( ) FQQI,%?}CQER g( 761702) i—‘ngnfll g( 761762)

Observe that

£,(F,71,%) = P,(F,Q) + )\/
F

(I(z) — c1)* = (I(z) — c2)?) dx + )\/ (I(z) — cp)? da

Q
and that it suffices to minimize with respect to F' the first two terms of this sum, the last
one being a constant. Now, as proposed in [27, 13], for any fixed values ¢y, ¢y € R the global
minimizer of £(F,¢1,¢2) with respect to F' can be found by solving the convex optimization
problem [27, Theorem 2]

(1.12) minl/ﬂg|Du| +)\/Q((I(:1:) C ) — (I(@) — 2)) wda

0<u<

and then setting F' := {u > t} for a.e. t € (0,1). Thus, iterating between the solution of
(1.12) with fixed values of ¢, ¢y and the updating of ¢q, ¢o just described, we have a two step
algorithm to solve the Chan—Vese model [27, 13].
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ANISOTROPIC CHEEGER SETS AND APPLICATIONS 1215

Let us also mention the interesting work [51] in which the authors propose a method for
convexifying the total variation regularization of some nonlinear and nonconvex data attach-
ment terms (e.g. the computation of disparity in rectified stereo pairs) which leads to the
solution of an anisotropic total variation problem with Dirichlet-type boundary conditions.
The present paper provides the mathematical foundations of that approach in the case of
degenerate anisotropies.

For more information on Cheeger sets and their role in estimating the first eigenvalue of
the p-Laplacian for p € [1,00), we refer the reader to [29, 43, 37, 38]. These results have been
extended in several directions, in particular, using weighted volume and perimeter [16, 15]
and for anisotropic versions of the perimeter [40].

Let us describe the plan of this paper. In section 2 we collect some preliminaries about
functions of bounded variation and Green’s formula. In section 3 we recall the definition of
anisotropic total variation with respect to a metric integrand and adapt the lower semicon-
tinuity and relaxation results in [5, 10] required to study the variational problem (1.5). In
section 4 we extend Green’s formula for bounded vector fields o :  — RY with divergence in
L>(Q) and functions u € BVg(€2). Though these results are classical [9] in the usual BV (Q)
case and the corresponding extensions to BV functions only require the right definitions, for
the reader’s convenience and for future reference we include in Appendix A a sketch of the
proof of the main results. In section 6 we study the existence and uniqueness of solutions of
problem (1.5) and prove that the level sets of the solution u solve problem (1.6). Then we
prove that the level set {x € Q : u(x) = ||u/|oo } is the maximal ¢-Cheeger set of Q2. In section 7
we briefly sketch the existence and uniqueness of solutions of the problem analogous to (1.5),
replacing Dirichlet with Neumann boundary conditions. In section 8 we extend Chambolle’s
algorithm to cover the case of certain degenerate (or not) anisotropic norms. In section 9
we describe the computation of ¢-Cheeger sets in floating-point images and we describe the
numerical computation of the ¢-perimeter of the level set of a digital image. In section 10
we display experiments to illustrate the computation of global minima of the geodesic active
contour model with an inflating force and of the edge linking model. In all these cases we
display the corresponding ¢-Cheeger sets. In section 11 we apply the framework developed
in the previous sections to a model of anisotropic diffusion along the level lines of a given
image. Finally, section 12 summarizes our main conclusions. Appendix A contains the proof
of several results that have not been included in the main body of the text.

2. Preliminaries.

2.1. Bounded variation functions and sets of finite perimeter. Let 2 be an open subset
of RV. A function v € L'(Q2) whose gradient Du in the sense of distributions is a (vector-
valued) Radon measure with finite total variation in € is called a function of bounded variation.
The class of such functions will be denoted by BV (2). The total variation of Du on  turns
out to be

(2.1) sup {/ u divz dz : 2 € CP (4 RY), [[2]] oo () += esssup |z(z)] < 1}
Q €
(where for a vector v = (v1,...,vy) € RY we set |v]? := Zf\il v?) and will be denoted by

|Du|(Q) or by [, [Dul. It turns out that the map u — [Du|(2) is L] .(Q)-lower semicontinu-
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1216 V. CASELLES, G. FACCIOLO, AND E. MEINHARDT

ous. The total variation of u on a Borel set B C ) is defined as inf{|Du|(A) : A open, B C
A C Q}. For more results and information on functions of bounded variation we refer the
reader to [7, 32].

A measurable set £ C RY is said to be of finite perimeter in Q if (2.1) is finite when
u is replaced by the characteristic function X of E. The perimeter of E in 2 is defined as
P(E,Q) = |DXz|(R), and P(E,Q) = P(RY \ E,Q). We shall use the notation P(E) :=
P(E,RY). For sets of finite perimeter £ one can define the essential boundary 0* E, which is
countably (N — 1)-rectifiable with finite #~~! measure, and compute the outer unit normal
vE(x) at HN~1-almost all points x of 9*E, where H"~! is the (N — 1)-dimensional Hausdorff
measure. Moreover, | DX | coincides with the restriction of HV=! to 9*E [7, 32].

Throughout the text we will use the notation {u > s} to denote {x € Q : u(z) > s}, s € R.
Also, when we write a.e. without specifying the measure we refer to the Lebesgue measure.

2.2. A generalized Green’s formula. Let © be an open subset of RY. Following [9], let
X,(Q) = {z € L®(RY) : div z € LP(Q)}.

If 2 € X,(Q) and w € L9(Q) N BV(Q), p~! + ¢! = 1, we define the functional z - Dw :
C3°(2) — R by the formula

(2.2) (¢ Dug)i= - |

w @ div zdm—/wz'chdm.
Q

Q

Then z - Dw is a Radon measure in Q, [,z - Dwe = [,z Vwpdz for all ¢ € CX(Q),
w e LI(Q) N WHY(Q), and

/ -z Dw‘ < / |z - Dw| < ||ZHLO<,(Q;RN)/ | Dw| V Borel sets B C (.
B B B

We denote by ¢,(Dw) € L*™(Q,|Dwl|) (essentially bounded functions with respect to the
measure |Dw|) the density of z - Dw with respect to | Dw|. This notation is used in the proof
of Proposition 3.4. We recall the following result proved in [9].

Theorem 2.1. Let Q© C RN be a bounded open set with Lipschitz boundary, and let z €
X,(Q). Then there exists a function [z-vY] € L>(09) such that ||[z-*Y]|| oo 90) < 121l Loe ()
and, for any uw € BV (Q2) N LY(R2), we have

/udivz dm—i—/(z'Du) :/ [z v dHN L.
Q Q [2/9]

Remark 1. Let Q1,Q C RY be two bounded Lipschitz open sets with Q; cC Q, Qs = Q\Qy,
and let 21 € X,(1), 22 € Xp(Q2). Assume that

(21 - V1) (2) = — [z - 2] () for HY L-ae x € 09,

Then if we define z := z; on ; and z := 23 on Q», we have z € X,,(Q).

3. The total variation with respect to an anisotropy.
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ANISOTROPIC CHEEGER SETS AND APPLICATIONS 1217

3.1. The ¢-total variation. Let us define the general notion of total variation with respect
to a metric integrand. Following [10] we say that a function ¢ : Q x RY — [0, 00) is a metric
integrand if ¢ is a Borel function satisfying the following conditions:

(3.1) for a.e. € Q, the map & € RY — ¢(z, &) is convex,
(3.2) o(x,t8) = |t|p(z,&)  VreQ, VEeRN, ViteR,
and there exists a constant A > 0 such that

(3.3) 0<o(z,8) <A|g]|  VzeQ, VEeRY.

We could be more precise and use the term symmetric metric integrand, but for simplicity we
use the term metric integrand. Recall that the polar function ¢° : Q@ x RN — R of ¢ is defined
by

(3.4) ¢(x,€") = sup{(¢",€) : ¢ € RY, ¢(x,€) < 1}

The function ¢°(x,-) is convex and lower semicontinuous.
For any p € [1, 00], we define

ICZ’D(Q) ={0 € X,(Q): ¢°(x,0(x)) < 1for ae. x € Q},

ICZ(Q) = {0 € X,(Q): ¢°(x,0(x)) <1 for ae. z€Q, o1 =0},

and for any open set U C €2, we define
ICZ’C(U) = {0 € X,(U) : ¢°(x,0(x)) <1 for a.e. 2 € U, spt(o) is compact in U}.

Definition 3.1. Let u € L'(Q2). We define the ¢-total variation of u in  as

(3.5) /Q\Du|¢ = sup {/Qu divo dz:0 € IC(C;O(Q)}

We set BVy(Q) :={u € L'(Q) : [ |Duly < oo}, which is a Banach space when endowed with
the norm |u|gy,, (@) == Jo luldz + [o [Dule.
We say that F C RY has finite ¢-perimeter in Q if Xp € BVy(©). We set

PAE.) = [ DX,
Q

If O = RY, we denote Py(E) := P,(E,RY). By assumption (3.3), if E C RY has finite
perimeter in €2, it also has finite ¢-perimeter in €.

Remark 2. Notice that the definition of [, [Duls is slightly different from those given in [5]
and [10]. In [5] the vector fields o are in IC(]:’C(Q). In [10] they are such that dive € L*(Q),
but the authors consider the case of bounded variation functions with respect to a Radon
measure on RY. For convenience in proving Lemma 3.8, we have chosen Definition 3.1. In
Proposition 3.4 we shall prove that our definition is equivalent to the one given in [5].
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1218 V. CASELLES, G. FACCIOLO, AND E. MEINHARDT

The coarea formula for the ¢-total variation was proved in [10] (see also [5] in a slightly
different formulation):

(3.6) /Q D, — /RP(b({u > sh,Q)ds  Vue BVy(Q).

Moreover, if T is a Lipschitz function and v € BVy4(2), then T'(u) € BV, (£2) [10].
If u € BVy4(2), then v determines a Radon measure in €. Indeed, for each open set U C Q
we define

(3.7) |Duly () = sup {/U wdive do: o€ IC(C;O’C(U)}.

Notice that [Duly(U) < [;; [Duly for any open set U C Q with Lipschitz boundary. We have
that |Duls(U) is an inner content (see [36] for the definition and Appendix A.1 for the proof).
Let

p*(E) := inf{|Du|4(U) : U is an open set in Q, £ C U}
be the outer measure induced by [Dul|s. Then for any Borel set F' we define p(F) = pu*(F).
Then p is a regular Borel measure [36, p. 235]. We shall write |[Dul,(F) instead of pu(E).

Definition 3.2. Let ¢ : Q x RN — R be a metric integrand, B C Q. We say that ¢ is
coercive in B if there exist 8 > a > 0 such that

(3.8) aléll < ¢(x,€) < BllEll Yz e B, VEeRM.

We say that ¢ is continuous in B if ¢ restricted to B x RN is a continuous function of (z,€).
If B = Q, we just say that ¢ is coercive (resp., continuous). We say that ¢ is coercive (resp.,
continuous) near O if there exists Q1 CC Q, an open bounded set with Lipschitz boundary
such that ¢ is coercive (resp., continuous) in a neighborhood of Q\ Q.

Lemma 3.3. Assume that B C ) is an open set with Lipschitz boundary and that the metric
integrand ¢ : Q@ x RNV — R is coercive in B. Then u € BV(B) and [4|Du| < L [ |Dul,
where a is the coercivity constant of ¢ in B.

Proof. Assume that ¢(z,£) > alé| =: ¢p(z,€) for any z € B, £ € RV, Since ¢°(x, &%) <
% (z,£*) for any x € B, € € RV, we have

/Q\Du](z):sup{/ﬂu divo dw:aelC;O(Q)} zsup{/udiva dx:aelC;OvC(B)}

Q
Zsup{/udivo* d:E:UGIC;C;C(B)} :a/ | Dul. [ ]
Q B

Proposition 3.4. Let Q be a bounded open set in RN with Lipschitz boundary. Let ¢ :
Q x RY — R be a metric integrand. Assume that ¢ is coercive and u € BV (). Then

/ |Duly = sup{/ udive dr:o € IC;OC(Q)}
Q Q

Assume that ¢ is continuous and coercive. Then

(3.9) /Q|Du|¢:/ﬂ¢(:n,Vu) de  YueWhi(Q).
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Proof. Let us first prove that

(3.10) [ 1puds = [ @@pul

with Q(x) = esssupgeK;o(Q)qg(Du)(:E), where the essential supremum is taken with respect

to the measure |Du| and g, is the density of o - Du with respect to |Du| (see section 2.2). The
proof of (3.10) mimics the proof of Theorem 4.3 in [5]. Using the integration by parts formula
(2.1), we have

/|Du|¢: sup /U'Du: sup /qg(Du)|Du|.
Q UG/C;O(Q) Q UG/C;O(Q) Q

Let L'(€Q, |Du|) be the space of functions whose absolute value is integrable with respect to
the measure [Dul, and let T, : KZ°(Q2) — LY(Q, |Du|) be the operator defined by T, (c)(x) =
—qo(Du)(x) for |Dul-almost every x € Q. Let

H={Ty(0):0 € KF(Q)}.
We prove that the set H is C'l-inf-stable. For that we have to prove that if {o;}ic; is a finite

family of elements of K3°(€2) and {;}ier is a finite family of nonnegative functions of C L(Q)
such that ), ;o; = 11in Q, then

(3.11) > aily(o;) > Tu(o),  |Dul-ace. in Q,
el

for some o € K3°(€2). It suffices to take o := ), ; ;0. By the convexity of ¢ it follows that
o € K3 (€). Moreover, by [11, Remark 1.5], we get (3.11). This proves that H is C'l-inf-stable.
Then by [11, Lemma 4.3], we have

inf /QTu(a)|Du| I /Q—qo(Du)(:E)|Du| :/Q—Q(x)|Du|.

7ekF () oekF ()

This implies (3.10).
Now, the equalities

(3.12) sup  ¢y(Du)(z) = sup ¢,(Du)(x) = sup /udiva dx
oek} () og;cf;’vc(g) oeCl(Q) JQ

follow from Proposition 3.2 in [5] and

sup  ¢,(Du)(z) < sup q,(Du)(z) < sup gy(Du)(x) = sup g (Du)(x),
sek}(9) o€} (Q) oekY P Q) sek(Q)
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1220 V. CASELLES, G. FACCIOLO, AND E. MEINHARDT

where the first two inequalities are obvious and the last equality follows from Lemma 4.5 in
[5]. Then, using (3.10) and (3.12), we have

sup /udiva dxg/ |Du\¢:/Q(az)|Du\ g/ sup  ¢o(Du)(x)|Dul
) Jo Q 0 Q

JEIC;O'C UG/CQ[ ()

:/ sup  ¢o(Du)(x)|Dul = sup /udiva dx
QoK c(@Q) oeC(Q) JQ

< sup / u divo dz.
JEIC;O'C(Q) Q

Finally, the identity (3.9) is stated in [5, Theorem 5.1]. [ ]

Example. An interesting case occurs when g : Q@ — [0,00) is a bounded Borel function.
Let ¢(x,€) = g(x)[¢]. Then [5]

0 if g(z)=0, ¢ =0,

(3.13) Oz, &%) =4 +oo if  g(x) =0, & #0,

glixl) if & ecRY, g(z)>0.

If 0 € Xoo () and ¢°(z,0(z)) < 1, then we may write o(x) = g(x)z(z), where z € L>®(Q; RY)
is such that |z(z)| < 1 for a.e. = € Q, and

/ g|Du| := sup{/ udiv(gz) dr: gz € Xoo(Q), |2(z)] <1 forae. z€ Q}
Q Q

3.2. Lower semicontinuity and relaxation results. From Definition 3.1, it follows that
u e LYQ) — [ |Duly and E — P4(E,Q) are lower semicontinuous with respect to the L
convergence. The following result was proved in [10] when Q@ = R”". The proof adapts easily.
Proposition 3.5. Assume that ¢ : Q x RNV — [0,00) is a metric integrand. Let

/ ¢(x, Vu)dx if u e WhHi(Q),
J(u) = @
+00 if we LY(Q)\ Whi(Q).

Let J be the relazed functional, that is,

J(u) := inf{liminf J(u,) : u, — w in LY(Q), u, € WHH(Q)}.

Then for every u € BVy(Q), we have J(u) = [, |Dulg. Hence, for any u € BV4(Q), there
exists a sequence u, € WH(Q) such that [, ¢(x,Vun) = [o|Duly. In particular, BVy(Q) is
the finiteness domain of J.

Our main purpose in the rest of this section is to prove the following lower semicontinuity
result.
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Theorem 3.6. Assume that ¢ satisfies the assumptions of Proposition 3.11. Let ¢ € L'(09),

/ ¢(z,Vu) if u € WHHQ) and u = ¢ on 99,
— Q

(3.14) Jpo(u) =
400 otherwise,
and
/ | Dulg +/ oz, v |u — | dHN Y if uw € BVy(Q),
(315)  Tpplu):=1{ 72 o0

+00 otherwise.

Then the functional Jy ,(u) is the relaxed functional of Jy ,(u).

The proof of this theorem will be the consequence of a series of lemmas and propositions
below.

Lemma 3.7. Assume that ¢ : Q x RN — R is a metric integrand which is continuous and
coercive in Q. Let u € BVy(Q), ¢, on € LY(ON), such that p, — ¢ in LY(0Q). Then there
exists up, € WHL(Q), unlaq = ¢n, such that u, — u in LY(Q) and

/qS(a:,Vun)daz — / |Du|¢+/ oz, V) |u — | dHN L.
Q Q 19)
Proof. By Theorem 6 in [49], there exists v, € WH1(Q), v,|aq = ¢, such that v, — u in
LY(Q) and
/ ¢(z, Vo) dz —>/ | Duly +/ oz, V) |u — | dHN L.
Q Q 19)

Now, by a standard result in the theory of Sobolev spaces [35], there exists w, € WH1(Q),
wplaa = ¢n — @, such that w, = 0 if dist(x, Q) > % and

1
/ |an|da:§/ lon — pldHN 1 4+ =
Q o0 n

The function u,, = v,, + w,, satisfies the lemma. [ |
Lemma 3.8. Assume that 21,0 are as in Definition 3.2 and ¢ is coercive in a neighborhood
of Q\ Q. Let u € BVy(Q). Assume that |Du|(01) = 0. Then

/\DWZ/ !DU\¢>+/ | Duly.
Q 1951 92X

Proof. Since by Lemma 3.3 we know that u € BV (U) for some neighborhood U of Q\ 4,
then v € BV(U) and, by a slight perturbation of §;, we may assume that |Du|(0€;) = 0.
Given € > 0, let ¢ be a smooth function with support in ©; and such that ¢(x) = 1 for all
z € Oy = {z € O : dist(x,0) > €}. Now, if o € £°(€2), then

(3.16) /udivadz :/ udiv (po) dx +/ udiv ((1—p)o) dx S/ \Du!¢+/ | Duly.
Q 97) O\Q ¢ o2] Q\Q

Ql,e
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Since |Du|(0921) =0 and u € BV (Q\ Q1) for € small enough,

/ |Duly — / | Dulg as € = 0+.
O\ 0

Taking suprema in o € K3°(€2) in (3.16), we obtain

[1pua< [ 1uls+ [ Dl
Q 0 A\

Let Q9 = Q\ Q1. Observe that if o; € IC;O(QZ-), then [o; -] =0, i = 1,2. Thus, if we define

0'1(1') if ze€ Ql,
(3.17) o(x):=
0'2(1') if ze€ Qg,

then o € K£3°(€2) (see Remark 1). Since

/ udivaldx—i—/ udivagdw:/udivadxg/\Du!¢,
O Qo Q Q

taking suprema in o1 € K37 (1), 02 € K37 (Q2), we obtain

| oo+ [ puls< [ 1Dufy.
951 Qo Q

Lemma 3.9. Assume that ¢ : QxRN — R is a metric integrand which admits an extension
as a metric integrand to an open bounded set ) with Lipschitz boundary such that Q CC Q.
Assume that the extension is continuous and coercive in a neighborhood of @\ Q. Let u €
BV,4(2), € WHHQ\ Q) be such that ¢lan = p € L1(99Q). Let

u(z) if zeq,
(3.18) u(x) ==
") if ze@\N.

Then u € BVy(Q) and

o) [ (pile= [IDulst [ Velo+ [ ool el
Q Q Q\Q 0N

Proof. Let €1 CC 2 be such that €)1 has a Lipschitz boundary and ¢ is coercive and
continuous in a neighborhood U of @ \ 4. Since @ € BV (U), by a slight perturbation of 24,
we may assume that |Da|(9€2;) = 0. By this and Lemma 3.8 we have

[ 1wl = [ pilo+ [ iala= [ Do+ [ il
Q o Q\ o o\
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By Proposition 3.4 and Theorem 7 of [49] we know that

[ oila= [ ipusr [ Vel [ ot ol an
Q\ O\ Q\Q BY)

Hence

Lipite= [ 1o+ [ Dulo+ [ 19210+ [t gl e
Q 931 N Q\Q o0

Now, applying again Lemma 3.8, we obtain (3.19). [ |

Proposition 3.10. Let  be an open bounded set in RN with Lipschitz boundary. Let ¢ :
Q xRNV — R be a metric integrand such that ¢ is continuous and coercive in a neighborhood
of 00. Let u € BVy(Q), ¢ € LY(0Q). Then there exists u, € WHH(Q) such that u, — u in
LY (), unloq = @, such that

/¢(x,Vun)dx—>/|Du|¢+/ ¢(x,uQ)|u—<p| dHN L.
0 Q o0

Proof. Since u € BVy4(Q), let u, € WH1(Q) be such that u,, — u in L*(Q) and

(3.20) /Q 6z, Viuy) — /Q Dul,,.

Let 1 CC Q be an open set with Lipschitz boundary such that ¢ is continuous and coercive
in a neighborhood of 2\ and |Du|(9Q) = 0. Let wy = ulq,, w2 = ulg\q,. Then by Lemma
3.8 we have

/|Du\¢:/ \Dw1|¢+/ |Dw2|¢§liminf/ é(x, Vuy,) + lim inf o(x, Vuy,)
Q Q O\ n Q n o\

Sliminf/ o(z, Vuy,) :/ | Dulg.
" Q Q
Then

lim inf gb(:z:,Vun):/ |Dwi|s and liminf/ gb(:z:,Vun):/ | Dwag.
n of Q n O\ O\

By extracting a subsequence, we may assume that

lim ¢(a;,Vun):/ | Dwi .
n Ql Q1

Using (3.20), we also have that

im [ 6z, Va) = / D).
n Q\ﬁl Q\ﬁl

Since ¢ is continuous and coercive in a neighborhood of €\ ©;, by Reshetnyak’s theorem
[34], from the last convergence we have that u,|sn, — w2|aq, = ulaq, (since |[Du|(0€;) = 0).
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Now, we apply Lemma 3.7 and find 4, € WELQN\ Q1) with @, |a0, = Unloa,, @nloa = ¢, and
Up — wo = u in L(Q\ Q1), such that

/ o, Vi) — / Dl + / o, ) — o AHN 1.
o\ o\ b'y)

Redefine u,, as

up(z) if x e Qy,
(3.21) Up(x) =
Tn, if 2eQ)\Q.

Then u,, — u in L(Q), un|an = ¢, and

/Q o) = [ o, T + /Q IRCADE /Q Dl + /Q o, 1Dl

1

+ / o, )u — | dHN T = / Duly + / o, ) — o dHN,
o0 Q o0

where the last identity is given by Lemma 3.8. |

Proposition 3.11. Let Q,Q be open bounded sets in RN with Lipschitz boundary such that
QccQ. Let g : QxRN — R be a metric integrand which admits an extension to Q x RY such
that ¢ is continuous and coercive in a neighborhood of Q \ Q. Let u € BVy(Q), ¢ € L*(99).
Let u, € WHY(Q) such that u, — u in LY (Q). Then
(3.22)

/\Du!¢+/ oz, v |u— | dHN T < liminf/ qﬁ(m,Vun)dx—i—/ o, v | up — o dHN L
Q o n Q [2}9]

Proof. Let ¢ € WHL(Q\ Q) be such that ¢|sg = ¢. Let Q1 be as usual so that |Du|(0Q;) =
0. Let 4, u, be the extensions defined as in Lemma 3.9. Then, by Proposition 3.5 and the
lower semicontinuity of the ¢-total variation, we have

/ |Dﬁ\¢)§liminf/ é(z, Vuy),
Ql n Q1

/ |D&|¢§1iminf/ | Dty .-
A\ " A\

Using Lemma 3.9 and Proposition 3.4, we may write

/ |Di|g < liminf / | Dy, | +/ IVolg +/ o, v |up — | dHN !
Q\2 n XeR Q\n 89

zliminf{/ ¢(a:,Vun)+/ \v¢|¢+/ (ﬁ(az,uﬂ)\un—gp\dHN_l}.
n o\ Q\Q a0
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Now, using Lemma 3.8, we have

/\Da|¢:/ |Dﬁ\¢+/ |Da\¢§liminf/ 6(z, V)

Q Q1 Q\1 n Q1

+ lim inf {/ o(z, Vuy,) + / IV&le +/ oz, v uy — ¢ d”HN_l}
n oi\ory Q\0 o9

< liminf é(z, Vuy,) + / oé(z, Vuy,) +/
n Q1 O\ Q

= lim inf {/ o(x, Vuy,) +/ |Vol|p + / (2, V) [un — ¢ d’HN_l} )
n 0 o\Q o9

Since
| il [ pile= [ pale+ [ ipale+ [ (v,
Q Q\ 951 O\ Q\Q

1
+ / oz, v |u — | dHN T = / |Duly + / |V@ls + / oz, v)|u — | dHN T,
o0 Q Q\Q o0

Velg +/ oz, v |un — ¢l dHN—l}
\Q o0

comparing the last two expressions, we obtain (3.22). [ ]
Observe that Theorem 3.6 follows from Propositions 3.10 and 3.11.

4. An extension of Green’s formulas. Throughout this section we assume that €2 is a
bounded open set with Lipschitz boundary. We also assume that ¢ : @ x RY — R is a metric
integrand. We just give an overview of the main results here and provide a sketch of their
proofs in Appendix A.2.

4.1. The measure z - Du. Let u € BVy(Q2) and z € X(£2). We define the functional
z-Du:D(Q) — R as in (2.2). Although a more general functional setting is possible, we shall
restrict our discussion to this case.

Let us write

(4.1) Aso(9) = {2 € Xoo(Q) + [[6° (2, 2(2)) | £ () < 00}

To develop the theory we shall assume from now on that z € Ay ().
Proposition 4.1. For any open set U C Q and for any function ¢ € D(U), one has

(4.2) |z - Du, 9)| < [l plloo|6° (2, 2)| oo 11y Dl (U).

In particular, z - Du is a Radon measure in €.
Lemma 4.2. Let u € BVy(Q), 0 € Ax(Q) with [|¢°(x,2(x))||p=@) < 1. Assume that
Joo - Du= [, |Duls. Then for any b € R we have

/QJ.D(u_b)JF:/Q|D(u—b)+|¢ and /QJ-D(u/\b):/Q|D(u/\b)|¢

where (u —b)T = max(u — b,0) and u A b= inf(u,b).
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Proof. By the observation following (3.6) we know that (u — b)*,u A b € BVy(2). Then

we have
/|Du\¢—/a Du—/a D(u—b)" /a D(uNDb)
< [ D=1+ [ ID@nbs = [ 1Dl

where the inequality follows from Proposition 4.1 and the last equality follows from the coarea
formula (3.6). Lemma 4.2 follows. [ ]

4.2. Traces. The following result can be proved as in [9] (see also [8]).

Proposition 4.3. Assume that ¢ is continuous and coercive at OX). There exists a bilinear
map (z,u)p0 : Asc(Q2) x BVg(Q) = R such that

(4.3) (z,u)p0 = /89 u(z)z(x) - v(z) dHN 1 if zeCYQ,RY)NCEQ,RY),
(1.4 o1 wonl < ol [ Ju(@) aH¥ ¥ s

Proposition 4.4. Assume that ¢ is continuous and coercive at 0S2. Then there exists a linear
operator 7y : As(2) — L*°(9Q) such that

(4.5) [7(2) e (902) < 2]l oo (rVY
(4.6) (z,u)p0 = /8Q v(2)(@)u(z) dHN TV u € BVy(Q),
(4.7) v(2)(x) = 2(z) - v(zx) Vaxed if ze CHQRY).

The function vy(z) is a weakly defined trace on O of the normal component of z. We shall
denote y(z) by [z - v].

Proof. Fix z € Ax(£2), u € BVy4(R2). Consider the functional F' : L>°(0€2) — R defined by
F(u) := (z,w)an, where w € BVy(12) is such that w|sn = u|on. By estimate (4.4), we have
|F(u)] < |2l oo (rN) [oq [ul- Hence there exists a function v(z) € L>(9Q) such that

Flu) = /8 A a)u(e)

and the result follows. [ |

4.3. Green’s formula. We now give the expected Green’s formula relating the function
[z - v] and the measure z - Du.

Theorem 4.5. Assume that ¢ is continuous and coercive at 9. Let z € Ax(Q), u €
BVy4(§2). Then

(4.8) /Qudiv(z)dx+/ﬂz-Du:/{)Q[z-y]ud”HN_l.
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Proof. By Proposition 3.10, there exists a sequence u,, € W1(Q) converging to u in L'(Q)
such that uy|oo = ulog and [, ¢(z, Vu,) = [, |Dulg. Then, by Lemma A.2, we have

/udiv(z)daz—i—/z-Du: lim </ undiv(z)daz—i-/z'Vunda:)
Q Q n—ee \Ja Q

= lim [z vju, dHN L = / [z - v]judHN L. [ |
0 J o0 o0

The next theorem will be useful in the study of the Neumann problem.
Theorem 4.6. Assume that ¢ is a metric integrand. Let z € Ax(S2) be such that [z-v] =0
on 0N, u € BV4(Q2). Then

(4.9) /Qudiv(z) dx + / z-Du=0.

Q

Proof. By Proposition 3.5, there exists a sequence u,, € W11(Q) converging to u in L*(Q)
such that [, ¢(x, Vu,) = [ |Dulg. Then, by Lemma A.2, we have

/udiv(z)daz—i—/z-Du: lim </ undiv(z)daz—i-/z'Vunda:)
Q Q oo \JQ Q

= lim [z V]u, dHY 1 = 0. [ |

5. The subdifferential of the ¢-total variation. In this section we assume that ¢ : Q x
RN — [0,00) is a continuous and coercive metric integrand in €. Notice that in this case
BV4(2) = BV(Q). Let us define the functional

(5.1) (w) /Q¢(x,Vu) if we L2(Q)NWH(Q) and u = 0 on 99,
5.1 T/J¢> u) =

+00 otherwise.

According to [49, 5], the functional ¥, : L%(Q) — (—o0, +00] defined by

o . /Q|Du|¢+/89¢(x,uﬂ)|u| dHNY if w e L2(Q) N BV(Q),
5.2 ‘Ifd) u) =

400 otherwise

is the lower semicontinuous relaxation of 1. Moreover, Wy(u) is lower semicontinuous with
respect to convergence in L'(£2) [49]. Since W, is convex and lower semicontinuous in L?(2),
we have that OV 4 is a maximal monotone operator in L%((2) (see [14]). The following theorem
gives the characterization of 0V (see [49] for a proof).

Theorem 5.1. The following conditions are equivalent:

(i) vedVy(u).
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(ii) u,v € L2(Q), u € BV(Q), and there exists 0 € Xo(Q) with ¢°(x,0(z)) < 1 a.e. in Q,
v = —div(o) in D'(Q) such that o(x) € d¢d(x, Vu(x)) a.e. in Q, o - Du = |Duly, and
[0 -9 € sign(—u)o(x, v (x)) HV '-a.e. in OQ.

(iii) u,v € L*(Q), u € BV (), and there exists o € Xo(Q) with ¢°(x,0(z)) <1 a.e. in Q,
v = —div(o) in D'(Q) such that

/Q(w—u)v</ﬂa Dw — /|Du\¢—/ o- v / o(x, v (z))|ul

for all w € BV () N L*(Q).
(iv) u,v € L*(Q), u € BV(Q), and there exists o € X2(Q) with ¢°(z,0(x)) <1 a.e. in ,
v = —div(o) in D'(Q) such that

Jw=wez [opu— [ pulyt [ otwr@iul- | s el

for all w € BV (2) N L*(Q).

When we used in the previous statement the expression a.e. in {2 we mean a.e. with respect
to the Lebesgue measure in Q. The identity o - Du = |Du|4 means that both Radon measures
coincide.

From now on we shall write v = —div 0¢¢(x, Vu) instead of v € OV y(u).

6. The maximal ¢-Cheeger set inside Q. Let ,Q be open bounded sets in RY with
Lipschitz boundary such that Q cC Q. Let ¢ : © x RV — R be a metric integrand with an
extension to @ x RY such that ¢ is continuous and coercive in a neighborhood of Q \ Q. For
the rest of the paper we assume that this property holds. Let h € L>=(Q), h(z) > 0 a.e. in €,
such that

(6.1) /Qﬁ dr < oco.

We denote by L*(, hdz) the set of measurable functions u : © — R such that [, u? hdz < co.
From (6.1) we have that L?*(Q) C L?(Q, hdx). For f € L?(Q, hdx), A > 0, let us consider the
energy functional

(6.2) Epmalu / |Dulg + = /(u — )?hdx + /m o2, ) [u| dHN L.

Although for ¢-Cheeger sets we need only the case f = 1, the general case where f # 1 is of
interest in section 11, where we discuss the application to anisotropic diffusion.
Let us consider the partial differential equation formally related to (6.2):

(6.3) hu — A" div (9¢p(x, Du)) = hf

with Dirichlet boundary conditions. Notice that this is a symbolic notation. There is also a
slight abuse of notation in writing (6.3) as an equality. Since the subdifferential of the ¢-total
variation is multivalued, (6.3) would be better written as hf € hu — A~!div (¢¢(x, Vu)). In
spite of this we will write the equation as (6.3), understanding that the equality holds for an
element of the subdifferential.

Definition 6.1. Let f € L*>(Q). We say that u € L?(),hdx) is a solution of (6.3) if
u € BVy(2) N L(2), and there is a vector field o0 € Ax(Q2) such that
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(i) hu — A~ldiv (o) = hf in D'(Q),
(i) O(z.0(@) < 1 ac.
(iii) [qo0-Du= [, |Du|¢,
v) [o-v9] € sign(—u)p(z, v (), HN t-a.e. € O0.
We could have given a more general definition, but the present case is sufficient for our
purposes.
Theorem 6.2. (i) Let f € L?(Q, hdz). Then there is a unique solution of the problem

(i

(6.4) (Q))\ : min 5¢’h,>\(u).

u€BVg(Q)NL2 (Q,h dx)

(ii) Assume that f € L>®(Q2). Then there is a unique solution v € L?(Q2, hdz) of (6.3).
Moreover, the solution u belongs to L™ (), and it minimizes (6.4).

Proof. (i) Let u, be a minimizing sequence for (6.4). Then w, is bounded in L?(Q, hdx).
Assume that u, — u weakly in L?(Q2, hdz). Observe that u € L(2) since

(6.5) /Q\u|da;g (/Quzhda;>1/2 </Q%dx>l/2

and w, — u weakly in L'(Q). Indeed if ¢ € L>®(12), then £ € L*(Q, hdz) and

/(un—u)cpdx:/(un—u)fhdx—>0.
Q Q h

For any given function v € L'(Q), let ¢ denote its extension by 0 in RY. Since v — [, | Dl
is convex and lower semicontinuous with respect to the convergence in L!(Q), it is also lower
semicontinuous with respect to the weak convergence in L'(Q2). Hence by Lemma 3.9 we have

/\Du|¢+/ ¢(x,uﬂ)\u|:/ \Da|¢§liminf/ Dt
Q o0 RN n RN

:liminf/ |Dun|¢+/ o, V) |ty
n Q oN

Then we also have
Epna(u) < lminf Ey p A (un),

and u € BV,(Q) N L?(Q, hdz) is a minimum of € \(u). Since the functional is strictly
convex, the solution is unique.

(ii) We divide the proof into three steps.

Step 1. Existence and uniqueness of solutions of an approximating problem. Let h,, = h—l—%,
On(x,8) = P(x,8) + %E(E), where Z(¢) = |¢], z € Q, € € RY. As in (i) there is a unique
minimizer u, of &, p,x(w) which is in BVy, () N L*(Q, hy, dz). Since ¢, is coercive and
Ry > %, it follows that u,, € BV(Q) N L?(Q2). As a consequence we have that
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the subdifferential 0¥, (u,) being taken in L?(Q2). Now, since ¢, is continuous and coercive,
by the characterization of the subdifferential 0¥, (uy) given in Theorem 5.1, u,, satisfies the
equation

(6.7) Pty — AN"1div (O, (2, Vuy)) = ho f

in the sense of Definition 6.1. That is, there exists z,, € 0¢,(x, Vuy,), 2, € X2(Q2), such that

(6.8) Bty — AN iv 2z, = hyf  in D/(Q),
(6.9) /Zn‘Dun :/ |Dun|¢m
Q Q
(6.10) [2n - VY € sign(—uy)on (2, 54 (x)), HN"Lae. x € 0N,

Conversely, using again Theorem 5.1, if u,, € L*(Q2) is a solution of (6.7), then it is also a
solution of (6.6). Now, since ¥, is a maximal monotone operator in L?(Q2), the uniqueness
of solutions of (6.7) follows immediately by standard results [14].

Since ¢, = 0¢ + %85, we may write z, = o, + %nn, where o, € 0¢(z,Vu,) and
M € 0=(Vuy,).

Step 2. Basic estimates and passage to the limit. Assume that a < f < b. Let us prove
that a < u, < b, a,b € R. First we observe that, multiplying (6.7) by u,, and integrating by
parts, we obtain

(6.11) /uihnd$+)\_1/ |Dun|¢n+)\_1/ ¢n($,y9)|un|:/fhnunda:,
Q Q o Q

which implies that u,, is uniformly bounded in BVy4(Q2). To prove that w, < b, we multiply
B (un — b) — A7Ydiv 2, = hy,(f — b) by (u, — b)T, and, integrating by parts, we obtain

/((un b))y da + A‘l/ o Dl — )+ A [ () (1 — bt dHY
Q Q o0

:/(f —b)(uy, — b)Thy, dr <0.
Q

Using Lemma 4.2 we have that fQ Zn - D(u, — b)*T > 0. Since the third term on the left-hand
side is also > 0, we have that (u,, —b)* = 0; i.e., u, < b a.e. In a similar way we prove that
un > a a.e. Modulo a subsequence, we may assume that u, — u weakly in L%(Q) for some
u € BVy(2) N L*°(£2). Since hy, — h uniformly in €, it also holds that

(6.12) Unhn — uh  weakly in L%(Q) as n — oo.

Finally, since z,, 7, are bounded in L>(£2), by extracting a further subsequence we may
assume that z,, o, — o weakly* in L>°(9). Now, since ¢°(x, 0,(z)) < 1 a.e., and this condition
is stable under weak* convergence in L>(f2), we have ¢°(z,o(z)) < 1 a.e. Now, since div z,
is bounded in L*>°(£2), we have that, by the Banach—Alaoglu theorem,

divz, — dive weakly in L?(Q)
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and 0 € A (). Letting n — oo in (6.8), we obtain that
(6.13) hu —X"'dive =hf  in D'(Q).

Step 3. Final step. Let us prove that

(6.14) /U-Du:/ \Dul,,
Q Q

(6.15) [0 - Y] € sign(—u)o(z, )  a.e. on IQ.

Let ¢ € CYQ) N C(Q). Since |[z, - ¥Y| < ¢n(z,v(z)) ae. in Q, we may assume that
[2n - VY] — B(x) weakly* in L>(9Q), and, letting n — oo in

/zn-Vng:E+/ [2n - VY dHN T :—/divzngodx,

Q o0 Q

we obtain
/U-thdx—k B(deN_lz—/divagpda;z/a-thd:t—F/ [U-VQ]ngHN_l.
Q o0 Q Q o0

Hence

BpdHNt = / [0 Y pdHN !
o o0

holds for any ¢ € C*(Q) N C(Q), and we obtain that 8 = [ - v*}]. In particular
(6.16) [o - Y| < ¢(x,v%(z)) a.e. in Q.

Now, using (6.12) in the fifth line of the following computations and using Corollary A.1 (see
Appendix A.2) together with ||¢°(z,0(2))||se < 1 and (6.16) in the last inequality below, we
have

/uzhd$+)\_1/ |Du|¢—|—)\_1/ d(x, ) [u| dHN T
Q Q o9

§liminf/u%hndaz—i-liminf{)\_l/ \Dun\¢+)\_1/ (ﬁ(az,yg)\un]dHN_l}
Q " Q o0

n

§liminf/uihndaz—i-liminf{)\_l/ \Dun\%—i-)\_l/ qﬁn(az,uﬂ)]un\d’HN_l}
Q n Q o0

n

< liminf{/ u? hy, dx+)\—1/ | D, +)\—1/ ¢n(x,y9)|un|d’}-[N—1}
Q Q o0

n

:liminf/funhndx:/fuhdx:/u2hdaz—)\_1/udivadx
n Q Q Q Q

:/u2hda;+A—1/a.Du—x1/ [0 v udHN 1
Q Q o0

§/u2hd$+)\_1/ |Du|¢—|—)\_1/ o2, ) |u| dHN L
Q Q o0
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In particular, we obtain (6.14) and
—/ [0 - v udHN ! :/ oz, V) Ju| dHN L
o0 o0

The last identity implies that —[o - v|u = ¢(x, v*)|u|; hence (6.15) follows. Thus, conditions
(i)—(iv) of Definition 6.1 are satisfied and u is a solution of (6.3).

The proof of uniqueness follows in a standard way (see [8, Chapter 2]). Finally, since the
energy is convex, the solution of (6.3) is a minimizer of (6.4). [ ]

Proposition 6.3. Let u € BV4(Q) N L3(Q, hdx) be the solution of the variational problem
(6.4) with f = 1. Then 0 <u < 1. Let Es := {u > s}, s € (0,1]. Then for any s € (0,1] we
have

(6.17) Py(Es) = A1 = )| Es|n < Py(F) = A(1 = s)|F[n

for any F' C Q.
We denote |F|p, = [, h(x) dx for any measurable subset F' C €.
Proof. Recall that u satisfies the following PDE:

(6.18) hu —A"'dive =h in Q,

where o(x) € O¢¢p(x, Vu(x)) a.e. As in Step 2 of the proof of Theorem 6.2(ii) we deduce that
0<u<l.
Let us prove that for almost any s € (0,00) we have

Py(E,) = /Q 7 D6+ [ bl @) o) Y

Indeed, multiplying (6.18) by u and integrating by parts we obtain

(6.19) /Qa - Du + /852 oz, v |u| dHN L = )\/(1 —u)uhdx.

Q

Now, multiplying (6.18) by Xp, and integrating by parts we obtain

(6.20) / o-DXp, — / [0 v Xp, dHN ! = )\/(1 —u)hXpg, dz.
Q 19) Q

Notice that this relation proves that [,o - DXg, — [, 5010 vXp, dHN! is a measurable
function of s. Integrating (6.20) with respect to s we obtain

/ /O"DXESdS—/ / [U'VQ]XESd”HN_lds:)\/ /(1—u)hXEsda:d8
0 Jo 0o Joo o Ja

:A/(l—u)h/ XEsdsda;:)\/(l—u)uhda:
Q 0 Q

:/U'Du—k/ oz, v |u| dHN !

Q o0

:/ |Du|¢+/ () |u] dHV 1.
Q o0
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Now, using Lemma 3.9 and the coarea formula (3.6), we have
o
[1puda+ [ stes®uan == [ pils= [T pita > ) ds
Q a0 RN 0
[ee]
= /0 Py({u > s})ds
where @ denotes the extension of u by zero outside 2. Hence

(6.21) /OOO/QU-DXES ds—/ooo/m[a-yﬁ]x& dHN_lds:/OOOP¢({u>s})ds

Let s > 0. Now, using Proposition 4.1 and the fact that [o - )] € sign(—u)¢(x, v (x)), we
have

/U'DXES —/ lo- VX, dHN 1| < /\DXESI¢+/ oz, v (x))X g, dHN 1,
Q o0

and using again Lemma 3.9 and the coarea formula, we may continue the equalities and obtain

/]DXEJd)—i-/ (v (2))X g, dHN /nyE \¢_/\DXESI¢_P¢( ),

where X, is the extension of Xp, by zero outside 2. Combining this inequality with (6.21),
we obtain

(6.22) /a - DX, —/ [0 VY Xg, dHN 7t = Py(Bs)  ae. s> 0.
Q o0
Let F C Q be a set of ¢-finite perimeter. For s € (0, 1], we have
—/diva(Xp—XES)dx:/(J,DXF)—/J-DXES —/ (- V(X — Xp,) AN
Q Q Q o0
= /(UyDXF) - / [0" VQ]XF - P¢(Es) < be(F) - P¢(Es)7
Q o0
and we deduce
Py(F) — Py(E,) > )\/Q(l —Wh(Xp = Xp,) = )\/Q((l ~s)+ (s — w)h(Xr — Xp,).
Since (s — u)(Xp — Xg,) > 0, we have
PP = Po(E) 2 3 [ (1= s)h0e = X5) = N1 = )| ~ [E.J).

Since all sets F are contained in €2, the perimeter is lower semicontinuous, and the area is
continuous for increasing or decreasing families of sets contained in €2, we deduce that (6.17)
holds for any s € (0, 1]. [ |
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Remark 3. Let us observe that (6.22) holds for any s > 0. Indeed, by lower semicontinuity
we have that Py(E,) < oo for all s > 0. If s > 0, we may approximate it by s, such that
(6.22) holds for s,. Since

PlEe) = |

o - DXEsn —/ [O’ . VQ]XESn dHN_l = —/ diVO’XESn,
Q o0 Q

we have Py(E) < liminf, Py(Es,) = — [odivoXp, = [0 - DXg, — [yolo - vxp, dHN !
< Py(Es). The identity (6.22) holds for any s > 0.
Lemma 6.4. Let uy be the solution of (Q)x. If

1
< I1hXa|lx == sup{ ‘/ hu dz| :u € L*(Q) N BVy(Q),
Q

/ \Du|¢+/ oz, v |ul dHN L < 1},
Q o0
then uy # 0.

Proof. Notice that uy is characterized as the solution of (6.3). If uy = 0, then there exists
a vector field 0 € X (Q) with ¢°(z,0(x)) <1 ae., |[o- Y| < ¢(x, v (z)) HNTae. z € 09,
and —\"!dive = hyq in D/(2). Multiplying by v € BV4(Q) and integrating by parts, we
obtain that [[hXqlls < 3. u

If : Q x RY — R is a metric integrand and ¢y, ¢» are two extensions of ¢ to open sets
Q, Q" respectively, such that Q cc Q/,Q”, and they coincide in Q' N Q", then

P¢1 (E, Q/) = P¢2(E, Q”) = P¢ (E, O'n Q”), 1=1,2, ECQ.

%

In particular, if ¢ has an extension to RY, denoted again by ¢, then the above perimeters
are also equal to Py(E). Thus, if ¢ has an extension to an open set ) containing Q, we shall
denote P4(F) instead of P,(E, Q) for any set E' C Q with finite ¢-perimeter. Notice that if ¢
is continuous and coercive in a neighborhood of @ \ €2, then

Py(E) = Py(E,Q) + [ oz, v Xp(z)dH""t, ECQ.
[2}9]

Notice that in this case, P,(E) depends only on ¢ : Q x RN — R.

Lemma 6.5. Let 2, Q be open bounded sets with Lipschitz boundary such that Q CC Q. Let
¢:Q xRN = R be a metric integrand which is continuous and coercive in a neighborhood of
Q\Q. If E,F are two sets of finite ¢-perimeter, then

Using the results of section 3.2, the proof is exactly the same as in [35] for the case of the
Fuclidean perimeter, and we omit the details.

The following lemma can be proved as in [4], and we also omit the details.

Lemma 6.6. For any A > 0, let us consider the problem

(6.24) (P)xe min Po(F) = AlFlj.

Then the following hold:
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(i) Let Cy,C, be minimizers of (P)y, and (P),, respectively. If X < p, then Cy C C,,.

(i) Let > X. Assume that Q2 is a solution of (P)x. Then € is a solution of (P),,.

(iii) Let A\, T A. Then CY := U,Cy, is a minimizer of (P)y. Moreover, Py(Cy,) —
Py(C). Similarly, if A, L A, then Cy = N,Ch, is a minimizer of (P)y, and
Py(Ch,) = Py(CY).

(iv) If X = o0 and C) is a minimizer of (P)y, then Cy — .

Remark 4. In Proposition 6.3 we have proved that for any s € (0, 1], the level set {uy > s}
is a minimizer of (P)y1_s). Moreover, by Lemma 6.6, the sets {uy > s} := Ucso{uy > s+¢},
s €[0,1), and {uy > s}~ 1= Nesof{un > s — €}, s € (0,1], are also minimizers of (P)yq_g)
(obviously {uy > 1}T = 0 is also a minimizer of (P)y). Notice that, except on countably
many values of s, they coincide with [uy > s].

As a consequence of Lemma 6.6.(ii), we obtain the following corollary.

Corollary 6.7. Then for almost any X\, (P)y has a unique solution.

From Proposition 6.7 and Lemma 6.6(iii) we deduce the following consequence.

Proposition 6.8. Let o, 3 > m Then a1l — ||uallos) = B(1 — |lugllso)-

Proof. Assume that these two numbers are not equal. Without loss of generality, we may
assume that

(1 = [Jualloo) < B(L = [Juglloo)-

Let us take X such that the solution of (P)) is unique and (1 — [[uq|loo) < A < B(1 — [Jug||oo)-
Let us write A = (1 —s) = f(1 — t) for some values s < |uq|/oc and t > |luglloc. Since
{ug > t} = 0, and the solution of (P) is unique, being {u, > s} a solution of (P),, we
deduce that {u, > s} = 0, a contradiction. This proves our proposition. [ |
Let A\* be the unique value of a1 — ||uy||loo) determined by the above proposition.
Proposition 6.9. Let a, > m Then {uq > ||uallso} = {ug > ||uglloc}, and

s P({ua > Jualleo})
(6.25) A= Te > ualloodln

The set {uq > ||ualloo} s the mazimal ¢-Cheeger set of Q.
Proof. Let 0, — 0+ be such that (P)y-ys5, has a unique solution for each n. Since

{ug > ||luallss — 22}, {ug > ||luglloc — %"} are both solutions of (P)y«4s,, we have that

O, on
U > |taloo — o =qUs = HUBHOO - E .

Since {ua > lluallec} = Nnftia > Jualloo — 2} and {us > lluglloe} = Nafus > lluslloe — %1,

we deduce that {uq > ||uallec} = {ug > ||ug|loc}, and this set minimizes (P)y-.
Now, since {uq > ||uallco + €} = 0 is a solution of (P)y«_), for all € > 0, by Lemma
6.6(iii), we have that ) is also a solution of (P)y-. Then

Ps({ta 2 [[uallo}) = A Hta > [Jualloc}Hn = Ps(@) — A*[0]n =0,
and (6.25) follows. Since {uqy > ||tal|co} is @ minimizer of (P)y+, we deduce that

0= Py({ua = [luallc}) = A H{ua > [[tallcctn < Ps(EF) = A*[Fln
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for any set F' C  of finite perimeter. Then

Py({ua > [[uallo}) _ Po(F)
Hua > lualloo}ln = [Fln

for any set F© C Q of finite perimeter. Thus, the set {uq, > |lualleo} is a ¢-Cheeger set
of Q. Now, if C is any other ¢-Cheeger set in €2, then C is a solution of (P)y+. Then
C C {uq > ||ualloo—22} for all n. Then C C {uq > |[uallso}. We conclude that {ug > [[uq o}
is the maximal ¢-Cheeger set of (). |

6.1. Local ¢-Cheeger sets in €. In this section we assume that ¢ is continuous and
coercive in Q. Let E C RY be a set of finite perimeter. We say that F is decomposable if
there exists a partition (A4, B) of E such that P,(E) = P4(A) + P,(B) and both |A| and |B]
are strictly positive. We say that E is indecomposable if it is not decomposable; notice that
the properties of being decomposable or indecomposable are invariant modulo Lebesgue null
sets and that, according to our definition, any Lebesgue negligible set is indecomposable.

The following result was proved in [6] for the Euclidean perimeter. The proof easily
extends to cover the case where ¢ is continuous and coercive in €2, but it also follows from the
Fuclidean case since the assumptions on ¢ imply that

Po(B)= | oo () an !

for any set £ C RN with finite perimeter.

Theorem 6.10. Let E be a set with finite perimeter in RN . Then there exists a unique
finite or countable family of pairwise disjoint indecomposable sets {E;}icr such that |E;| > 0
and Py(E) = >, P4(E;). Moreover, the sets E; are mazimal indecomposable sets; i.e., any
indecomposable set F' C E is contained modulo a Lebesgue null set in some set E;.

In view of the previous theorem, we call the sets F; the ¢-connected components of F.

Proposition 6.11. Assume that ¢ is continuous and coercive in ). Let u € BVg(Q) N
L?(Q, hdx) be the solution of (6.4). Lett € (0,1] and E; := {u >t}. Let E] be a ¢-connected
component of Ey, and let Fs = {u > s} N E], s > t. Then for any s € (0,1] we have

(6.26) Py(Fs) = M1 = 8)[Fslp < Py(F) = A(1 = 8)|Fn

forany F C Ej. If s = Max, ¢ u(z), then Fy is a maximal ¢-Cheeger set in EJ.

The sets Fs will be called local ¢-Cheeger sets.

Proof. Let {Ei}icr be the ¢-connected components of Es. Since Xg, = >, Xgi, [XE,| =
> |XE§‘7 o-DXp, =) 0" DXE;;, and

/ o+ DXpi — / [0 VX dHN T < Py(BELQ) + | (™)X g dHN ! = Py(EL),
Q 0N o0

from the extension of (6.22) given in Remark 3 we have that

/a-Dng —/ [0 VX dHN ' = Py(EY)
Q 0N
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for any i € I. Now, we can proceed as in the proof of Proposition 6.3 to get that (6.26) holds.
The last assertion follows as in Propositions 6.8 and 6.9. [ |

Recall that, when ¢ is coercive, by the isoperimetric inequality there is a constant v > 0
(depending on the domain) such that any ¢-Cheeger set has measure > «. Moreover, the
union and intersection of ¢-Cheeger sets are ¢-Cheeger [19]. In particular, there are minimal
¢-Cheeger sets and there are finitely many of them [19].

7. Remarks on the Neumann problem. Let us now consider the energy functional
A
(7.1) Ex(u) ::/ |Dulg + §/(u—f)%dgc, f € L*(Q, hdzx).
Q Q

Let us consider the partial differential equation formally related to (7.1):

(7.2) hu — A" div (9ed(x, Vu)) = hf,

(7.3) [0 p(x, Vu) - ] = 0.

As for (6.3), this is a symbolic notation. Again, there is a slight abuse of notation when
writing (7.2) since the subdifferential of the ¢-total variation is multivalued.

Definition 7.1. Let f € L>®(Q). We say that u € L*(Q, hdx) is a solution of (7.2)~(7.3) if
u € BVy(2) N L*°(Q2) and there is a vector field o € Ax(Q2) such that

(i) hu — A~ldiv (o) = hf in D'(Q),

(ii) ¢*(z,0(x)) <1 a.e.,

(iii) [q0 - Du= [ |Dulg,
(iv) [o- v =0 HN1-a.e. € 0Q.

Thanks to Theorem 4.6 we may also multiply the equation by functions in BVy(2), ex-
tending the characterization of the subdifferential given in Theorem 5.1 to the case of the
Neumann problem, and proceeding as in Theorem 6.2 we obtain the following theorem.

Theorem 7.2. (i) Let f € L?(Q, hdx). There is a unique solution of the problem

(7.4) 8)\(11,)

min
u€BV,(Q)NL2(Q,h dx)

(i) Assume that f € L°°(Q). Then there is a unique solution u € L*(Q, hdz) of (7.2)-
(7.3). Moreover, the solution u belongs to L*° (), and it minimizes (7.4).

8. Numerical solution of the PDE. In this section we present an adaptation of Cham-
bolle’s algorithm [26] that permits us to solve a discrete version of (6.3) for some particular
instances of ¢(z, ). Our development will be restricted to the two-dimensional (2D) case, but
it can be easily extended to higher dimensions. Let us give some notation that we use in what
follows, keeping in mind that, for simplicity, we will denote the discrete functions we use like
their continuous counterparts.

Let us consider the discrete domain {2 = {0,1,...,N — 1}? (more generally, we could
assume that 0 C {0,1,..., N — 1}?). For convenience, let us denote by Q¢ the extended
domain {—1,0,...,N}2. We denote by U the Euclidean space RWADX(N+2) - Tet us give
the definition of the discrete gradient which is adapted to problem (6.3) (which considers
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Dirichlet boundary conditions). In section 8.2 we shall use Neumann boundary conditions
with the definition of the gradient and divergence taken as in [26]. Given u € U, its discrete
gradient Vu will be a vector in V := U x U given by (Vu); ; = ((Vu)”, (Vu)%j), (1,7) € Q°,
where

Uigl,j — Wij 1f (i+1,5),(i,j) € Q, A

i,] 1])¢Qv(i7j)697

8.1 Va)l, ={ T if(i+ =

®.1) (Vi Uit if (i +1,7) €Q, (i,)) ¢,
0 L)) £ O

Uj j+1 — WUg 5 if (Z J+ 1)7 (Zag) € Qa R

i if (i,7+1) ¢Q, (i,7) € Q,

8.2 Vu)?, = T X A A

( ) ( u)z,] Uj j41 if (Z J+ 1) € Q, (Z,j;) Qﬁ Q,
0 i (5,5 + 1), (5,) ¢ ©

The above case amounts to saying that u; ; = 0 when the indexes are in Qe \ Q). These defini-
tions of gradient embody the Dirichlet boundary conditions. The extension of the anisotropy
¢ to Q€ will be made precise in the examples below. The scalar product and the norm in U are
defined as usual and denoted by (-, -)y and |||, but in the absence of ambiguities the subindex
will be omitted. In V the scalar product is denoted (p,q)y = Z” e pgj ¢i; and the norm

llpllv = (p,p)v. Finally, the divergence is defined so that it verifies (p, Vu)y = —(divp, u)y:

1 1 e e O 2 2 if(i.7) e €

. Dj i — Di_1.i if (Z,]) GQ, Dii —Piiq if (17]) 697

83)  (divp),; =4 b J : s :
(83)  (divp)i, {0 it ¢ )0 if (4,7) & <L

8.1. Example 1: Geodesic active contour type models. Let us consider the following
generalization of the problem studied by Chambolle in [26]:

(8.4) min ICE L
welU,u=0 in Qe\Q 2

I + A (w),  where  Jy(u) = > gijl(Vu)iyl,
(4,7)€Qe

]f, g,h € U and h; ; >0 for all (i,7) € Q°. We consider these functions defined originally in

(2 and extended to Q¢ by specular symmetry. Observe that the Euler equation of (8.4) is a

discretization of (6.3), where ¢(z, Vu) = g(z)|Vu| (discrete case), and that where we write

(8.5) hu—A*&v< Vu >9hf
V4l
As in [26] let us derive the dual formulation for (8.4) by rewriting (8.5) as hA(f —u) € 0J4(u),

which is equivalent to u € d.J; (RA(f —u)), where J; is the Legendre-Fenchel transform of
Jg. Writing w = A(f — u), we have

(8.6) 0 € (w— Af)h+hADT (hw)
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which is the minimizer of the dual problem

h1/2 — b2
(8.7) min w AT (hw)  with b= h'2\f.

Since Jy is homogeneous, Jj is the indicator function of a convex set Ky given by

0 itwe Ky
+00 otherwise

(88)  Ji(w) = { with Ky = {~dive : € € V,|6i] < gi V(0. 5) € 07}

Therefore we may write (8.7) as

(8.9) hglenlég A=Y 2hw — b))%,

Note that any solution hw € Ky, must satisfy h; jw; j = —div (g;;pi,;) with [p; ;| < 1. Hence
we may write (8.9) as

min ||h~Y2div (gp) + b||?
oo mip | )+l
subject to [p; ;> —1<0 V(i,j) € Q°

and, introducing the Lagrange multipliers «; ; for the constraint, we obtain the functional

Fpoa)= 3 | Pdiv(gp)ij + i+ Y aij(pi?—1), acUpeV.
(.)€ (i,5) e

Proceeding as in [26] the solution of (8.10) satisfies
(8.11) gV (h~tdiv (gp) + Mf))i + cigpig =0 ¥(, ) € Q.

The Karush-Kuhn—Tucker theorem yields the existence of the Lagrange multipliers o ;=
0 for the constraints in (8.11), which are either o ; > 0if [p; j| = 1 or o ; = 0if |p; j| <1, but
in this case also [gV(h~!div (gp) + Af)]i; = 0. In any case af ;= [gV (R™1div (gp) + Af))isl,
and substituting it into (8.11) and using a gradient descent we arrive at the following fixed-

point algorithm:

il _ p" + 7 {gV[hdiv (gp™) + Af]}

(8.12) L+ 7]gV[h=tdiv (gp") + Af]]

where the maximum 7 > 0 will depend on the chosen discretization. For the present scheme,
with a straightforward computation [26, 1], one can show that the method converges if 7 <

11 1 o : : _
& max|g” max 1722 At convergence, the solution is obtained using the formula v = f +

A~ h=div (gp).
Let us summarize the steps of the algorithm.
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Chambolle’s algorithm with Dirichlet boundary conditions:
1. Initialize p° =0€V,¢"=0€ U, and t =0
2. Tterate until convergence: )
(a) Compute: p'*1 %
(b) Compute: ¢'t! < h=tdiv (gp'*t!) + \f

3. Recover the solution u = A~ ¢!+!

In step 2(a) p' is updated for (i, ) € (¢, while in step 2(b) ¢* may be updated only for
(i,4) € Qand g ; = 0 V(i, j) € Q°\ Q.

Remark 5. Let us check that the solution u obtained from the fixed point of (8.12) verifies
a discrete version of the boundary conditions of Definition 6.1. That is, the field o satisfies (a
discrete version of) [0, %] € sign(—u(z))¢(x, v (z)), where v** denotes the outer unit normal
to the boundary, and ¢(x, v*(x)) = g(x). The outer unit normals at the points of the discrete
boundaries take only four possible values, v € {((1)), (_01), ((1)), (_01)}; we describe here just
one direction (i.e., the left boundary of the domain).

Thus, let us assume that ¢ = —1 so that we are at the left boundary side. We check
that [gp, v](—1,4) € sign(—uo;)#((0,7), (—1,0)!) = sign(—ug ;)goj, which is a discrete way
of imposing the boundary condition. Notice that the fixed-point solution p of (8.12) satisfies
9-1,;P-1,;Vq-1j = g-1;|Vq-1;|, where ¢ = h~'div(gp) + Af (note as well that o = gp).
At the left side of the boundary we have Vq_;; = ( 40.J ) (with ¢—1 41 —¢-1; =0

q—1,j+1—4-1,j5 ~
since both pixels are in Q¢ \ Q). If ug; > 0, then qo; > 0. Therefore [gp,v)(~1,j) =
~9-1,790,3/19051 = go.j sign(—uo ;). If ug; = 0, then [gp,v*](—1,]) € go,;sign(—u,;), since
llgp, ¥Y(=1,5)| < go;- The computation for the other three sides of the boundary can be
done in a similar way.

8.2. Example 2: An anisotropic diffusion-type problem. In this example we consider an
anisotropic diffusion problem with Neumann boundary conditions. The discretization of the
gradient and divergence are the same as in [26]. Let us consider the anisotropic total variation
with ¢(x,&) = |Az€], for all x € Q, where A, is a symmetric and positive definite (hence,
invertible) matrix. As before, the solution of the minimization problem

/2(qy —
Y- )

2
oy 1) with T = S 60, Valig)

uelU 2 0<ijoN—1
is obtained via its dual formulation
h1/2 _ h1/2)\ 2
(8.13) min [h 7w Sy + A (hw)  with  w = (f —u)\.

wel 2

Since Jy is homogeneous, J:; is the characteristic function of a set Ky, which we will characterize
next. Following [5] we have Ky = {—div&* : ¢9(z, &%) < 1}, where

0 if f* — 0,
(@, €) sup (£,67) i€ € 21\ {0},
§:d(x,§)<1
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with Z, = {£ : ¢(x,£) =0} = {£ : |Az&] = 0}. Since A, is symmetric and invertible, Z, = {0}
and Z& = R". Since the second condition is empty and SUDg.| a,¢1<1 (A7 T A€, EF) = A1,
it holds that ¢%(z,£*) < 1 if and only if £* = A,p with |p| < 1. We get that

Ky = {—div () : () = Aup(e), Ipla)] < 1,z € Q.
This allows us to write problem (8.13) as

(8.14) min  ||h~Y2div (A.p(z)) + h2Af|F
p(@):lp(z)|<1

and derive the following fixed-point algorithm:

ne1 DPUAT {AmV[h_ldiv (Azp™) + Af]}

(8.15) 1+ 7|A,V[hTdiv (Azp™) + M f]]

At convergence, the solution is obtained using the formula v = f + A"'h~'div (A4,p). For
applications to image diffusion it is better to use Neumann boundary conditions, which are
imposed by adapting the definitions of the gradient and divergence as in [26].

9. Computation of the ¢-Cheeger set and numerical aspects of the ¢-perimeter com-
putation. The numerical scheme described above produces a function u which is a solution
of the PDE (6.3). By Proposition 6.3, the level sets of u are global minima of the anisotropic
¢-perimeter with an inflating force. And the regional maxima of u are local ¢-Cheeger sets in
a suitable domain containing them.

In this section we describe a method for finding these local ¢-Cheeger sets. We want
to define local extrema of a function Py(-)/|-| which is defined on the set of all connected
components of upper level sets of an image u. To fix ideas, let us assume that N = 2. Then
we have to examine the connected components of the upper level sets {u > t}, t € (0,1], of
the solution u of (6.3). The ¢-Cheeger set is defined by {u = ||ul|«}, but due to the floating-
point operations we cannot proceed to a direct computation of this set. Instead we take the
¢-Cheeger set as the minimum of ¢t — Py({u > t})/[{u > t}| with a suitable discretization of
the variable t. Similarly, to compute the local ¢-Cheeger sets we use the tree of connected
components of upper level sets of the image (see [50, 25] and [46] when N = 3) and look for the
local minima of Py(cc{u > t})/|cc{u > t}|, where cc{u > t} denotes a connected component
of {u > t}. Thanks to the topological structure of the tree of connected components of
upper level sets, we can speak of local extrema of functions defined on that set. Intuitively,
a neighborhood of T'y = cc{u > t} consists in those connected components of upper level sets
whose levels are slightly above or below the level of T';.

Let us explain how to compute the weighted perimeter and volume of a given level set.
Then we will show how to use this computation to obtain an efficient algorithm to find the
connected components of the upper level sets which are local minimizers of the ¢-Cheeger
ratio. When ¢ is of the form ¢(z,§) = g(x)|£|, we will use the expression g-Cheeger set.

9.1. Subpixel computation of weighted perimeters and areas. Notice that it is not
trivial to compute the perimeter of a set which is defined by pixels or voxels. The naive
approach of counting the voxels which touch the boundary of the region does not work,
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mainly because this quantity is not invariant by rotations. There are two common solutions
to this problem: approximate the perimeter using integral geometric measure techniques as
in graph cuts [12] or approximate the ragged boundary of the set by a smoother surface and
compute its perimeter. We found the second option best suited to our needs because, as the
goal is to compute perimeters of level sets, we can produce high-resolution approximations
of their boundaries by methods such as marching cubes or marching squares [45]. Once we
have a triangulated surface, we can compute its weighted perimeter by adding the areas of all
triangles, each one multiplied by the weight ¢ interpolated at the barycenter of each triangle.
To test the consistency and precision of this scheme, let us consider a spherical im-
age u(z) = f(|x — zo|) whose profile f is an increasing function from [0, 4oc0) to [0,1). For
each t in (0, 1), the level set of value ¢ is a sphere of radius r(t) = f~1(¢) centered at xq, and
this surface is weighted by ﬁ = m =r/(t). The W—luI—Cheeger ratio is then
F(t) = NVyrN=1y/ _ Nr’(t)7
VarN T‘(t)

where Vi is the volume of the unit ball of RV, This function F(t) is a real-valued function
whose minimum can be evaluated numerically, or even analytically in some easy cases.
We can set, for example,

1

(9.1) f(z) = T oxp B2

where k and s are parameters, such as k = 8 and s = 0.1. Intuitively, the desired segmentation
of this image is a circle of radius k + s or, equivalently, some level set of value near ¢t = %
In Figure 1, we compare the graphs of the ﬁ—(}heeger ratio over t as computed analytically
and with the numerical methods described above. The minima in both cases is attained very
near t = %, which agrees with our intuition and suggests that the numerical approximations
we use are consistent.

As another numerical test, we computed the Euclidean Cheeger set of a square and a cube
(using the Euclidean metric). See Figures 2 and 3 for the plausible result we obtained.

The discrete images u are obtained by an iterative numerical method, and they have
floating-point values. Most of the values are concentrated around 1, with the interesting part
of the range being often contained in the interval [0.99,1]. Thus, it is important to conserve
their floating-point values. This implies that there are as many different level surfaces as
pixels, one for each different floating-point value. But it is not necessary to compute the
¢-Cheeger ratio of all of these surfaces: via dichotomic search we can efficiently locate the
minimum.

Remark 6. On the symmetry of the numerical scheme. In Figure 2 we show an example of
the Cheeger set determined with the method described above. Observe that the first solutions
are asymmetric; this effect is particularly clear (and annoying) for small images (the first
square is 50 pixels high), and it is due to the forward /backward scheme adopted to discretize
the gradient (8.1). In [26] the author remarks that the finite difference scheme converges to the
continuous formulation as the number of samples N — oo, but when applied to volumetric

images increasing the sampling is not an affordable option. To maintain the symmetry of
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T T

| approximated F(t)
\ analytic F(t)

o :

E(t)

Figure 1. Numerical evaluation of W—ll‘-Cheeger ratios for a synthetic image where they can also be computed
analytically. The image is given by the model in (9.1) with k = 8 and s = 1. Left: graphs of the exact and
computed F(t) for that image. Right: interpolated level curve at which the minimum of F(t) is attained, overlaid
on the original image. This example has a very low resolution (the original image has dimensions 31 x 31).
For higher resolutions the approzimation is nearly perfect, and the two curves F(t) are visually identical.

12.858 12.960 12.949 12.961

Figure 2. Computation of the Fuclidean Cheeger sets (black regions) for a square of 50 pizels. For the
square the analytical Cheeger set is known (dashed line), and its constant is 1/13.253 (for readability we display
the inverse of the Cheeger constant). The first column shows the results obtained with Chambolle’s numerical
scheme [26]; observe that it is asymmetric. The second solution is obtained by increasing the sampling (as
proposed by Chambolle); this considerably improves the solution, but the asymmetry persists. The third column
shows a symmetric solution obtained by averaging all the numerical schemes (4 in two dimensions). The fourth
solution is obtained using the consensus algorithm. All the results were obtained after 20000 iterations of

(8.12).

the solutions, we propose the consensus algorithm, which computes the mean solution of all
the finite difference schemes (4 schemes in two dimensions, and 8 in three dimensions) at
each iteration. The consensus algorithm outperforms the considered schemes while keeping
the symmetry, but it is 4 times (or 8 for three dimensions) slower than the standard finite
difference scheme.

10. Computing the minimum of the geodesic active contour model with an inflating
force. Given an image I : {2 — R, let us consider the following formulation of geodesic active
contour with an inflating force:

(101) E’nglg PQ(E) - :u|E|h7 >0,
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T T T
Cheeger ratio F(})

F(t)

Figure 3. Cheeger set of a cube. This was computed by Fuclidean total variation minimization of the
characteristic function of the cube, followed by the selection of the level surface that minimized the Cheeger
ratio. On the right, the graph of F(t). Notice that for large values of t, the level set collapses to a central point
of the domain, so that its Cheeger ratio is much larger than the optimum.

where P,(FE) is a weighted perimeter with weights g(z) = (\/1+|V(G*I)]2)7}, |E|, =
I} g h(z)dr is the weighted area, and p is a parameter that controls the balloon force. In
Proposition 6.3 we have shown that if u is the solution of problem (6.4), then Es := {u >
s}k, s € (0,1], is a global minimum of (10.1) with © = A(1 — s). In particular, if A\ > Cq (the
g-Cheeger constant), then the set {u = [Ju||s } is the g-Cheeger set of Q. Therefore to compute
the solutions of (10.1) it suffices to solve problem (6.4) for some A\ > p or, equivalently, to
find u by solving

Du
10.2 B e i — ) =h.
(10.2) hu — X\~ div <g|Du\> h

The solution of (10.2) is computed using the scheme proposed by Chambolle [26] and described
in section 9 (with f = xq). For A big enough, for all values of y > 0, the solutions of (10.1)
can be found as the level sets of u. In practice we select the g-Cheeger set as the upper level
set of u that minimizes

min Pg (F)

rco Iy’

where the minimum is taken over the upper level sets of .

10.1. Experiments (segmentation and edge linking). We have used the theory above
in two different ways, corresponding to different choices of a metric integrand g. The first
choice is g(z) = (/1 +|V(G % I)|?)71, and the second choice is the distance function to the
set of edge points detected by a preprocessing of the image, that is, ¢ = dg, where S is the set
of edges of u. We label these two cases ﬁ—Cheeger sets and dg-Cheeger sets, respectively.
We observe that the convergence of the iterative scheme to solve the PDE is much faster for
ds-Cheeger sets, and the result is less likely to miss parts of the image. On the other hand,
the computation of %—Cheeger sets gives smooth results after a long time and sometimes
misses parts of the desired objects or fails to break at holes. The choice of a subdomain B C €2
allows for some flexibility: we can enforce hard restrictions on the result by removing from
the domain some points that we do not want to be enclosed by the output surfaces.
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Notice that, for a given choice of g, we actually find many local g-Cheeger sets, disjoint
from the global minimum, that appear as local minima of the g-Cheeger ratio on the tree of
connected components of upper level sets. The computation of those sets is partially justified
by Proposition 6.11. Notice that the assumptions in it do not cover the case where g vanishes.
These are the sets which we show in the following experiments.

2D images. In Figure 4, we display some local g-Cheeger sets of 2D images for different
choices of metric g. These experiments are equivalent to applying the model (10.1) to edge
linking problems. As in [30] the inflating force allows us to link the pieces of the boundaries
of the objects. We display in Figure 4 some 2D linking experiments, which show how the
dg-Cheeger set indeed links the edges. Let us point out here a limitation of this approach,
which can be observed in the last subfigure. Even if this linking is produced, the presence of a
bottleneck (bottom right subfigure) causes the dg-Cheeger set to be a set with large volume.
This limitation can be circumvented by adding barriers in the domain 2.

Synthetic 3D image. The first 3D example is a synthetic image built in the following way.
We have taken the characteristic function of a slanted torus plus a linear function and then
added some blurring and Gaussian noise to the result. Some slices and a level surface of this
image are shown in the left subfigure of Figure 5. The first experiment with this synthetic
image has been to segment it using the W—IH-Cheeger set of the image domain. This gives a
reasonable segmentation of the object, as shown in Figure 5. The second experiment with
this synthetic image has been to perform edge linking. We have taken the output of an edge
detector [31, 47] and used the distance function to the set of edges as a metric. The dg-Cheeger
set of the image domain is a surface that correctly interpolates the given patches. We can
observe that the result of the edge linking has a ragged appearance. In Figure 6 we display
the input edges, the corresponding metric, and the final result. In Figure 7 we display the
graph of the ‘V—lﬂ—Cheeger ratio and different level sets of w.

Real 3D computed tomography (CT) image. The first real 3D example is based on a CT

of cerebral arteries containing an aneurysm. We have tried both ﬁ and dg metrics (where

S is computed, as before, by an edge detector). The results are visually similar. Noticing
that both methods give an incorrect segmentation on a small part of the image (at the neck
of the aneurysm), we have forced a correct segmentation by manually marking some voxels,
as in the rightmost column in Figure 4. Thus, instead of computing the ¢-Cheeger set of
the image domain, we have computed the ¢-Cheeger set of the image domain minus some
manually selected voxels. In Figure 8 we display the results, and in Figure 9, we display three
different level surfaces of the solution u (the central one being the ‘v—lﬂ—Cheeger set).

Real 3D magnetic resonance (MR) image. The second real 3D example is an edge linking
experiment coming from an MR image. This is a very low-resolution image, where the thin
vessels have a width of one voxel. An edge detector correctly finds most of the vessels (in
several different connected components). We show the best six local dg-Cheeger sets of this
image in Figure 10.

11. Anisotropic diffusion applications. Consider the anisotropic diffusion problem for-
mulated as
[mzu — fII?

(11.1) min

-1
min £y (w),
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R

Figure 4. Geodesic active contours as g-Cheeger minimizers. The first row shows the images I to be
processed. The second row shows the weights g used for each experiment (white is 1, black is 0): in the first two
cases g = (/1 +|V(G* 1)[2)7Y, for the third g = 0.37(\/0.1 + [V(G * I)[2) ™", and for the linking experiments
g = ds, the scaled distance function to the given edges. The third row shows the disjoint minimum g-Cheeger
sets extracted from w (shown in the background); there are 1,7,2,1,1, and 1 sets, respectively. The last linking
experiment illustrates the effect of introducing a barrier in the initial domain (black square).

Figure 5. Pipeline for computing ﬁ-C’heeger sets, applied to a synthetic 3D image. From left to right:

slices of the original image I, slices of the metric g = “ T and -Cheeger set of the image domain.

IVI\

where 77 is the orthogonal projection onto a set Z C X, and f € Z. The regularizer Jy(u) =
fQ x,Vu(z)) is defined so that the diffusion is constrained to the geometry (given by the
level hnes) extracted from a reference image I. We define, for example, ¢(z,§) = |Az¢|, where
A, is a matrix that embodies knowledge about the boundaries of the objects in I. A common

example in two dimensions corresponds to 4, = V(z)* @ V(z)*+ with V(z) = %.

This example favors the diffusion along the level lines of I. In low gradient (flat) zones
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- /
\\\\y/

Figure 6. Pipeline for computing ds-Cheeger sets, applied to the same synthetic image as in Figure 5.
From left to right: detected 3D edges S, slices of the metric g = ds, and ds-Cheeger set of the image domain.

T T T T T
0.03 - cheeger ratio -

0.025

0.02 |-

0.015

0.01 1 1 1 1 1 1 1
0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

Figure 7. Left: graph of the ﬁ-c‘heeger ratio F(t) for the input image “torus.” Right: superposition of
the three level sets shown, corresponding to the interesting points of F(t) (the two minima and the cusp). To
see the inner surfaces, the display is clipped near the central singularity. Notice that these level surfaces are
all local minima of the classical geodesic snakes functional with an inflating force, for different weights of the

inflating force.

Figure 8. Computation of = -Cheeger sets of the CT image. From left to right: (1) ds-Cheeger set of
[VI]

the whole image domain, (2) ds-Cheeger set of the image domain minus some manually selected vozels at the
neck of the aneurysm, (3) |V1—I‘—Cheege'r set of the whole image domain, and (4) ﬁ—Cheeger set of the image
domain minus some manually selected voxels at the neck of the aneurysm.
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Figure 9. Three level surfaces of the solution u of ﬁ-total variation minimization. The central surface is
the ﬁ—Cheeger set of the image domain according to this active—contours-like metric. The other two surfaces
have a higher ﬁ-Cheeger ratio and appear as local extrema of an active contour with appropriate inflating
force. In this figure, the image domain is split so that the innermost surfaces can be seen. Notice that the inner
surface, having a higher level t, is separated from the other two. This indicates the concentration of values

around the maximum 1.

Figure 10. These two figures display the best six local ds-Cheeger sets of the MR image, labelled and from
different points of view.

the previous definition can be relaxed to allow diffusion across the level lines (as depicted
in Figure 11) in a way inversely proportional to the modulus of the gradient. In that case,

we may take A, = V(z)* @ V(2)* + WV@J) ® V(x), where V(z)* denotes the

counterclockwise rotation of V(z) of angle 5. Notice that by the structure of A, we could
also take the clockwise rotation.

We will solve (11.1) by adapting the zoom algorithm proposed in [26]. Observing that
|[Tzu — f|| = min,c 1 |lu— (f +w)]|, (11.1) can then be reformulated as

(11.2) min M

+ A" (),
ueX,wezZ+ 2 ¢( )

which is solved by alternate minimization with respect to v and w. The first minimization is
done by the algorithm described in section 8.2, u, = (f — wn) — 7, (f —wy), and the second
one consists in a projection over Zt : wy, 11 = T4 (up — f).
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Figure 11. Anisotropic diffusion directions for a synthetic image (background). The plotted ellipses cor-

respond to the tensor field Ay = V(z)* @ V(x)* + \/ﬁ\/(x) ® V(z) with V(z) = \/%. The

orientation and widths of the ellipses reflect the preferred direction of the diffusion.

Figure 12. Colorization. From left to right, scribbled image, the known values of the U channel (20% of
the image), diffusion in the U channel, and colorized result using the reference Y channel (not shown).

11.1. Experiments (diffusion). The scheme presented earlier for solving (11.2) can be
applied in a variety of diffusion problems, such as image colorization [44], or to the interpola-
tion of sparse height data in a digital elevation model [33]. In each of these cases, however,
there are better algorithms for performing the task than the one we propose here, which is
meant only as an illustration.

In the case of colorization and interpolation, Z is defined as Z = {xr f : f € X}, where
I' € Q is a subdomain of the image where the values are known, and the reference image
I:Q — R is used to compute the field V(z) to guide the diffusion of these values. For the
colorization experiment shown in Figure 12 the result is computed in YUV color space, where
Y is the input luminance channel and the chromatic channels U and V' are interpolated with

(11.1), where the field V(z) = % restricts the diffusion to the geometry of 1.

The last example concerns the interpolation of urban digital elevation models (see Fig-
ure 13). In this case the datum f is known only at sparse locations, and it is provided by a
stereo subpixel correlation algorithm [52] (which also provides an estimation of the measure’s
variance Err). The reference image of the stereo pair is used as a geometric constraint for
the interpolation, and the variability Err is used to normalize the data fitting by adapting
the spatial metric h(i,§)"/? = 1/Err(i,j). In Figure 13 we compare this method with the
anisotropic minimal surface interpolation described in [33].

12. Conclusion. We have developed the mathematical analysis of ¢-total variation prob-
lems with eventually degenerate metric integrands ¢. As a particular case, we have considered
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Figure 13. Disparity interpolation in an urban digital elevation model. From left to right: (1) the reference
image of the stereo pair, (2) the incomplete data set computed with [52] (30% of the image), where each point’s
gray level represents the height (darker is higher, mid-gray is unknown), (3) the interpolation obtained with the
minimal surface interpolation [33] (RMSE 0.239 when compared with the ground truth) and with the proposed
algorithm (RMSE 0.190), (4) the minimal surface model [33] recovers the slanted surfaces better than total
variation; however, the latter is better at approximating the geometry near jumps.

the geodesic active contour model, which corresponds to ¢(z,&) = g(z)[¢|, where g(x) is a
function that may vanish for some values of z. We have defined the notion of ¢-Cheeger set
and we have shown that, for suitable metric integrands ¢, the maximal ¢-Cheeger set can be
computed as the level set associated to the maximum of the solution of a ¢-total variation
minimization problem with Dirichlet boundary conditions and datum f = 1. We have also
defined the notion of local ¢-Cheeger set. Moreover, the level sets of the solution of the ¢-total
variation minimization problem with Dirichlet boundary conditions are global minimizers of
the ¢-perimeter with an inflating force. Thus, in the particular case of the geodesic active
contour model with inflating force, we can compute a global minimum. Moreover, the model
can be used for edge linking or to interpolate data along the level lines of a reference image.

Appendix A.

A.1. The Borel measure associated to the ¢-total variation. Let G({2) denote the family
of open sets of Q. To prove that U € G(2) = |Duls(U) is an inner content we first check the
following properties:

(i) If U C V are open sets, then |Duls(U) < |Du|g(V).

(ii) If U,V are open sets such that UNV = 0, then |Du|s(UUV) = |Du|s(U) + |Duls(V).

(iii) If U,V are open sets, then |Dul|,(U UV) < |Duly(U) + |Duls(V).
Let us just check (iii). Recall that, according to (3.7),

udive dr:o € IC((;O’C(UU V)}
uv

Duly(vuv) = { [

If o € IC(C;O’C(U U V') has support contained in the compact set K C U UV, and 1, 2
is a partition of unity on K subordinated to U,V, then o = op; + oo, opy € IC;O’C(U),
o € ICZO’C(V). Hence

/ udive dr = / u div (opy) dz +/ w div (op2) dx < |Duly(U) + [Dulg(V).
Uuv U v
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Taking sup in o, we obtain (iii).
Now for any compact set K C €2, we define
A(K) == inf{|Du|s(U) : K CU}.

Then A is a content measure on the family Fgx of compact sets of Q (see [36]). The content
A defines an inner content

A (U) :==sup{A(C): C € Fx,C C U}, UegGQ).

Notice that A*(U) = |Duls(U) for any U € G(2). Indeed we may take an increasing family
of compacts sets K, such that U,int(K,) = U. Then |Du|y(int(K,)) < A(K,) < |Dulg(U).
We deduce that

sup Dl (0t(K,)) = sup A(K) = Dl (0)

Since sup,, A(K,) = A*(U), we have A*(U) = |Du|s(U).

A.2. Proof of the results of section 4.

Proof of Proposition 4.1. Case z € X (Q2). Take ¢ € D(U) and consider an open set
V such that supp(¢) € V CC U. Observe that div(z¢) = pdivz + z - Ve in D'(Q) and
div(zp) € L>(§2). Hence, by definition of ¢-total variation, we have

|{(z+ Du,p)| = ‘/Qudiv (zp) dz| = [|d° (2, 2)| oo /Qudiv <m> dx
< llpd° (@, 2) oo | Duulp(U) < llplloo16° (2, 2) oo (1) Dl (U)

since 73 (x Pl has compact support in U. ]

As a consequence of Proposition 4.1, the following result holds.
Corollary A.1. Assume that z € Ax(2). Let |z- Dul be the measure total variation of z- Du.
The measures z - Du, |z - Du| are absolutely continuous with respect to the measure |Du|y(-)

and
/B 2 Du| < /B 2 Dul < |62, )| = )| Dl (B)

for all Borel sets B and for all open sets U such that B C U C ().
Lemma A.2. Assume u € BVy(R2), z € Axo(f2). Let u, € WHL(Q) be a sequence converging
to w in L*(Q) and such that [o, ¢(x, Vun) — [ |Duls. Then we have

/Z-Vundx%/z'Du.
Q Q

Proof. For a given € > 0, we take an open set U CC {2 such that
|Duls(2\U) <e.

Moreover, since the family of measures ¢(x, Vu,) is also bounded, we may assume that it
is weakly* convergent to a measure p. Assume that U is chosen so that pu(2\ U) < e. Let
v € D(2) be such that ¢(x) =1in U and 0 < ¢ <1 in . Then

/z-Dun—/z-Du
Q Q
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< {2z Dup,) — (2 - Dugo\—i—/\z Duy|(1 — ) ‘/z Du(1 — )‘

Since
li_>m (z - Dup, ) = (z - Du, p),
limsup/ |z - Duy|(1— ) < H(bo(x,z(x))ﬂoo lim sup o(x, Vuy,)
n—o00 9] n—o00 Q\U
<19, 2(2)) oo (R \ U) < €[|¢°(z, 2(2)) oo,
[z putt=9)| < [ |- Dul(1 =) < €02 .

and e is arbitrary, the lemma follows. |
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