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ABSTRACT

We present a method to compute the relative depth of moving

objects in video sequences. The method relies on the fact that

the boundary between two moving objects follows the move-

ment of the object which is closest to the camera. Thus, the

input of the method is a segmentation (to know the boundaries

of objects) and an optical flow (to know the movement of the

objects). The output of the method is a relative ordering of the

neighboring segments. In fact, this output only provides a cue

of the desired relative ordering, just like T-junctions typically

provide a cue of the relative ordering of the objects around

them. These cues can be used later as heuristics or as start-

ing points for higher-level algorithms for image and video-

processing.

Index Terms— monocular, depth estimation, optical

flow, segmentation

1. INTRODUCTION

Depth perception from a single image is an easy task for the

human visual system: people who have lost an eye can lead a

normal life, and everybody can easily reconstruct real-world

scenes from a single photograph. According to current theo-

ries of vision [1] this is achieved by integrating the informa-

tion of several depth cues. There is a rather large list of cues

for depth perception, including perspective, texture gradients,

distance fog, focus, T -junctions, shading and size. Each of

these cues is not sufficient alone, and any single one may lead

to incorrect depth perception. However, combining the infor-

mation from all these cues produces very reliable information.

In computer vision, it is easy to obtain information from each

of these cues, but difficult to integrate the information from

all of them into a single 3D reconstruction.

Depth perception from multiple images adds new cues

to this list, thus increasing the reliability of the depth infor-

mation. The most prominent addition to the list is paral-

lax, which can be produced either by binocular perception

or by observer movement. A different cue, closely related

to the purpose of this work, is depth from motion, whereby

objects moving towards the observer increase in size, and ob-

jects moving away from the observer decrease in size. The

brain is very fast and very precise in using this information to

compute the crash time of approaching objects. The change
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Fig. 1: Our algorithm is the second step in this diagram.

of size can be expressed locally by means of the divergence

of the optical flow: the optical flow of an approaching object

will have positive divergence, and the optical flow of a dis-

tancing object will have negative divergence. This idea has

been used successfully for collision avoidance in free-moving

robots [2]. Notice that this is a local criterion which works on

the interior of objects, and tells how the objects move in the

direction of the observer.

This work introduces a new cue for depth perception from

multiple images, based on occlusions. Unlike depth from mo-

tion, this cue provides a local criterion which works on the

boundaries between objects, looking how the objects move

in the direction perpendicular to the line of sight, and telling

how the objects are located in the direction of the observer.

The cue is based on the fact that the boundary between two

objects moves in the same way as the object which is closer

to the observer (because the closest object occludes the other

behind that boundary). In terms of divergences, an occlu-

sion boundary produces a band of highly negative divergence

around it, and a disocclusion boundary produces a band of

highly positive divergence around it. Compared to parallax or

depth frommotion, the proposed criterion is more general be-

cause it does not assume the rigidity of the objects (although

our naive implementation does). On the other hand, it only

gives a relative ordering of the objects, not a distance.

The goal of this work is to highlight the importance of

occlusions and disocclusions in the perception of depth, ig-

noring all other depth cues. In particular, it does not propose

a method to create 3D reconstructions. Our goal is to under-

stand the kind of information that can be extracted from oc-

clusions alone, just like other works focus on information that

can be extracted from shading alone [3] of from T -junctions

alone [4]. There are other works that treat this same prob-

lem under different constraints [5, 6, 7], or as a by-product of

segmentation or optical-flow algorithms [8, 9, 10].
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Fig. 2: Local illustration of the criterion, around a point located

on the boundary between A and B. Region A moves in the direc-

tion vA, region B moves in the direction vB . The boundary between

the two regions moves in the same direction as the region which is

above.
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Fig. 3: Local illustration of the criterion. Top: first frame, with

segmentation boundaries in green. Bottom: second frame, with seg-

mentation boundaries in green. The mean flows of each region are

shown. The mean flow of the tree correctly moves the boundaries

from one frame to the next. The mean flow of the background moves

the boundaries to another location (dotted lines). According to the

criterion, both boundaries of the tree support the hypothesis that the

tree is above the background.

2. PERCEPTUAL PRINCIPLE

Let us assume that we have a perfectly computed dense opti-

cal flow and a perfect segmentation of the video frames into

objects. In that case, the following criterion provides a rela-

tive ordering of neighboring objects: The boundary between

two moving objects in the scene follows the movement of the

object which is closest to the camera. See Figures 2 and 3 for

two examples of this criterion. We assume that the criterion is

intuitively sound and no further explanation is given beyond

these two figures.

Actually, the criterion is not true in full generality. There

are some situations where it leads to an incorrect depth or-

dering. For example, when a sheet of surface slides behind

a sharp edge (see Figure 4). For practical purposes, we will

ignore these cases. It is up to the user of the method to decide

whether these counterexamples are relevant for the intended

application.

Fig. 4: Counterexample to the criterion: flat flexible object folding

behind a corner. In that video sequence, if the optical flow is cor-

rectly computed, the criterion gives a wrong relative ordering on the

marked areas.

3. FLOW AND SEGMENTATION

The proposed method requires two ingredients as input,

which can be regarded as independent: a spatio-temporal

segmentation of the whole video sequence and a dense op-

tical flow of each frame. Although these ingredients are not

really independent (for instance the segmentation may use

information from the optical flow to enhance its temporal

coherence) it is useful to think of them as independent.

For the segmentation, we use the piecewise constant

Mumford-Shah model on the whole spatio-temporal color

volume to build a multi-scale hierarchical segmentation [11].

We use either classical 3D connectivity or the connectivity

induced by an optical flow. The resulting hierarchical seg-

mentation is then pruned by setting manually the desired

number of segments, producing an over-segmentation of the

video. The point of this over-segmentation is that it must be

as coarse as possible without mixing different objects on the

same segment. Its segments are spatio-temporal tubes which,

when intersected with the frames, produce a segmentation

of the video which is spatially coherent. They can be stored

in a data structure that provides high level access to these

segments [12].

For the optical flow, we settled on the method by Brox

et al. [13]. It can be argued that the choice of optical flow

method is not critical, because the errors on the flow vectors

are smoothed out when we take models of movement for each

region. Since our method requires the optical flow to be very

precise at the boundaries of objects, we use the pre-computed

segmentation to achieve this sharpness: the flow vectors in-

side each segment are used to build an (affine or projective)

model for the movement of this object, and then each flow

vector is replaced by the result of the corresponding model.

This forces the optical flow to be smooth inside each region,

and discontinuous along the boundaries of regions.

4. IMPLEMENTATION

After stating the perceptual criterion for monocular depth es-

timation, we introduce an algorithm that uses this criterion to

compute a relative depth ordering on a video. The algorithm

assumes that we have already computed the optical flow and
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Fig. 5: Notation used on the description of the algorithm. The two

figures depict the local situation around a boundary separating re-

gions A and B. Point p belongs to region A0, but R0(p) belongs

to B1. This means that B is occluding A. If A was above, we

should have R0(p) belong to A1.

the segmentation of the video sequence, and estimated the

model of movement for each segment, as explained in Sec-

tion 3.

The algorithm works by selecting all pairs of neighboring

regions, and makes a decision on which region of each pair is

above or below the other. Suppose that we have two neigh-

boring regions A and B. Let us define the following notation

(see also Figure 5):

• Ai is the region A on frame t = i, for i = 0, 1
• Bi is the region B on frame t = i, for i = 0, 1
• ci is the boundary between Ai and Bi, for i = 0, 1
• R0 is the model of movement between A0 and A1

• S0 is the model of movement between B0 and B1

Notice that if there are no occlusions and the models of move-

ment are correct, then we have R0(A0) = A1 and S0(B0) =
B1. Thus, since the transformations are continuous, it must

be that R0(c0) = c1 and S0(c0) = c1. This implies that S0 =
R0, both movements are the same. When there are occlusions,

the movements of A and B differ. The criterion introduced in

Section 2 states that c1 is the image of c0 under the move-

ment of the object which is above. Thus, comparing R0(c0)
and S0(c0) to c1, we can decide which of A or B is above.

There are, in principle, many ways to implement the curve

comparison described on the previous paragraph. We propose

to compare the displaced regions using Hausdorff distance

(area of symmetric difference). Thus, we compare R0(A0)
to A1 and S0(B0) to B1. The pair which matches better will

correspond to the region which is above. The advantage of

this method is that it can be implemented very easily in lin-

ear time, by moving each pixel in the video according to the

movement of its region, and looking whether it goes to the

corresponding region on the next frame, or to a different re-

gion. This comparison is illustrated on Figure 5. Here follows

the pseudo-code of the algorithm:

Input: a spatio-temporal segmentation of a video and a dense

optical flow F .

Output: a relative ordering of pairs of neighboring regions

of the segmentation.

Algorithm:

1. for each region At on frame t do

2. MAt,At+1
:=movement_model(At, F )

3. for each pixel p on frame t do

4. At := region_of_pixel(p)
5. q := MAt,At+1

(p)
6. Bt+1 := region_of_pixel(q)
7. if B 6= A then

8. vote +1 that Bt is above At

The algorithm can be interpreted easily: We move each

pixel of the video according to the motion model of its region

A. If it falls in a different region B, that means that B is oc-

cluding A, and we record this fact. See Figure 5 for a graphi-

cal explanation, where R0 = MA0,A1
and S0 = MB0,B1

.

There are some remarks to be done regarding this algo-

rithm. First: The output of the algorithm is a list of votes

for each pair of regions, saying which one is above. By set-

ting a threshold on difference of votes (e.g., 1), we obtain the

desired partial ordering. Second: As it is stated, the algo-

rithm only finds occlusions, but not disocclusions. To obtain

those, we must run it “backwards in time”. This can be done

by using either a bi-directional optical flow or by inverting

the movement of each region RAt+1,At
:= R−1

At,At+1
. Third:

we can easilly enforce temporal consistency of the method

by propagating the votes along the tubes. The last remark is

that the algorithm gives a relative ordering to every pair of

neighboring segments. In practice, we work with overseg-

mented videos, where many segments are parts of the same

rigid objects. In that case, most of the information given by

the algorithm will be neither meaningful nor useful.

For removing this kind of clutter, we propose some heuris-

tics based on the optical flow divergence. As noted on the in-

troduction, the divergence of the optical flow is higher at the

occlusion boundaries. This fact is used in two ways. First, as

a bias for the voting that the algorithm does at each occluded

pixel: the vote of each pixel is weighted by the absolute value

of the divergence at this pixel. Second, as a weighting of the

whole boundaries between regions: we validate each bound-

ary according to its length and to the mean divergence of its

pixels, using the same criterion as in [14] for edge detection.

The combination of these two heuristics based on divergences

reduces most of the clutter in the output.

The output of the proposed algorithm is a relative ordering

of some pairs of neighboring regions. It can be regarded as a

set of oriented curves on the image domain, which in turn may

be visualized as a gray-level image u in the following way.

Let u be the solution of Laplace equation ∆u = 0 on the

image domain minus the set of oriented curves. As Neumann

boundary conditions along these curves, use the oriented nor-

mals to them. The gray-level values of the image u have no

absolute meaning, but the image has discontinuities along the

curves, and the highest value corresponds to the closest ob-

ject.
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Fig. 6: Analysis of some videos using the proposed method.

mask without D.I. with D.I.

Fig. 7: Video inpainting with or without using the depth information

(D.I.) produced by the proposed algorithm.

5. RESULTS AND CONCLUSION

We display the results of our analysis for three sample videos

on Figure 6. In each case we show, from left to right: 1,2)

Two consecutive video frames of the sequence. 3) A segmen-

tation of the first frame with arrows indicating the movement

of each segment. 4) The computed orientation of each bound-

ary. 5) The divergence of the optical flow. The orientations of

the boundaries are visualized as follows: the light side of the

boundary corresponds to the object which is above, the dark

side to the object which is below. The divergence of the flow

is displayed in order to realize that the interesting occlusion

activity happens at places where |div(F )| is high.
At this point, the main problem of the results is clutter,

due to the use of too fine segmentations. If we fine-tune

by hand the parameters of the segmentations to avoid over-

segmentation, we can suppress most of the clutter, with some

effort. The weighting by the divergences explained above can

then be used to weight the importance of each boundary, in

order to sort them by their meaningfulness.

Regarding the applications, the main role of the proposed

method is to be integrated into a larger depth estimation

framework, which uses other cues besides this one. Other-

wise, there are some particular problems where this method

provides applicable results. For example, we have applied

this criterion to the problem of video inpainting (Figure 7),

in order to avoid getting information from an object that

occludes the inpainting region.
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