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ABSTRACT

We present a method for detecting appearances of logos in

low-resolution video sequences. The method is based on

matching of SIFT descriptors, plus several heuristics. The

logos must come from a small database of possible logos.

The emphasis is not on speed but on reliability, although the

method can be executed in real time using a parallel computer.

Index Terms— logo detection, SIFT, RANSAC, tracking

1. INTRODUCTION

The detection of logos in broadcast videos of sport events is

an interesting and challenging problem. This problem has

commercial interest, because advertisers pay people to man-

ually inspect the broadcasts to assess the visibility of their

brands. Logo detection can be used to automate this process,

but the quality of the results is not yet comparable to human

visual inspection. While close-up shots of non-occluded lo-

gos are very easy to detect using standard methods, this is

almost never the case.

Most of the time the available data is of low quality, and

there are several reasons for this. For example the resolu-

tion could be 720 × 576 with two interlaced fields. The de-

interlacing process sometimes fails producing serious degra-

dations, like ghosting and blurring. There is also another

source of blurring: as the camera follows the action, many

captured logos would be out of focus or distorted by motion

blur. Another problem is the perspective of the logo. Often

the logos appear from an oblique angle. Scale is also an issue,

because there are cases where a logo is only a few pixels high.

We should also mention that often the logos are partially oc-

cluded (e.g., when a football player runs in front of them).
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Fig. 1. The goal of this paper is simultaneous detection of multiple

logos in low-quality videos.

Finally the surface that carries the logo can degrade its ap-

pearance. For example a curved surface like the side of a car

causes non-rigid deformations, while a LED screen is plane

but causes discontinuities. Considering all the above reasons,

it is not a surprise that challenging cases of logo detection are

common in practice.

In this report, we present a system for offline usage that

has high accuracy. The proposed system has two layers: a

low level detector that operates on the individual frames, and

a high level detector that operates on the sequence level, in-

tegrating the low level results. At the lower level, we detect

as many logos as possible on each frame. At the high level

we process the whole video three times. At the first pass we

detect logos based only on the target image. At the second

pass we detect logos based on the logo instances that we de-

tected previously. Finally at the third pass we track all the

detected instances in order to retrieve the missing detections

and stabilize the results.

Logo detection can be regarded as a particular case of

object detection. The additional constraints allow stronger

detections than would be possible using a general object de-

tector. Specifically, in logo detection the two images to be

matched play very different roles and have different quality;

most of the matching keypoints are expected to be outliers;

there can be zero, one or many detections, and these cases

must be told apart automatically. Since the pioneering method

called “Video Google” [1] for general object retrieval, several

works have improved on it with the focus on finding small

synthetic images on low-resolution videos [2], [3], [4].

One standard method for logo detection is the following:

first we compute the descriptors of a model logo and of the

image to be analyzed; then, we pair the most similar descrip-

tors of each image; and finally we try to find a subset of these



pairs that matches closely by an affine map. Usually, this sub-

set and this affine map are found by RANSAC: randomly try

small subsets of pairs, until one subset is found that matches

correctly by an affine map, which is then enlarged as much as

possible to a matching subset.

The standard method gives good results for large and

high-resolution logos, but it is not immediately useful for

solving the problem. For that, we developed an improved

method. Our improvements to the standard method are the

following: adaptation of RANSAC to the real asymmetric

case, where the model logo and the query image have much

different resolution and quality; fix automatically the thresh-

olds of RANSAC using a contrariomethods; use prior knowl-

edge about the images to optimize the pairing of points and

the random sampling of subsets; find more than one affinity

within the set of pairs (in order to have multiple detections);

build an orbit of model logos to improve the detection; track

the detections along a video sequence; evaluate and report the

quality and precision of each detection, etc. We have put to-

gether all these new techniques into a pipeline for video pro-

cessing. The input of the pipeline is a video, and the output is

a summary of the logos appearing on each frame, annotated

with their positions and their visibility (according to different

visibility criteria).

The contribution of our work is a method for logo detec-

tion with performance comparable to visual inspection, spe-

cially for images where the logos are small and severely dis-

torted. The rest of the paper is organized as follows. In Sec-

tion 2 we describe a method for detecting logos on a single

image. In Section 3 we describe a method for detecting logos

on a video, which builds on the method of Section 2. In Sec-

tion 4 we describe the results of our experiments. Finally, we

summarize our conclusions in Section 5.

2. FRAME-LEVEL DETECTION

We have investigated many ways of making a robust detection

method. Our approach is based on the SIFT method proposed

in [5]. The key ideas behind SIFT is first to find keypoints

in the image that are scale and rotation covariant. Second, to

compute descriptors that are invariant to said transformations.

These descriptors are based on histograms of gradients in the

vicinity of the keypoints. If we compute the SIFT descriptors

in the logo image and the video frame, then we can match the

corresponding keypoints and compute an affine transforma-

tion between the two images. Since the invariance of SIFT

to the observed image distortions is not perfect, we proceed

as in [6], and build a set of distorted versions of the images,

before matching them.

2.1. Standard methodology (SIFT+RANSAC)

Recall that many different problems can be regarded as clus-

tering of pairs of points between two images: stereo match-

ing, optical flow segmentation, and logo detection, which is

our goal. The keypoints that we use are standard SIFT key-

points, which we match using and absolute threshold to find

a list of pairs of points. The clustering technique we propose

is a variation of RANSAC [5], [7].

Thus, the basic building block of our method is the fol-

lowing core algorithm, that finds occurrences of one image

into another.

1. Get SIFT keypoints of the two images

2. Find matching pairs (see §2.3)
3. Find affinities between subsets of pairs (see §2.4)

Notice that multi-RANSAC gives a (possibly empty) list of

affinities. Each of these affinities corresponds to a detection.

These affinities map the bounding box of the model logo to

a set of parallelograms in the image domain, which we call

the detection rectangles.

The problem of this “core” method is that, as stated, it

does not work very well for logo detection. Besides being

very slow, it fails to detect the small and distorted logos which

appear in many low resolution videos. Our goal is to improve

the reliability of this method to attain a performance compa-

rable to human visual inspection. We do not focus on running

time, but on the precision of the output. However, some of the

proposed modifications increase the speed of the algorithm.

The rest of this section is a list of the proposed heuris-

tics and improvements to the core algorithm for detecting

one logo on one frame. The next section deals with further

improvements specific to the detection of multiple logos on

video sequences.

2.2. Orbit of logo distortions

An orbit of an image is simply a list of distorted versions of

the image (see Figure 2). We compute the keypoints of each

image in the orbit and store them in a single list, using a com-

mon system of coordinates. There are two reasons for using

orbits: The first reason is that we need more keypoints, be-

cause the standard SIFT detector produces too few keypoints

on small resolution logos (about 10 keypoints). The second

reason is that the query images have very large distortions,

way beyond the practical range of invariance of SIFT.

We use orbits to enlarge the set of keypoints of the model

logos and of the query frames. The set of distortions in each

case is different. For the model logo we build a small or-

bit with some combinations of zoom, blur, horizontal motion,

and de-interlacing artifacts. Note that there are no rotations

nor shears in the orbit: most logos in broadcast videos ap-

pear in horizontal position. For the query frames, we build

an orbit of four images: the original frame, the de-interlaced

frame, a double-resolution version of the original frame, and

a double-resolution de-interlaced version.

2.3. Thresholding the SIFT distance to obtain matchings

Once we have the SIFT keypoints and descriptors of the im-

age and the model logo, we have to match them. There exist

several matching criteria, depending on whether we want a



(a) Orbit images (b) Orbit keypoints

Fig. 2. A small orbit of 25 images. Each image has between 12

and 90 keypoints. The whole orbit has 870 different keypoints. The

smallest images in the orbit have size 50 × 20 and are severely dis-

torted.

Fig. 3. Our database of 21 logos

relative or absolute threshold, and we want to treat symmetri-

cally or asymmetrically the two images to be matched. In our

case, we found the following criterion the most useful: fix an

absolute threshold for the Euclidean distance between SIFT

descriptors of t = 290. Then, for each keypoint on the video

frame, find the nearest keypoint of the model logo, as long

as the distance is smaller than t. This matching is done by

exhaustive search, which is the fastest method for datasets of

our size. The result is a list of about 800 pairs for each frame,

which is a reasonable input size for RANSAC.

There is a strong argument against using a relative thresh-

old of SIFT distances for logo detection. The reason is that

there can be more than one appearance of a logo in the query

image, and the logo may have repeated letters. Thus, the clos-

est matchings may all correspond to correct detections. In the

ideal case, all these correct matchings will have a descriptor

distance arbitrarily small, but the relative threshold may reject

them. An absolute threshold does not have this problem, and

this is the reason of our choice.

2.4. Automatic thresholding of RANSAC

RANSAC-like methods are used to fit a model to data points

where a lot of them are outliers. Typically, these methods

fix a maximum allowed error s, and then find the largest set

of inliers than can be matched by some model with an error

smaller than s. Since the set of possible models is very large,

exhaustive search is not practical, and an educated random

sampling is used instead.

Using a fixed maximum error is practical and, in many

cases, it makes sense. However, we can think about the fol-

lowing example. Suppose that we have 1000 pairs of points in

two images, and we find an affine transformation that matches

4 of these pairs with a maximum error of 1 pixel. Then, we

also have another affine transformation that matches 900 of

these points with a maximum error of 3 pixels. Clearly, the

second transformation is better, because it explains much bet-

ter the given data. However, if the error threshold is set to 2,
the first transformation will be detected as good enough, and

the second one will be ignored. This caricature problem il-

lustrates an intrinsic problem of working with a fixed error

threshold and optimizing only on the number of inliers. In

practice, this problem manifests itself as an extreme sensi-

tivity of the method to any fixed threshold. Thus, instead of

using a fixed threshold, we need a criterion to compare can-

didate transformations of different size, as a function of both

their error and their number of inliers.

Our approach is an adaptation of the method to find fun-

damental matrices in [7] to the case of affine transformations.

Let S be a set of pairs of points in the plane. We want to find

subsets of S which are well-approximated by affine maps.

Given a subset S′ = {(mi,m
′

i)} ⊆ S and an affine map A,

we define the following scale-free error measure of A:

α(A,S′) :=

√

π

|Ω|
max

S′

{‖m′

i − Ami‖}

where |Ω| is the area of the image domain. Following [7], we

define for each affine mapA and each subset S′ of size k of S,

this score measure:

m(S,A, S′) := − log

[

(n − 3)

(

n

k

)(

k

3

)

α(A,S′)2(k−3)

]

.

We say that A is meaningful, or that A describes correctly the

match S′, when m(S,A, S′) > 0.
The score measure m can be regarded as a function m =

m(k, t), which is used to evaluate a candidate subset of k in-

liers whose maximum error is t. The condition m(k, t) > 0
defines the accepted subsets of inliers, but it is actually a

threshold that can be adjusted. The advantage of this thresh-

old is that it has a clear meaning: if we use m(k, t) > m0 as

a condition for acceptance, the expected number of false pos-

itives of the detector will be around e−m0 . Thus, a high m0

produces a robust detection, and a low m0 produces a sensi-

tive detection.

Using RANSAC with the score m gives rise to an algo-

rithm that finds zero or one affinities for any given set of

pairs S. We have extended this method to find an arbitrary

number of affinities, by running it recursively on the set of

outliers until no new affinities are found. This is what we call

“a contrario multi-RANSAC”.

2.5. Prior on the allowed affinities

Common RANSAC is blind. It selects three point pairs, and

evaluates the affine map determined by them. Determining

an affine map from three point pairs is a fast application

of a constant formula. However, to evaluate an affine map,

all the point pairs must be sorted according to their error,

and then the best threshold for the error must be selected.

This is a very expensive operation, because all the input data



(a) Video frame (b) Dilated color mask

Fig. 4. Reduction of search space using a color mask. Out of the

12628 SIFT keypoints on the original frame, only 2547 fall inside

the masked region.

must be traversed. Since almost no affinities give meaning-

ful matchings all this work is wasted. How can we know in

advance, without expensive computations, whether an affin-

ity ( x
y )

′

=
(

a b
c d

)

( x
y ) + ( p

q ) will not be meaningful? For

a start, the determinant ad − bc must be positive, since we

do not care for mirror-images of logos. This observation al-

lows us to discard 50% of the candidate affinities before doing

any computations with them. By further constraining the co-

efficients a, b, c, d, limiting reasonably the zoom, shear and

tilt of the logos, we can discard up to 90% of the affinities.

This is the single most important optimizing heuristic that we

use. It produces a 100-fold reduction of running time for low-

resolution videos. It amounts to using a uniform prior on a

compact subset of the 6-dimensional space of all affinities.

2.6. Keypoint rejection based on color mask

In many applications it is easy to discard large portions of

the query image by a simple criterion (e.g., a color mask).

By a standard reasoning, multiplication of the input size by p

results in multiplication of the running time by p3. This is

a huge improvement, even for moderately small p < 1. This
improvement can be easily achieved if we have prior informa-

tion on the colors present on the scene, the colors of the logo,

or the location of the logo. For example, if we look for lo-

gos in videos of football games, we can safely remove all the

features which are on green regions, which will correspond

to the grass. This may probably reduce the number of key-

points to 10%, boosting the efficiency a thousand times. See

Figure 4 for an example of a simple color mask. In this case a

naive RGB mask (R > max(G,B)) was used. A more elab-

orate approach could be based in the color histogram method

proposed in [8]. This kind of masks are very useful to boost

the performance of most detectors.

2.7. Non-uniform sampling using the descriptor metric

This is a “soft” version of the absolute threshold on descriptor

distances. The basic idea is that the pairs of features with sim-

ilar descriptors are more likely to be correct matchings than

the pairs of features with different descriptors. Thus, descrip-

tor distance predicts the correctness of the match. In common

RANSAC, the pairs are sampled uniformly. In our implemen-

tation (as proposed similarly in [9]), the sampling is biased to-

Fig. 5. Image containing 154 logos. After 1 hour of common

RANSAC trials, only 10 logos have been found. A few seconds

of “localized RANSAC” suffice to find all the logos. This image has

size 2304× 3072 and has 63018 SIFT keypoints.

wards the better matchings. That way, a good correspondence

is likely to be found sooner.

2.8. Non-uniform sampling using localization

Recall that the expected running time to find a meaningful

affinity is proportional to the cube of the number of outliers.

This is specially problematic for the detection of small lo-

gos in large images. An extreme case is shown in Figure 5.

However, a small logo can be easily detected by cropping the

image around that logo. This crop can be simulated in real

time in the following way. Instead of sampling three key-

points uniformly over the whole image, sample the first point

uniformly over the whole image, and the other two uniformly

on a small neighborhood of the first point. This kind of local

sampling can be implemented efficiently by distributing all

the keypoints into overlapping rectangular regions of small

size. We call this simple variation of RANSAC, which is part

of the computer vision folklore, “localized RANSAC”.

3. VIDEO-LEVEL DETECTION

At the first stage of the method we search throughout the

video sequence. For each frame we use the low level detec-

tion method described in Section 2 (Figure 6). In this way we

localize with high confidence as many instances of the target

logo as is possible. Our aim here is to avoid any false detec-

tion, and collect a set of logo instances that is representative

of the video. Thus it is not necessary to check every frame,

but a subset of frames uniformly distributed inside the video.

At the second stage of the method we search again

throughout the video, but this time our target is the origi-

nal logo as well as the other instances detected at the first

stage. Introducing the detected logos as targets lets us detect

more difficult cases. We should note that we do not try to de-

tect each logo instance independently, instead we merge their

keypoints with those of the original logo. As in the previous

stage, it is not necessary to search for logos at each frame,

thus we suggest searching once every second.

At the third stage of the method we track the detections.

Given all the detected instances at two frames that are one



(a) Primary (b) Secondary (c) Tracking

Fig. 6. Three rounds of detections. The primary detection matches

the model logo against a single frame and finds some logos. The

secondary detection adds the best of them to a “local orbit”, and

re-runs the detector using the enlarged orbit. The tertiary detection

tracks each detected logo for the next few frames.

second apart, we track them forward and backward. Then we

remove the overlapping detections.

3.1. Secondary detection (local orbits)

Many false negatives occur because the descriptors of the logo

and the video frame are too different. This is due, in part,

to distortions not taken into account when building the orbit.

The idea of “secondary detection” (see Figure 6(b)) is to add

the keypoints of the best detections to the orbit, and re-run

the detector using the enlarged orbit. That way, the best de-

tections serve as an anchor between the model logo and the

lower-resolution logos, which can not be detected directly.

3.2. Tracking between frames

To solve flickering of detections and enforce temporal sta-

bility we track the detections of one frame to the next one,

as shown in Figure 6(c). The tracking is very fast, since we

have already computed the keypoints. Moreover, the track-

ing is only computed when a logo detection disappears on a

region of the image domain. To track a logo detection from

one frame to the next one, we first define a rectangle that con-

tains the detected logo with some margin. Then, we select the

keypoints of the next frame which fall inside this rectangle.

Finally, we use RANSAC to match the keypoints between the

two rectangles.

The process of tracking has several advantages, and can

be used in different ways: since it is faster than the primary

detections, it permits us to skip the primary detection on a

few frames, and then recover the lost detections using track-

ing. Also, it permits to follow a logo appearance whose qual-

ity fades away, well beyond the threshold of detectability for

primary detection. This happens, for example, when a F1

containing the logo moves away from the camera.

3.3. Quality descriptors

When lowering the detection threshold of a contrario

RANSAC, false detections appear. There are two kinds of

false detections. The first kind is spurious detections, which

happen even for random data (because we have increased the

expected number of false alarms), in the middle or across tex-

tured regions. The second kind is partial detections of other

Fig. 7. False partial detection. The letters “nder” of “Santander”

match very well the letters “odaf” of “Vodafone”.

logos, where some letter or group of letters of the model logo

is matched to the same letters on a different logo that appears

on the image. See Figure 7 for an example.

Quality descriptors, independent to the meaningfulness

score, can be used to reject the spurious detections on a post-

processing step. Quality descriptors are numbers computed

for each detection, which are increasing with respect to the

quality of the detection. By setting minimum thresholds on

these numbers, we aim to reject false positives. A detailed

study of quality descriptors is very dependant on the appli-

cation. Let us list the ones that we found most useful: the

number of inliers of a detection, the maximum or average er-

ror of the matched inliers, the % of area of the model logo

covered by inilers, the % of outliers inside the detection rect-

angle (within the query image), the correlation of the model

logo against the detection rectangle (mapped back to the same

system of coordinates).

3.4. Multiple logo detection

A common source of false positives is partial matchings to

parts of other logos. For instance, when two different logos

have some letters in common, an occurrence of either of them

will trigger the detection of both of them. In general, the cor-

rect detection will have a higher score than the incorrect one.

Thus, a simple criterion can be used to pick the correct one:

whenever we have some overlapping detections, keep only

the one with higher score. We can turn this to our favor: even

when we are only interested in detecting one brand, adding

more logos from other brands to the database allows us to

lower the detection thresholds, and detect more correct logos

of the initial brand.

4. RESULTS

We have run our detector on two short video sequences of a

few thousand frames (see Figures 10 and 11). These videos

have been manually annotated to describe how many logos

of each brand appear on each frame, and we have taken this

annotation as the ground truth. The quality of the results is

nearly the same as the manual annotation. There are virtually

zero false positives, and the false negatives occur only in ex-

tremely degraded images, which required a certain amount of

ingenuity to be annotated. See Figure 9 for some examples of

these false negatives.



Fig. 10. Results of the detector for the logo “santander” on a sequence of 1680 frames of Formula 1 footage. The graphs show the number

of appearances of this logo on each frame, according to the ground truth (obtained by visual inspection), the primary detection, and the final

result.

Fig. 11. Results of the detector on a sequence of 900 frames of Football footage. The graphs show the number of appearances of a logo on

each frame, according to the ground truth (obtained by visual inspection), the primary detection, and the final result. In this experiment, the

primary detection was only run every 25 frames, and the rest of the work was done by the local orbits and the tracking.

Fig. 8. Examples of the worst-case quality of logos that we have

detected. Each image shows the model logo and the detection rect-

angles in a detail of the frame. Notice that the logo appearances are

severely distorted, and barely distinguishable by visual inspection.

Fig. 9. Details of two frames where false negatives occur, the frame

520 (on the left) and the frame 650 (on the right) from the F1 se-

quence analyzed on Figure 10.

5. CONCLUSIONS

We have presented a robust algorithm for logo detection in

low-resolution videos. The algorithm is based on a combi-

nation of standard techniques, which alone do not produce

practical results. Our results are comparable to human visual

inspection, and the running time is about 10s per frame (of

size 720× 576) on a single processor of a current commodity

computer.
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