
Morphological and Statistical Techniques
for the Analysis of 3D Images

Enric Meinhardt-Llopis

Tesi Doctoral UPF / 2011

Supervisada pel

Dr Vicent Caselles Costa
Departament de Tecnologies de la Informació i les Comunicacions

A l’Arlet

Acknowledgement

The work described in this thesis is the result of the contribution of many people.
I want to express my gratitude to them.

First of all, I want to thank my advisor Vicent Caselles, who gave me the
opportunity to join his group and carry out research under his supervision. I
thank him for his knowledge, patience, and dedication. He did much more than
an advisor is expected to do. I will be forever indebted to him.

Many thanks to the members of the reading committee, Jean-Michel Morel,
Alejandro Frangi and Ferran Marqués, as well as their substitutes Coloma Ballester
and Llúıs Garrido, for their time and interest.

Many thanks to Gregory Randall and his team for the warm welcome that I
received during my stage in Montevideo. Special thanks to Pablo Cancela: I am
very fortunate for everything that I learned from him.

Many thanks to Ernesto Zacur and to Pau Gargallo. These two people have
an interesting ability: when I explain my vague ideas to them, they explain these
ideas back to me in a form which I can understand. Many ideas on this thesis
have gone through such filtering.

Many thanks to Rafael Grompone and to Jérémie Jakubowicz for the inter-
esting discussions we have had every time we have met.

Many thanks to the former and current staff of my Department, specially to
Roser Clavero, Judith Champion and Lydia Garćıa.

Many thanks to Gabriele Facciolo for being such a nice and helpful colleague.
The third part of this thesis is joint work with him.

Many thanks to Juan Cardelino for his help on the implementation of several
algorithms.

I want to thank also my former and current colleagues for the nice time
that I spent with them: Dani Mart́ı, Vicenç Gómez, Andreas Kaltenbrunner,
Jordi Faro, Oscar Civit, Marc Bernot, Tomàs Winand, Leticia Peres, Héctor
Palacios, Rodrigo Palma, Rodrigo Verschae, Laura Igual, Gloria Haro, Adrian
Marquas, Javier Preciozzi, Pablo Arias, Edoardo Provenzi, Sira Ferradans, Felipe
Calderero, Vanel Lazcano, Rida Sadek and Constantinos Constantinopoulos.

Many thanks to my family and to my friends for still calling me from time to
time, even if I rarely call them back.

The highest gratitude goes to my partner Cristina, for her unbelievable abil-
ity to create a sweet atmosphere of calmness and tranquility around me. This
peaceful environment is what allowed me to complete the present work.

iii

Abstract

This thesis proposes a tree data structure to encode the connected components
of level sets of 3D images. This data structure is applied as a main tool in sev-
eral proposed applications: 3D morphological operators, medical image visualiza-
tion, analysis of color histograms, object tracking in videos and edge detection.
Motivated by the problem of edge linking, the thesis contains also an study of
anisotropic total variation denoising as a tool for computing anisotropic Cheeger
sets. These anisotropic Cheeger sets can be used to find global optima of a class
of edge linking functionals. They are also related to some affine invariant de-
scriptors which are used in object recognition, and this relationship is laid out
explicitly.

Resum

Aquesta tesi proposa una estructura de dades per emmagatzemar imatges tri-
dimensionals. L’estructura da dades té forma d’arbre i codifica les components
connexes dels conjunts de nivell de la imatge. Aquesta estructura és la eina bàsica
per moltes aplicacions proposades: operadors morfològics tridimensionals, visua-
lització d’imatges mèdiques, anàlisi d’histogrames de color, seguiment d’objectes
en v́ıdeo i detecció de vores. Motivada pel problema de la completació de vo-
res, la tesi conté un estudi de com l’eliminació de soroll mitjançant variació to-
tal anisòtropa es pot fer servir per calcular conjunts de Cheeger en mètriques
anisòtropes. Aquests conjunts de Cheeger anisòtrops es poden utilitzar per trobar
òptims globals d’alguns funcionals per completar vores. També estan relacionats
amb certs invariants afins que s’utilitzen en reconeixement d’objectes, i en la tesi
s’explicita aquesta relació.

i

Preface

Two-dimensional digital images are typically color or gray-level photographs,
coming from scanners or digital cameras. The pixels on these images have essen-
tially the same meaning: they measure the amount of light that a captor receives
from each direction among a fixed cone of possible directions. Thus, most 2D im-
ages are ultimately models of what happens in a retina, and a large part of image
processing is built upon this assumption. This assumption can be summarized
by saying that the two axes of the image domain have units of distance.

The situation for three-dimensional digital images is quite different, for they
can come from a variety of sources. They can be, for example, tomographies, color
histograms, video sequences, multispectral or multi-focus 2D images, graphs of
gray images, or restricted versions of higher dimensional light fields. Each of
these, essentially different, cases of 3D images can be summarized by the units
of their three axes. For example, medical images have three spatial dimensions,
videos have two spatial and one temporal direction, multispectral images have
two spatial and one frequential direction, color histograms have three frequential
directions, graphs of gray images (as used in bilateral filtering) have two spatial
and one intensity dimension.

Since there are more types of images than in 2D, the analysis of 3D images
requires a larger variety of techniques, some of them applicable only to a specific
type. Besides this variety of sources, there exist intrinsic difficulties of 3D images,
coming from topological properties that differ between the dimensions. Many
nice structures of the plane do not transport well to higher dimensions. For
example, there is only one notion of hole for subsets of the plane, but subsets of
the space may have holes and handles. Complex numbers do not have a three-
dimensional analogue. The Euler-Poincaré characteristic can be computed locally
in two dimensions but not in three. This lack of nice properties may result in
some further difficulties.

On the other hand, three-dimensional images are in some cases easier. For
example, occlusions are a typical circumstance of 2D images, leading to problems
when one object occludes another object of the same intensity. In 3D medical
images there are no such occlusions: the value of the image at a point is the
density of some physical quantity at a corresponding point in space. Thus the
objects are, at least in principle, easier to separate by their color (however, 3D
medical images tend to be of lower resolution and noisier than 2D photographs).

The work leading to this thesis started as a 3D implementation of a 2D data
structure: the Tree of Shapes. It was followed by the generalization of many
algorithms using the Tree of Shapes in 2D to the 3D case. Along the way, many
of the difficulties outlined above were found and dealt with. One of these difficul-
ties, the linking of partial edges, led to a variational formulation of edge linking
whose global optimum gave reasonable results. An unexpected connection with
affine invariants used for object recognition was found, and this concluded the
development.

iii

Contents

Preface iii

Contents v

1 Outline 1

I The Three Dimensional Tree of Shapes 5

2 Historical context of trees to represent images 7

3 Tree of Shapes: The Theory 19
3.1 Mathematical Preliminaries . 19
3.2 Definitions of the Tree of Shapes 26
3.3 Combinatorial properties of the continuous tree 28

4 Tree of Shapes: The Implementation 43
4.1 First Discrete Approach: Geometry of Digital Images 43
4.2 Second Discrete Approach: Topographic Graphs 47
4.3 Data structures for storing trees of subsets 50
4.4 Algorithms . 57

5 Tree of Shapes: First applications 65
5.1 Self-dual morphological filters . 65
5.2 Visualization of images . 69
5.3 Color histogram analysis . 73
5.4 Optical flow analysis . 81

II A 3D Edge Detector 93

6 Historical context of edge detectors 95

7 Digression on triangulated surfaces 99
7.1 Consistent Marching Cubes . 99
7.2 Graph cuts on surfaces . 103
7.3 Mumford-Shah segmentation of surfaces 105

8 Complete description of the proposed edge detector 111
8.1 Hypotheses of the method . 111
8.2 Selection of meaningful patches from a given collection 112
8.3 Production of candidate patches 116
8.4 3D Edge Detection Algorithm . 118

9 Further notes about the proposed edge detector 121

v

vi Contents

9.1 Exclusion principle . 121
9.2 Size statistics and other heuristics 122
9.3 Surface Joining . 124
9.4 Experimental results . 126

IIICheeger sets and affine invariants 139

10 Historical context of Finsler-Cheeger sets 141

11 Finsler total variation and Cheeger sets 153
11.1 Mathematical preliminaries . 153
11.2 A PDE that produces Finsler-Cheeger sets 161
11.3 Local Finsler-Cheeger sets . 169

12 Numerical computation of Finsler-Cheeger sets 171
12.1 Minimization of the dual problem by finite differences 171
12.2 Numerical computation of Finsler-Cheeger sets 175

13 Applications of Finsler-Cheeger sets 181
13.1 Framework for the applications . 181
13.2 Segmentation and edge linking . 181
13.3 Diffusion and colorization . 182

14 Appropriate setting for Maximally Stable Extremal Regions 189
14.1 Overview . 189
14.2 Definition of MSER over an arbitrary tree 189
14.3 MSER are Finsler-Cheeger sets . 192
14.4 Affine invariance . 194

IVAppendixes 199

15 Conclusion 201
15.1 Overview of proposed contributions 201
15.2 Future work . 201

16 Published Work 203

Bibliography 205

1 Outline

This thesis is divided into three parts.

The first part deals mainly with topology, algorithms and data structures
for image representation. The tone of this part is formal: we define structures,
prove results about them, and propose algorithms to compute them.

What is the technological interest of these constructions? Well, fancy data
structures to store digital images are as old as image processing itself. Each
data structure provides a representation of the image which is well suited to
certain operations on the image. For example, the representation of an image
by its Fourier transform is well suited to the application of linear filters, or to
the analysis of its smoothness; the representation by a wavelet packet basis lends
itself to image approximation or compression. The representation of an image
by its tree of shapes is well suited to the application of some morphological
operators, to segmentation and to edge detection. Moreover, in the 3D case
it provides a great aid to visualization. The tree of shapes of 2D images is a
well-known data structure which, since its introduction 10 years ago, and with
different names coming from independent rediscoveries, has been applied to many
different problems in image processing. The first contribution of this thesis is to
extend the algorithm to compute the 2D tree of shapes to 3D images. For that,
we have to introduce a new description of the tree of shapes as the fusion of the
trees of upper and lower level sets of a function. It turns out that, if the function
does not oscillate wildly, this fusion is a combinatorial re-arrangement of some
branches of the trees of upper and lower level sets. The detailed explanation of
this fusion is the second contribution of this part.

Finally, at the end of this part, we show some simple applications of the tree
of shapes: morphological filtering, color histogram analysis, image visualization,
and video analysis.

Thus, there are two non-entirely-trivial contributions on the first part: an
explanation of some combinatorial properties of the collection of level sets of a
function, and an algorithm to compute a data structure to store 3D images, which
is based on these combinatorial properties. As an aside, we explain how this data
structure is useful for color histogram visualization and object tracking in videos.

The second part introduces a new method of edge detection. The tone of
this part is heuristic: we define a set of tools that are finally used to build a
complex machinery, which just happens to work.

Thus, the second part is focused on a more complex application of the three-
dimensional tree of shapes: an edge detector for 3D images. This detector is
analogous to a well-known edge detector for 2D images. The main idea of this
method is to traverse the level surfaces of the image one by one, and to select
the best contrasted parts of each surface, if any. To decide whether a part of
a surface is well-contrasted or not, we use a statistical test that compares its
contrast with the overall contrast of the image. This statistical test is commonly
used in computational gestalt theory, under the name of “Helmholtz principle”,

1

2 Chapter 1. Outline

where it is presented as a general method for finding structures without any
a-priori model of them (only from a model of noise).

As in the first part, here the main contributions are related to the passage from
2D to 3D images. While the edges of a planar image are pieces of curve, the edges
of a volumetric image are pieces of surface, which are more delicate to manage.
In the 2D case, all connected pieces of level curves were considered as possible
candidates for edges. In our adaptation to 3D, we restrict the space of candidate
edges to a only a small class of connected pieces of level surfaces. Namely, to
those pieces that arise as segments of a piecewise constant segmentation of the
Mumford-Shah functional of a contrast function defined on each level surface.
The rationale for this choice is given in detail, but the basic idea is that the
desired edges, besides being well-contrasted, must be pieces of surface with a
smooth boundary. At this point, the thesis enters into a digression on triangulated
surfaces; because we have to explain how to find topologically consistent and
precise level surfaces, how to do integral-geometric computations on them, and
how to build the Mumford-Shah model on them. Once we have all the necessary
constructions on triangulated surfaces, the edge detector itself can be described
briefly as a combination of these constructions. At the end of this part, the
proposed edge detector is analyzed in detail, both theoretically and practically
(by running it on some sample synthetic and real images).

The main contribution of this part is the definition of the edge detector for
3D images (and the description of the path that leads to it).

The third part deals mainly with analysis, numerical approximation, and
computer vision. The tone of this part is jovial: motivated by the problem of
edge linking, we explain how a number of apparently different objects are closely
related, and we obtain pleasure from these findings.

This part starts by recalling the relationship between Cheeger sets (subsets
of a domain which minimize the perimeter/area ratio) and total variation (a
semi-norm on the space of functions). Then we transport this relationship to
the context of Finsler manifolds, where Finsler-Cheeger sets are closely related
to Finsler total variation. We explain how Finsler-Cheeger sets are found as level
sets of stable solutions of a PDE for minimizing Finsler total variation. Then, we
explain how to use this fact to devise a numerical scheme for computing Finsler-
Cheeger sets. This scheme has two parts: first solve a PDE, and then find the
appropriate level surfaces of the solution. At this point, for organizing the search
of the appropriate level surface, the tree of shapes comes handy, and it is also
used to define various notions of local Finsler-Cheeger sets. The adaptation of all
these methods from Euclidean space to Finsler manifolds is the first contribution
of this part.

Finsler metrics have applications in image processing and in crystallography.
In image processing, Finsler metrics are the most general setting for anisotropic
diffusion and related techniques. For example, we show that the geodesic ac-
tive contour model (with an inflating force) produces surfaces which are Finsler-
Cheeger sets with an appropriate metric. It turns out that there is a different,
apparently unrelated, usage of Finsler-Cheeger sets in image processing, more

3

concretely in computer vision: the affine invariant descriptors MSER (Maximally
Stable Extremal Regions) are a kind of local Finsler-Cheeger sets of the image
domain with an appropriate metric. On the last chapter of the thesis we explore
this correspondence. After recalling the original definition of MSER, we propose
a slight change in the definition, that joins the MSER coming from upper or
lower level sets of the image. This change consists in using the tree of shapes
instead of the trees of upper or lower level sets. Then, we explain that MSER
are precisely the Finsler-Cheeger sets of the image domain with an appropriate
metric. Putting MSER into this context clarifies the interpretation of affine in-
variance and general robustness of MSER and MSER-like descriptors. Thus, the
second contribution of this part consists in putting under the same context ob-
jects as disparate as: anisotropic total variation, Finsler-Cheeger sets, geodesic
active contours, trees of shapes and affine-invariant image descriptors.

Thus, this part presents two contributions. The first contribution is the theory
and algorithms for computing local Finsler-Cheeger sets. The second contribution
is the application of Finsler-Cheeger sets to the study of affine invariant image
descriptors such as MSER.

Part I

The Three Dimensional Tree of

Shapes

5

2 Historical context of trees to represent images

In the image processing literature, several tree-like structures have been used to
encode the complexity of images. Here we describe some of them and outline
their main uses.

2.1 Trees in Mathematics

In mathematical image processing, grayscale images are often modelled by real-
valued functions on a rectangle. Real-valued functions can be very complicated
objects. When they are smooth enough, the structure of their singularities can be
used to describe that complexity. We begin this report with a historical account
of this geometric theory of real-valued functions.

Cayley, Maxwell, and Morse Theory

Although the nature of critical points of smooth functions on the plane was most
surely understood since ancient times, the first person to write it down in a mod-
ern manner seems to be Arthur Cayley. In 1859 he wrote a memoir [Cay59]
titled On Contour and Slope Lines where, in the language of topography, he de-
fines the objects of the theory, namely, contour lines and critical points. He notes
that in general one can assume that critical points are isolated and happen at
different levels, and that there are three types of critical point: maxima, minima,
and saddles (he calls them “summits”, “immits” and “knots” respectively). His
two results state that around a critical point the nonsingular level lines look like
a conic (ellipses for extrema, and hyperbolas for saddles), and that there is a
relation between the number of maxima, minima, and saddle points.

An independent memoir [Max70], but with similar contents, was presented
in 1870 by J. Clerk Maxwell titled On Hills and Dales. This memoir still uses
the language of topography, for example, defining level sets as those parts of the
terrain that would be covered by water as the oceans raised. This is a device
to make the exposition more vivid, because the content is purely mathematical.
The work of Maxwell improves that of Cayley: he considers arbitrarily degenerate
critical points, like multiple saddle points, and discusses also three dimensional
functions (described as potentials in space) and their critical points. For our
purposes, the most interesting feature of this paper is an unreferenced figure (see
fig.2.1) that shows how the lines of slope starting from the saddle points reach
the extrema, dividing the terrain in natural districts. While this is not a global
hierarchy like a tree, those slope lines indicate which saddles join and split which
level sets.

In the twentieth century these ideas of Cayley and Maxwell were refined and
generalized to arbitrary manifolds in what is known as Morse theory. Morse the-
ory starts with the observation that for any smooth function on an n-dimensional
manifold, around every non-degenerate critical point, one can find a local chart

7

8 Chapter 2. Historical context of trees to represent images

Figure 2.1: Maxwell’s figure showing the graph of principal slope lines on a terrain

such that the function is a quadratic polynomial of the form

f(x) = c− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

n.

The number λ is called the index of the critical point, and is invariant under the
choice of local chart. Thus, maxima have index n and minima have index 0, the
saddle points having indices in-between. Then, in two dimensions there is only
one kind of saddle point, in three dimensions there are two kinds, and so on.

The basic idea of Morse theory is that the topology of a manifold can be
understood using only smooth, non-degenerate functions on that manifold. For
instance, if we take a single function on a manifold, which has bi critical points
of index i, then

n
∑

i=0

(−1)ibi = χ,

where χ is the Euler characteristic of the manifold. In the case of the sphere, χ =
2, and we recover the relations given by Cayley and Maxwell.

Morse theory is a widely used tool in mathematics. Typically, one studies
complicated manifolds with the aid of easy functions on them (like heights or
distances). In image processing, on the contrary, we have complicated functions
on easy manifolds (rectangles), but the same ideas apply. A similar situation
is found when studying Riemannian metrics on images (see Figure 10.1 on Part
III).

bulk_tex/sections_mydea/figures/maxwell_tree_binary.eps

9

Figure 2.2: A smooth image and some of its level lines

Reeb Graph

The Reeb graph is a one-dimensional topological space that summarizes the topo-
logical changes of the level sets of a function. It was defined in 1946 by Georges
Reeb in a small note [Ree46]. It is the basis of some image representations as
trees. We refer to Reeb’s note for the details of its construction, and now we
explain briefly how can it be used for images.

For regular enough functions, most of the trees we will treat here can be
described as quotients of topological spaces in the following way. Let Ω be a
manifold and let f : Ω → R be a smooth function with isolated critical points.
The Reeb graph of f is defined as the topological quotient of the space Ω by the
relation

x ∼ y ⇐⇒ f(x) = f(y) and cc([f = f(x)], x) = cc([f = f(y)], y).

The Reeb graph is a tree, in the sense that as a topological space it does not
have any subspace homeomorphic to S1. The upper Morse tree is defined as the
quotient of Ω by the relation

x ∼ y ⇐⇒ f(x) = f(y) and cc([f ≥ f(x)], x) = cc([f ≥ f(y)], y).

The class of a point where the function reaches its absolute minimum is selected
as the root of the upper Morse tree. The lower Morse tree is defined similarly,
using lower-level sets. The tree of shapes is the same as the Reeb graph, but with
one arbitrarily selected point as the root. Notice that when the space Ω is simply
connected, the Reeb graph has no loops and it is indeed a tree. The advantage
of using a topological quotient is that the resulting tree inherits a topological
structure in a natural way, thus we can talk about neighborhoods of level sets
being formed by other level sets.

In the “non-degenerate” case, this is the whole story. However, in the com-
puter implementation of these ideas, one faces two problems: 1) the function and

bulk_tex/sections_mydea/figures/bolcargris_petit.eps
bulk_tex/sections_mydea/figures/bolcar.eps

10 Chapter 2. Historical context of trees to represent images

(a) Contour tree (b) Upper Morse tree (c) Lower Morse tree (d) Tree of shapes

Figure 2.3: Trees corresponding to the image in figure 2.2

the space are discrete, and 2) the function is usually degenerate. Thus, one has
to adapt these definitions to deal with discrete spaces and degenerate functions.
The different trees appearing in the commented literature can be understood as
different adaptations to these new scenario of the topological quotients defined
above.

Kronrod’s Tree

Independently of Reeb’s work, and about the same time, Alexander Kronrod
defined a similar tree for two-dimensional functions. Kronrod was interested
in extending the rich theory of functions of a real variable to functions of two
real variables, and used the tree as a tool. His work [Kro50] on functions of two
variables is not available in English. This is unfortunate because, as the following
excerpt from his bibliography [LY02] suggests, it must be extremely interesting:

The linear variation was basically a new object. Kronrod introduced
the concept of a monotone function of two variables, a natural gener-
alization of the corresponding concept for a function of a single vari-
able. He proved that the boundedness of the linear variation permits
the function to be represented as a difference of two monotone func-
tions. For the linear variation itself, he gave a number of equiva-
lent definitions, of which one is of particular interest. It turns out

bulk_tex/sections_mydea/figures/bolcar_reeb.eps
bulk_tex/sections_mydea/figures/bolcar_umt.eps
bulk_tex/sections_mydea/figures/bolcar_lmt.eps
bulk_tex/sections_mydea/figures/bolcar_tos.eps

11

that with a continuous function of two variables one can associate a
one-dimensional tree, the elements of which are the components of
the level-sets of the function. On them, with the help of the original
function, a metric can be defined and, on the tree, a function. The
linear variation then turns out to be equal to the usual variation of
the function defined on a one-dimensional tree. The boundedness of
both the planar and linear variation guarantees the existence almost
everywhere of the usual total differential.

The work of Kronrod is rarely referenced in image processing papers, even in
those which use constructions like the contour tree. Exceptions include [BCM03],
[AC03], [AC04].

2.2 Trees in Image Processing

Since images have been represented as rectangular arrays of pixels, people has
noticed that this representation has one major drawback: a pixel is too local a
unit of information. Of course, pixels are the simplest representation for images,
and lots of interesting operations can be applied directly to pixel-based images.
However, some hierarchical representations have been devised to ease tasks like
as segmentation and information retrieval. In this section we comment five such
representations and their applications. Some of them are the direct application
to image processing of the ideas of Reeb and Kronrod, as we saw in the previous
section.

Quadtrees and Octtrees

Quadtrees [RK82] were designed to represent binary images with large constant
regions. The idea is simple: take a square image, if it is constant then the rep-
resentation is trivial, otherwise, divide it in four equal sub-squares and represent
each one of them recursively. When the image has large constant regions (for in-
stance, when it is sparse in one color), this is a very efficient representation. Note
that the smaller squares follow the edges of the image, but the edges themselves
are not readily available from the representation.

Nowadays, quadtrees are used in image processing mainly as a storage struc-
ture for multi-scale access to very large images. However, the same idea of a
recursive subdivision of the space is central in the wavelet representation. There,
one decomposes the image into a low-pass component, and three high-pass compo-
nents representing horizontal, vertical, and diagonal edges. The low-pass version
is then represented recursively using the same method. This representation is the
basis of one of the best image compression algorithms today, JPEG2000.

The wavelet compression gives impressive results. This is because most of the
information it contains is located at the edges of the image. As in quadtrees,
however, the edges themselves are not readily available from the representation.
This is not important at all when the purpose is compression. But if the purpose

12 Chapter 2. Historical context of trees to represent images

Figure 2.4: First steps in the construction of a quadtree (image taken
from [USS00]).

is, for instance, edge extraction, this wavelet representation does not help very
much, at least in a direct way.

Octtrees are the 3D version of quadtrees, where a cube is recursively divided
into 8 smaller cubes. They are an essential tool for processing medical images
interactively, because the multi-scale representation allows an arbitrary speed-
up in many operations, at the price of a reduced resolution, which is typically
acceptable.

Contour tree

In the search of a representation adapted to the geometry of images, the first idea
is to consider isolevel sets: according to mathematical morphology, the edges of
an image are often parts of its level lines. Thus, a good starting point is to use
data structures based on the set of all the level lines of an image. The Reeb
graph is such a structure, and when used in image processing, specially for three-
dimensional images, it is called the contour tree. The fact that the Reeb graph
of an image is, indeed, a tree comes from theorem 6 on Reeb’s paper.

The adaptation of critical point theory to a discrete environment was done
by Banchoff in 1967 [Ban67]. He built the discrete theory using polyhedra in-
stead of manifolds, and linear functions instead of smooth functions. Then, non-
degenerate functions are those whose gradient is not parallel to any edge of the
polyhedron.

A slightly different construction was introduced by van Kreveld et
al. [vvB+97]. These authors wanted a data structure that eased access to the

bulk_tex/sections_mydea/figures/qtreebo.eps

13

Figure 2.5: Contour tree of a two-dimensional mesh (image taken from [vvB+97])

set of isosurfaces, or contours, of their data. The data was defined on the ver-
tices of a simplicial mesh, which is the same as a flat polyhedron. Then they
considered the data interpolated linearly inside each simplex. This gave a con-
tinuous function over the whole space, whose isolevel sets could be defined, see
figure 2.5. The contour tree is the Reeb graph of this continuous function. The
whole construction relies on the hypothesis that the data is “unique”, meaning
that all vertices of the mesh have different values.

Since the introduction of the contour tree in image processing, several im-
proved algorithms have been presented to compute it [vvB+97], [CSA03], [TV98],
[PCM03], [CLLR05]. To summarize the results: there are algorithms to compute
contour trees in any number of dimensions with cost O(n log n), where n is the
number of vertices in the mesh. The reference [CLLR05] contains lots of other
references and a more detailed history of the algorithms to compute contour trees.
All these algorithms rely on the hypothesis of data unicity. While this may be
acceptable for functions defined on meshes, it is clearly not true for quantized
pixel based-images. One of the first references [CSA03] suggests the use of sim-
ulation of simplicity [EM90] to overcome that difficulty, but this does not seem
to be done anywhere. To-day, the most common workaround is to solve ties of
equal-valued vertices in order of their appearance, but this yields trees whose
topology depends on arbitrary choices.

Tree of criticalities

Under the name of Digital Morse Theory, Cox and Karron [CKF03] define and
propose a method to compute the upper Morse tree of arbitrary 2D and 3D
images. The advantage of their construction is that it is based directly on images
of pixels, and that it allows for degeneracies in data. For instance, they can treat
large regions of equal-valued pixels. Furthermore, as the upper Morse tree is
rooted, this organization provides a hierarchical subdivision of the image.

bulk_tex/sections_mydea/figures/contour.eps

14 Chapter 2. Historical context of trees to represent images

Figure 2.6: Creation of a binary partition tree (image taken from [SG00])

Binary tree

A completely different representation of images by trees is that of Garrido and
Salembier [SG00]. Their tree represents how regions in the image were joined
according to some joining strategy, coming from a similarity measure among
regions; see figure 2.6 to understand the idea. The novelty is that the choice of
regions is flexible: the joining strategy is in fact a parameter of the algorithm.
They propose several joining strategies, for instance joining the pair of adjacent
regions that have the most similar color. Other criteria might be homogeneity
(that is, similarity of histograms of both regions) or motion (were the images are
frames of a video sequence).

This is a just like the algorithms of region-merging, but where the whole
history of the mergings appears in the data structure. The main advantage of
this flexible approach is that it can give better results for highly textured images,
where the level-lines are too complicated and do not follow the borders of objects.

Mumford-Shah-Koepfler-López-Morel Tree

On [KLM94], the authors introduced a merging criterion to approximate minima
of a piece-wise constant version of the Mumford-Shah functional [MS88]. While
their emphasis was not on the data structure itself, this work contains the idea of
using a hierarchical segmentation of an image that can be pruned later to obtain
real segmentations. This hierarchical segmentation can be regarded as multi-scale
representation of the image. In some sense, this tree is a particular case of the
binary tree above, but discovered earlier, and using a very particular merging
criterion that comes from a global segmentation functional.

bulk_tex/sections_mydea/figures/binary.eps

15

Monotonic tree

A seemingly independent rediscovery of the tree of shapes was presented in 2002
by Y. Song and A. Zhang [SZ02]. They named it the monotonic tree, and pre-
sented their construction as an improvement of the contour tree aimed at discrete
images. The following quote from that paper explains clearly the different phi-
losophy of contour trees and trees of shapes (or monotonic trees):

Contours are only defined for continuous functions. For an image
represented by discrete data, a continuous function is first defined as
an interpolation of the data. Then the contour tree is defined on this
continuous function. In this paper, we introduce a new concept termed
monotonic tree, which is directly defined on discrete data.

Monotonic trees have been used successfully in some applications. Perhaps
the most attractive one is an algorithm [SZ03] to segment scenery images with
labels such as “sky”, “grass”, “water”, “tree”, “building”. The algorithm starts
computing the monotonic tree, and then joins contiguous regions according to the
similarity of their histograms to sample textures in a database. This technique
seems to be adaptable to more general segmentation problems.

Trees in mean shift and bilateral filtering

Given a 2D gray-level image, its pixels together with their values can be regarded
as points in 3D. Thus, the image is associated in a natural way to a cloud of
points. This cloud of points can be associated to a continuous density (e.g., by
replacing each point measure by a Gaussian). This density is at the heart of many
image processing operations, such as Mean Shift or Bilateral Filtering [Bar02].
The tree of upper level sets of this density, or the associated trees that result by
increasing the variances of the Gaussians, are natural objects in image processing
that give rise to hierarchical and multi-scale segmentation. They are closely
related to the component tree, which is a common tool in statistics for clustering
high-dimensional datasets [Wis69, NC06]

2.3 Some uses of the tree of shapes

The tree of shapes has been used successfully in several applications of 2D image
processing. The three reasons of this utility seem to be the following:

• It is a representation of images covariant under interesting transformations
of the image, such as local contrast changes, and continuous deformations
of the domain.

• It allows a quick access to level curves, either in an ordered manner, or
starting from a pixel.

16 Chapter 2. Historical context of trees to represent images

• It provides a hierarchical partition of the image into nested regions, and
allows the efficient computation and storage of regional measures such as
means or histograms.

Now we list some of these applications.

Implementation of morphological operators Some of the most interesting
morphological operators can be understood as operators acting on the tree
of shapes. Then, if images are represented using their trees, the applica-
tion of such operators is immediate. Grain filters, for instance, consist in
pruning the shapes of the tree with small area. See [CM02] for grain filters
and [VKM07] the general theory of morphological operations on trees.

Image Registration In his PhD thesis, Monasse uses the tree of shapes of two
images to register them. The registration is done using the largest shapes,
while the smallest shapes are allowed to be unregistered. This is useful if
the images to be registered represent an object with moving parts [Mon00].

Compression The tree of shapes has been used to compress digital elevation
maps [SCSA04, Igu06]. If you remove some level lines of a function, you
can recover an approximation to it. If you remove the maximal number of
level lines such that the interpolation is close enough to the original function,
you get an approximation that can be used for compression purposes.

Edge detection Desolneux et al. [DMM01] proposed a global criterion to select
the level lines in an image which are perceptually significant. They call them
“meaningful boundaries”. Thanks to the tree of shapes, the computation
of meaningful boundaries can be done in linear time.

Segmentation An algorithm for global image segmentation based on the tree
of shapes has been introduced by Cardelino et al. [CRBC07].

Shape Identification The problem of object matching can be approached by
matching of level lines. By computing suitable descriptors of all level lines
of an image (or a meaningful subset of them), different images can be com-
pared. Since level lines are robust to contrast changes, this provides a
reliable method for shape identification [CLM+08].

Texture Analysis Any descriptor of planar shapes gives rise to texture descrip-
tors via the three of shapes. To describe a texture, first describe each of its
shapes and then summarize the results into some kind of histogram. This
texture analysis has been successfully used for detecting the orientation of
terrain textures in satellite images [XDG09].

Self-dual MSER Maximally Stable Extremal Regions (MSER) [MCUP04] are
ubiquitous features for stereo matching, which intuitively are the most
salient light blobs on the image. They are formally defined in terms of
the tree of upper level sets, but their definition can be straightforwardly
adapted to the tree of shapes (see Section 14.2). The advantage of using

17

the tree of shapes is that it allows light and dark blobs to be processed
simultaneously.

Optical Flow Validation Due to their invariance to contrast changes, the level
lines are a useful feature for estimating or validating movements between
two image which may have suffered a change in illumination. In that setting,
the tree of shapes is the natural tool [CGI05].

3 Tree of Shapes: The Theory

The goal of this chapter is to define the tree of shapes as a mathematical concept
and explain its main theoretical properties. The chapter is organized into three
sections. Section 3.1 introduces all the mathematical definitions which are needed
for the construction of the tree of shapes. Section 3.2 briefly defines the tree of
shapes using all the previous machinery. Section 3.3 shows how the structure of
the tree of shapes can be obtained from the structure of the trees of upper and
lower level sets.

3.1 Mathematical Preliminaries

Besides the standard definitions of functions, real numbers and topological spaces,
the mathematical preliminaries for this chapter are the following: unicoherent
spaces, as a model for the image domains; semicontinuous functions as a model
for general images; and weakly oscillating functions, as a model for well-behaved
images.

These are mostly technical conditions which can be omitted on a first reading.
It is safe to ignore these definitions and skip to Section 3.2. Unicoherent spaces are
needed to assure that the external boundary of any connected region is connected.
Semicontinuous functions are the minimum requirement for the definition of the
tree of shapes. Weakly oscillating functions are needed so that the structure of
the tree of shapes is finite.

We also introduce an appropriate language to deal with certain families of
subsets of the image domain, namely trees of subsets.

3.1.1 Unicoherent Spaces

Let X be a topological space. As the space X will be used to model the domain
of an image (typically, a rectangle), we can require some technical simplifications.
In particular, we assume that X is compact and that it is unicoherent.

Definition 1. A topological space X is said to be unicoherent when it is connected
and for any closed and connected subsets A, B the following property holds:

A ∪B = X =⇒ A ∩B is connected.

The notion of unicoherence is closely related to that of simple connectedness,
that is, that closed loops are contractible. This condition is needed so that the
outer boundary of any region is connected. See figure 3.1 for an illustration.

Taking complements on the definition of unicoherence, we obtain the following
property: if A and B are disjoint open sets such that Ω\A and Ω\B are connected,
then Ω \ (A ∪B) is also connected. Iterating this union to a finite collection of
open subsets we obtain the following lemma, which is the form of unicoherence
which is most useful in proofs:

Lemma 2. Let X1,X2, . . . ,Xn be disjoint open sets such that for any i, Ω \Xi

is connected. Then Ω \⋃

iXi is also connected.

19

20 Chapter 3. Tree of Shapes: The Theory

Figure 3.1: An annulus is not unicoherent. Note that in can be covered by two
connected sets whose intersection is not connected. This implies that the external
boundary of a connected region inside the annulus can have multiple connected
components.

A Sat(A)

Figure 3.2: A region of the plane and its saturation. The analogous figure for
three-dimensional regions is difficult to draw because the holes would be occluded
by the external border. However, the definition and the ideas are exactly the
same.

Connected components of sets play an important role in our discussion. We
introduce the following notation for them. Let A be an open or closed subset
of X and p ∈ X.

• cc(A) is the set of connected components of A within X.

• cc(A, p) is the connected component of A that contains p, if there is any,
and the empty set otherwise.

The tree of shapes is defined in such a way that none of its objects has any
hole. In fact, its objects are precisely the objects from the upper and lower trees,
but with their holes removed (or, more precisely, covered). To formalize the
notion of hole we use the saturation operator, see figure 3.2.

The definition of saturation needs the notion of hole.

Definition 3. Let X be a topological space as before, and let A ⊆ X. The holes
of A are the connected components of X \A.

Now we need to differentiate between the internal holes of a region A and
its external hole. In a region such as that of figure 3.2, it is clear that the
external hole is that which touches the border of the image. However, for general
regions like that of figure 3.3, it is not so clear which is the external hole. In

bulk_tex/sections_mydea/figures/nonunicoherent.eps
bulk_tex/sections_mydea/figures/saturationa.eps
bulk_tex/sections_mydea/figures/saturationb.eps

3.1. Mathematical Preliminaries 21

A Sat(A)? Sat(A)? Sat(A)?

Figure 3.3: A region that touches the border of the image. What has to be its
external hole?

Sat(A,x)

x

Sat(A,x)

x

Sat(A,x)

x

Figure 3.4: A region of the plane and its saturation with respect to some different
points.

his PhD thesis [Mon00], Pascal Monasse suggests that the external hole is to be
the one that touches the largest part of the border. But this definition is a bit
expensive to generalize to 3D, computationalwise. We prefer to fix a point p∞
which is to belong to the external hole of any regions (except the region formed
by the whole domain X).

Definition 4. Let p ∈ X and A ⊆ X. The saturation of A with respect to p is

Sat(A, p) = X \ cc(X \A, p).

Usually, we fix a point p∞ ∈ X and denote Sat(A) := Sat(A, p∞). See fig-
ure 3.1.1.

Notice what this definition says: the saturation of A is the complement of the
external hole of A, or equivalently, the union of A with all of its internal holes.
If p∞ ∈ A, then the saturation of A is the whole domain X.

Proposition 5. The saturation operator, acting on subsets of X, has the follow-
ing properties, all of them proved in [BCM03]:

1. A ⊆ Sat(A) (extensiveness)

2. A ⊆ B =⇒ Sat(A) ⊆ Sat(B) (monotony)

3. Sat Sat(A) = Sat(A) (idempotency)

4. If A is connected then Sat(A) is also connected

5. If A is open then Sat(A) is also open

bulk_tex/sections_mydea/figures/saturation2a.eps
bulk_tex/sections_mydea/figures/saturation2b.eps
bulk_tex/sections_mydea/figures/saturation2c.eps
bulk_tex/sections_mydea/figures/saturation2d.eps
bulk_tex/sections_mydea/figures/saturation3a.eps
bulk_tex/sections_mydea/figures/saturation3b.eps
bulk_tex/sections_mydea/figures/saturation3c.eps

22 Chapter 3. Tree of Shapes: The Theory

6. If A is closed then Sat(A) is also closed

7. ∂ Sat(A) ⊆ ∂A

8. If Sat(A) 6= X then Sat(A) ⊆ Sat(∂A)

All these properties are quite natural. Properties 1, 2 and 3 say that Sat
is well-behaved as an operator of sets. Properties 4, 5 and 6 say that Sat is
compatible with the topology of X. Properties 7 and 8 explain that Sat(A) only
depends on the external boundary of A.

3.1.2 Semicontinuous Functions

Given a digital image, defined by its values on a discrete grid, we can produce
a semicontinuous function using nearest-neighbor interpolation. The choice of
semicontinuous interpolation is not discussed here.

Here we give some equivalent definitions of semicontinuity. This notion is
central to our theory because the functions that we use to model images are
upper semicontinuous functions. The proofs of all the assertions given here can
be found in any textbook on topology, such as [Cho73].

Since most of the following exposition deals with subsets of the image domain,
the following notation is useful. Let Ω be a fixed subset of Rn, which serves as
the domain for images. When f : Ω→ R is any function and P is a predicate on
real numbers, we define

[P (f)] := {x ∈ Ω : P (f(x))}. (3.1)

Upper and lower limits Let X be a topological space. If x is a point of X,
let O(x) denote the set of neighborhoods of x. The upper and lower limits of a
function f ∈ RX at the point x are defined as follows:

lim sup
y→x

f(y) = inf
U∈O(x)

sup
y∈U

f(y)

lim inf
y→x

f(y) = sup
U∈O(x)

inf
y∈U

f(y)

Intuitively, the upper limit of f at x is the highest value that the function attains
on small neighborhoods of x. A similar interpretation holds for the lower limit.

Notice that, by construction, any function is pointwise bounded by its lower
and upper limits:

lim inf
y→x

f(y) ≤ f(x) ≤ lim sup
y→x

f(y).

Local definition of semicontinuity A function is continuous at x when both
inequalities of the previous formula are equalities. When the first one is an
equality, then the function is lower semicontinuous at x. When the second one
is an equality, the function is upper semicontinuous at x. Thus, a function is

3.1. Mathematical Preliminaries 23

Figure 3.5: Three versions of the step function, a lower semicontinuous, a discon-
tinuous, and an upper semicontinuous.

Figure 3.6: The graph of a function, its epigraph and its hipograph

continuous at a point when it is both upper and lower semicontinuous at that
point.

A function is said to be upper semicontinuous when it is upper semicontinuous
at every point. A function is said to be lower semicontinuous when it is lower
semicontinuous at every point. Thus, a function is continuous when it is both
upper and lower semicontinuous. Intuitively, a discontinuous function will be
upper semicontinuous when its value at a discontinuity point is as high as possible.
And it will be lower semicontinuous when its value at a discontinuity point is as
low as possible.See figure 3.5 for an illustration of this fact for 1D functions.

Global definition of semicontinuity Let us introduce the following notation
for the levelsets of a function f :

[f < λ] = {x ∈ X : f(x) < λ}

[f ≤ λ] = {x ∈ X : f(x) ≤ λ)}
[f > λ] = {x ∈ X : f(x) > λ}
[f ≥ λ] = {x ∈ X : f(x) ≥ λ}

and for its epigraph and hipograph (see figure 3.6)

epi(f) = {(x, t) ∈ X × R : f(x) ≤ t}

hipo(f) = {(x, t) ∈ X × R : f(x) ≥ t}.
A function f is lower semicontinuous when any of the three following equiva-

lent conditions holds:

bulk_tex/sections_mydea/figures/signlow.eps
bulk_tex/sections_mydea/figures/signcent.eps
bulk_tex/sections_mydea/figures/signup.eps
bulk_tex/sections_mydea/figures/f.eps
bulk_tex/sections_mydea/figures/fepi.eps
bulk_tex/sections_mydea/figures/fhipo.eps

24 Chapter 3. Tree of Shapes: The Theory

1. ∀λ : [f > λ] is open

2. ∀λ : [f ≤ λ] is closed

3. epi(f) is closed (in the topological space X × R).

Similarly, a function f is upper semicontinuous when any of the three following
equivalent conditions holds:

1. ∀λ : [f < λ] is open

2. ∀λ : [f ≥ λ] is closed

3. hipo(f) is closed.

These global definitions will be needed for the construction of the trees on the
next section.

3.1.3 Weakly Oscillating Functions

Weakly oscillating functions are our model for well-behaved images. Their interest
lies that they have, in a certain sense, a finite structure: the topology of their
level sets can be described finitely (however, the level sets themselves may be
very complicated).

Definition 6 (regional extrema). Let u ∈ C(Ω) and M ⊆ Ω. We say that M
is a regional maximum (resp., minimum) of u at height λ if M is a connected
component of [u = λ] and, for all ε > 0, the set [λ− ε < u ≤ λ] (resp., [λ ≤ u <
λ+ ε]) is a neighborhood of M .

Definition 7 (weakly oscillating function). We say that u ∈ C(Ω) is weakly
oscillating if it has a finite number of regional extrema.

3.1.4 Trees of Subsets of a Space

The notion of tree can be defined over partially ordered sets. We only need this
definition for the partially ordered set of subsets of a given space. In that case, a
tree of subsets is a family of subsets such that any two subsets of the family are
either disjoint or nested:

Definition 8. Let Ω be any set (called the space) and let T (P(Ω) be a family
of subsets of Ω. We say that T is a tree of subsets of Ω if

(i) T contains Ω,

(ii) If C,D ∈ T , then either C ∩ D 6= ∅, C ⊆ D or D ⊆ C. In the last two
cases we shall say that C and D are nested.

3.1. Mathematical Preliminaries 25

Figure 3.7: A tree of subsets has no cycles: A ⊆ Bi ⊆ C, i = 1, 2 =⇒ B1 ⊆
B2 or B2 ⊆ B1

The elements of the tree will be called nodes. This structure is called a tree
because it disallows cycles of subsets (see Figure 3.7).

When T is finite, its structure can be recovered from the relation ⋖, which is
the transitive reduction of the relation ⊆

A⋖B ⇐⇒ A ⊆ B and there is no C such that A ⊆ C ⊆ B

In that case, (T ,⋖) is a tree (e.g., a graph with no cycles). If the tree has n nodes
then the relation ⋖ can be defined by listing its n−1 pairs. This is the foundation
for the efficient representation of trees of subsets explained on section 4.3. In the
typical continuous setting, the trees T are infinite sets. In that case, we have
to be more careful to define its structure. For that purpose, the main tool are
intervals of subsets:

Definition 9 (interval,limit node). Let A ⊆ B ⊆ Ω. We define [A,B] as the
interval of T between A and B, i.e.,

[A,B] = {S : S ∈ T , A ⊆ S ⊆ B} .

We also define

inf[A,B] =
⋂

S∈[A,B]

S and sup[A,B] =
⋃

S∈[A,B]

S.

We say that T is a limit node of T if it is the infimum or the supremum of a
nonempty interval of T .

In using the notation [A,B] we implicitly understand that it is an interval of
T . In case that we are considering several trees at the same time, we may use
the notation [A,B]T to stress the fact that we refer to an interval of T . This
language is useful but somewhat awkward: notice that limit nodes of T may or
may not be nodes of T .

Observe that, if A ⊆ B ⊆ Ω, then [A,B] = [inf[A,B], sup[A,B]]. Thus, when
considering an interval, we may always assume that its extreme sets are limit
nodes.

Definition 10 (leaf). We call leaf of T , or simply, a leaf, any limit node L =
inf[A,B] that does not contain any other node of T .

f/nocycles.eps

26 Chapter 3. Tree of Shapes: The Theory

Notice that the definition of leaf inherits the awkwardness of the definition of
limit node: a leaf of T may not actually be a node of T .

Definition 11 (bifurcation). Let B ⊆ Ω. We say that B contains a bifurcation
in T if there exist S, T ∈ T such that S, T ⊆ B and S ∩ T = ∅. Let A ⊆ B ⊆ Ω.
We say that there is a bifurcation between A and B if inf[A,B] 6= ∅ and there is
S ∈ T such that S ⊆ B and S ∩ inf[A,B] = ∅.

Definition 12 (branch). Let A ⊆ B ⊆ Ω. We say that [A,B] is a branch of T
if there is no bifurcation between A and B.

We say that a branch [A,B] contains x ∈ Ω if there is a node S ∈ [A,B] such
that x ∈ S.

In [CM10], Proposition 2.24, the following algebraic property of branches is
proven:

Proposition 13. Let A1, A2 6= ∅, and [A1, B1], [A2, B2] two branches of T such
that

[A1, B1] ∩ [A2, B2] 6= ∅.
Without loss of generality we may assume that A1, A2, B1, B2 are limit nodes.
Then [A1 ∩A2, B1 ∪B2] is a branch.

Proposition 13 permits us to define the maximal branch containing a given
node S ∈ T , since we can take unions of intersecting intervals:

Definition 14 (maximal branch). Let S ∈ T . We define BT (S), the maximal
branch contaning S, as

BT (S) =
⋃

{[A,B] : [A,B] is a branch of T s.t. S ∈ [A,B]}.

3.2 Definitions of the Tree of Shapes

Once we have introduced all the necessary mathematical preliminaries, defining
the tree of shapes is simply a matter of putting them together.

3.2.1 Chain of U/L Level sets, ULT, LLT, TOS

Given an image f : Ω→ R We define the following sets:

• U0(f) := {[f ≥ λ] : λ ∈ R} (chain of upper level sets of f)

• L0(f) := {[f < λ] : λ ∈ R} (chain of lower level sets of f)

• U(f) := {cc([f ≥ λ], p) : λ ∈ R, p ∈ Ω} (tree of upper level sets of f)

• L(f) := {cc([f < λ], p) : λ ∈ R, p ∈ Ω} (tree of lower level sets of f)

• S(f) := {Sat(s) : s ∈ U(f) ∩ L(f)} (tree of shapes of f)

3.2. Definitions of the Tree of Shapes 27

All of these sets are subsets of P(Ω), from where they inherit a partial order
structure. As partially ordered sets, it is immediate to check that U0(f) and L0(f)
are chains (totally ordered sets), and that U(f) and L(f) are trees. The fact
that S(f) is also a tree is not evident and it requires a proof.

Notice that there are bijections between U0(f), L0(f) and f(Ω), which for
continuous functions f is an interval of R. Similarly, there are bijections between
branches of U(f) (or of L(f)) and intervals of R. Thus, the trees of upper and
lower level sets are endowed with a natural topology as unions of intervals of R.
The precise way in which these intervals are linked is not as nice: they may be
connected or disconnected, depending on whether the branch is open or closed.
The goal of the limit nodes defined above is precisely to assure that the branches
are connected, by completing the branches with new elements when required.

3.2.2 Tree Structure of the TOS

Let us fix a point p∞ ∈ Ω. Given an image f : Ω→ R, we call shapes of inferior
(resp. superior) type the sets of the form

Sat(cc([u < λ], p∞) (resp. Sat(cc(u ≥ λ], p∞)))

where λ ∈ R. We call shape of f any shape of inferior of superior type. We
denote by S(u) the set of all shapes of u.

Note that, by definition, shapes of superior type are closed, while shapes of
inferior type are open. Since shapes are connected, the only shapes of both types
are ∅ and Ω.

Theorem 15. Any two shapes are either disjoint or nested. Hence, S(u) is a
tree.

Proof. See [BCM03]

The language of definitions 9-14, is adapted to the particular case of trees of
shapes (T = S(u)). Thus, limit nodes of the tree S(u) are called limit shapes, etc.
Besides the branches and maximal branches of S(u), we are interesed in branches
all of whose nodes are shapes of the same type (upper or lower).

Definition 16 (monotone section). Let A ⊆ B ⊆ Ω. We say that [A,B] is a
monotone branch of S(u) if [A,B] is a branch with all shapes of the same type.

Proposition 13 for general branches has an analogous for monotonous branches
(proven in [CM10] 2.28):

Proposition 17. Let A1, A2 6= ∅, and let [A1, B1], [A2, B2] be two monotone
sections (of S(u)) of the same type such that [A1, B1] ∩ [A2, B2] 6= ∅. Without
loss of generality we may assume that A1, A2, B1, B2 are limit shapes. Then
[A1 ∩A2, B1 ∪B2] is a monotone section.

28 Chapter 3. Tree of Shapes: The Theory

Definition 18 (maximal monotone section). Let s ∈ S(u). We define BS(u)(s),
the maximal monotone section contaning s, as

BS(u)(s) =
⋃

{[A,B] : [A,B] is a monotone branch of T s.t. s ∈ [A,B]}.

Maximal monotone branches are interesting because they are the basic build-
ing blocks of the tree of shapes. As subsets of Ω, they are the largest possible
stacks of “parallel” level curves of u that do not contain any singularity.

3.3 Combinatorial properties of the continuous tree

The goal of this section is to show that the monotone branches of the tree of
shapes correspond to some branches of the upper and lower trees, and that the
connectivity between these monotone branches is given by the holes of limit nodes
of the two trees. In some sense, this means that the tree of shapes can be obtained
as the fusion of the trees of upper and lower level sets. This construction leads
to an algorithm to compute the tree of shapes of digital images, by joining the
branches of their trees of upper and lower level sets. In the continuous setting,
there are some delicate questions to tackle, which are covered in detail in the
monography [CM10].

3.3.1 Fine properties of the saturation operator

Let us state three useful properties of the saturation operator with respect to
holes. The proofs only use elementary point-set topology and can be found
on [CM10], as lemmata 2.12, 2.13 and 3.14.

Lemma 19 (holes are saturations). Assume that X ⊆ Ω is open or closed. Let
C ∈ CC(X), and x ∈ Sat(C) \ C. Then there exists O ∈ CC(Ω \ X) such that
x ∈ Sat(O) ⊆ Sat(C). Moreover, if X is open and Y is an internal hole of C,
then there exists O ∈ CC(Ω \ X) such that Y = Sat(O). The same statement
holds if X is closed and has a has a finite number of connected components.

Lemma 20 (stauration commutes with limits). (i) Let (Kn)n∈N be a decreasing
sequence of continua, K = ∩nKn. Then Sat(K) = ∩n Sat(Kn).
(ii) Let (On)n∈N be an increasing sequence of domains, O = ∪nOn. Then
Sat(O) = ∪n Sat(On).

Proposition 21 (hole representation). If A is a closed set, C a connected com-
ponent of A and H an internal hole of C, then, for any x in H,

H =
⋃

G=Sat(G′):G′∈CC(Ω\A), x∈G⊆H

G.

Thus, any hole of C can be expressed as a countable union of saturations of
connected components of Ω \A.

3.3. Combinatorial properties of the continuous tree 29

3.3.2 Fine properties of weakly oscillating functions

Let us state three useful properties of weakly oscillating functions. The proofs
only use elementary point-set topology and the previous results on the saturation
operator. The proofs can be found on [CM10], as lemmata 4.10, 4.11, 4.12 and
4.26.

Lemma 22 (w.o.f. have a finite number of holes). Let u ∈ C(Ω) be a weakly
oscillating function. Then for each λ ∈ R, if X ∈ CC([u > λ]) or X ∈ CC([u ≥ λ])
is nonempty, then X contains a regional maximum of u. A similar statement
holds for lower level sets. Thus, for each λ ∈ R, there is a finite number of
connected components of [u ≥ λ] and each component has a finite number of
holes.

Lemma 23 (holes of level sets are saturations of level sets). Let u ∈ C(Ω) be a
weakly oscillating function. Let X ∈ CC([λ ≤ u ≤ µ]), λ ≤ µ, and let H be a hole
of X. Then H is the saturation of a connected component either of [u < λ] or of
[u > µ].

Lemma 24 (classification of holes). Let u ∈ C(Ω) be a weakly oscillating func-
tion. Let X be a connected component of [λ ≤ u ≤ µ], λ ≤ µ, and let L be a hole
of X. Then there is some η > 0 such that either

i) Sat(X,L) = Sat(cc([u ≥ λ],X), L), and u < λ on Lη := {p ∈ L : d(p,X) < η},
or

ii) Sat(X,L) = Sat(cc([u ≤ µ],X), L), and u > µ on Lη := {p ∈ L : d(p,X) <
η}.

In the first case of the alternative holds, we say that L is a hole of negative
type, in the second case we say that L is a hole of positive type.

Proposition 25 (characterization of limit shapes of w.o.f.). Let u ∈ C(Ω) be
a weakly oscillating function. Then the limit shapes of u are sets of the form
Sat(C) where either C ∈ CC([u ≥ λ]), or C ∈ CC([u > λ]), or C ∈ CC([u ≤ λ]),
or C ∈ CC([u < λ]). Conversely, the sets of this form are limit shapes.

3.3.3 Signatures

Signatures are a formal device to encode which regional extrema are contained
within a given shape. They are defined in such a way that all the shapes along a
branch have the same signature, which is unique to that branch. Thus, they are
useful to identify branches. Let u ∈ C(Ω) be weakly oscillating and let E be the
(finite) set of regional extrema of u.

Definition 26 (signature). For X ⊆ Ω, we note E(X) the set {E ∈ E|E ⊆ X}.
We define the signature of X as sig(X) = {E(C)|C ∈ CC(X)}. For λ ∈ R, we
define the signature of u at level λ the set sig(λ) = sig([u ≥ λ]) ∪ sig([u < λ]).

30 Chapter 3. Tree of Shapes: The Theory

Figure 3.8: A function u and its upper and lower level sets at level λ with its
assigned signature. The set [u ≥ λ] has two connected components depicted in
gray and its signature consists of two points {p1, p2}. The set [u < λ] has only
one connected component with two holes, and is depicted as the circular region
below with the two white holes. Its signature consists of the point q1. (Figure
taken from [CM10]).

Notice that sig(X) and sig(λ) are in P(P(E)). We remark that for any
λ ∈ (minu,maxu], sig(λ) is a partition of E . That all elements of sig(λ) are
nonempty is a consequence of Lemma 22. Moreover, since CC([u ≥ λ])∪ CC([u <
λ]) is a partition of Ω̄ and each connected component of isolevel is contained in
one element of this partition, if E ∈ E , E is contained in one unique element C
of this partition, therefore E ∈ sig(C), and E belongs to no other element of
sig(λ).

The definition of signature is illustrated in Fig. 3.8. Note that in the case
presented in this figure, sig([u ≥ λ]) = {{p1}, {p2}}, sig([u < λ]) = {{q1}} and
sig(λ) = {{p1}, {p2}, {q1}}.

Our next lemma proves that for weakly oscillating functions the signature
may only change from above.

Lemma 27 (the signature may only change from above). Let u ∈ C(Ω) be a
weakly oscillating function. Let λ ∈ R. There is ε > 0 such that sig(µ) is
constant for all µ ∈ (λ− ε, λ].

Proof. Let Xλ,i, Xλ,j , i = 1, . . . , r, j = 1, . . . , s, be the family of connected
components of [u ≥ λ], resp. [u < λ]. Let i ∈ {1, . . . , r}. For each µ < λ, let
Xµ,i be the connected component of [u ≥ µ] containing Xλ,i. Then, obviously,
we have

Xλ,i ⊆ ∩µ<λX
µ,i.

f/signature.eps

3.3. Combinatorial properties of the continuous tree 31

Now, since Xµ,i is a decreasing sequence of continua their intersection is also a
continuum [Kur66]. Moreover, it is contained in [u ≥ λ]. Therefore,

∩µ<λX
µ,i ⊆ cc([u ≥ λ], pi) = Xλ,i,

and we have the equality of both sets. As a consequence, there is an ε > 0 such
that for each µ ∈ (λ− ε, λ], the sets Xλ,i, i = 1, . . . , r, are contained in different
connected components of [u ≥ µ]. Moreover, since the number of connected
components of each [u ≥ µ] is finite, we may choose ε > 0 such that for each
µ ∈ (λ − ε, λ] the set [u ≥ µ] consists of r connected components, each one of
them containing a different component of [u ≥ λ]. Since u is weakly oscillating,
for ǫ > 0 small enough, the regional extrema of u in each Xµ,i, i = 1, . . . , r, is
constant for µ ∈ (λ− ǫ, λ].

Let µn ↑ λ. Again, using that ∪n[u < µn] = [u < λ], for n large enough, we
have that [u < µn]∩Xλ,j , j = 1, . . . , s, are the connected components of [u < µn].
As above, we know that the regional extrema of u in each [u < µn]∩Xλ,j coincide
with the regional extrema in Xλ,j , j = 1, . . . , s, for n large enough. We conclude
that there is an ε > 0 such that sig(µ) is constant for each µ ∈ (λ− ε, λ].

Let us explain the phenomena reflected by a change of signature. For sim-
plicity, let us explain them at the discrete level. For that, let us consider two
consecutive levels λ and λ + 1. Let ∪sig([u ≥ µ]) = ∪C∈CC([u≥µ])sig(C), µ ∈ R.
Notice that ∪sig([u ≥ λ+1]) ⊆ ∪sig([u ≥ λ]). If sig(λ) 6= sig(λ+1) several things
may happen: (a) sig([u ≥ λ]) 6= sig([u ≥ λ+1]) while ∪sig([u ≥ λ]) = ∪sig([u ≥
λ+1]), (b) sig([u < λ]) 6= sig([u < λ+1]) while ∪sig([u < λ]) = ∪sig([u < λ+1]),
(c) ∪sig([u ≥ λ]) 6= ∪sig([u ≥ λ+ 1]) (hence sig([u ≥ λ]) 6= sig([u ≥ λ+ 1])). In
this last case we also have that ∪sig([u < λ]) 6= ∪sig([u < λ + 1]). If we are in
case (a) there must be two connected components of [u ≥ λ+1] that have merged
at level λ and the corresponding signatures fused. If we are in case (b) there must
be two connected components of [u < λ + 1] that have split at level λ and the
corresponding signatures split. If we are in case (c) then a regional extremum
has been transferred from ∪sig([u < λ+ 1]) to ∪sig([u ≥ λ]) be either a regional
maximum because a connected component of [u ≥ λ] appeared which was not
present at level λ+ 1, or a regional minimum because a connected component of
[u < λ+ 1] disappeared at level λ. These two last cases could happen combined
with merging or splitting of connected components (see Fig. 3.9).

Finally, observe that since the signature of any connected component of [u ≥
λ] increases (respectively the signature of any connected component of [u < λ]
decreases) as λ decreases, then there are only finitely many possible changes in
sig(λ). Thus, if u ∈ C(Ω) is weakly oscillating, then the number of critical values
of u is finite. In particular, the signature sig(µ) is locally constant at each side
of a critical value, i.e., if λ is a critical value, then there is ε > 0 such that

sig(µ) = sig(λ) 6= sig(µ′) and sig(µ′) is constant

for each µ < λ < µ′, µ ∈ (λ−ε, λ), µ′ ∈ (λ, λ+ε). This implies that the previous
description of the changes of the topology of level sets for discrete images also
holds in the continuous case.

32 Chapter 3. Tree of Shapes: The Theory

Figure 3.9: The top images display cases of merging and splitting of connected
components as λ decreases. The bottom figures display the birth of an upper
connected component or the death of a lower one. Those are the changes of
signature as λ varies. (Figure taken from [CM10]).

3.3.4 Structure of the Trees

Recall that if u : Ω → R is an upper semicontinuous function, U(u) and L(u)
denote the trees of connected components of upper and lower level sets of u. To
understand the structure of both trees, their leaves and their maximal branches,
it is useful to describe first their limit nodes.

Proposition 28 (characterization of limit nodes). (i) If X is a limit node of
U(u), then either X ∈ U(u) or X ∈ CC([u > λ]) for some λ ∈ R.

(ii) If X is a limit node of L(u), then either X ∈ L(u) or X ∈ CC([u ≤ λ]) for
some λ ∈ R.

Proof. Being identical, we just sketch the proof of (i). If X is a limit node of
U(u), then X is an inf or a sup of an ordered set of upper connected components
which we may assume countable. If X = ∩nXn where Xn ∈ CC([u ≥ λn]) with
λn ↑ λ, then X ∈ CC([u ≥ λ]). If X = ∪nXn where Xn ∈ CC([u ≥ λn]) with
λn ↓ λ, then X ∈ CC([u > λ]).

f/merge.eps
f/split.eps
f/appear.eps
f/disappear.eps

3.3. Combinatorial properties of the continuous tree 33

Proposition 29 (leaves are regional extrema). Let u ∈ C(Ω) be a weakly oscil-
lating function. Then

(i) If X is a leaf of U(u), then X is a regional maximum of u.

(ii) If X is a leaf of L(u), then X is a regional minimum of u.

Proof. (i) By Proposition 28, if X is a leaf of U(u), then X ∈ CC([u ≥ λ]) for
some λ ∈ R. If u(x) > λ for some x ∈ X, then the node cc([u ≥ u(x)], x) is
nonempty and contained in X. Thus u = λ on X and X ∈ CC([u = λ]). If
X = Ω, our statement is obviously true. If X 6= Ω, then by Lemma 24 all holes
of X must be of negative type. Hence cc([u > λ− ǫ],X) = cc([λ− ǫ < u ≤ λ],X),
for any ǫ > 0, and cc([u > λ− ǫ],X) is an open set containing X.

Being similar to the proof of (i), we skip the proof of (ii).

Proposition 30 (finite structure of the upper tree). Assume that u ∈ C(Ω) is
a weakly oscillating function. The tree U(u) has a finite number of leaves and a
finite number of maximal branches. If B = [A,B] is a maximal branch of U(u)
with A,B being limit nodes, then

a) either B = Ω or B ∈ CC([u > λ]) for some λ ∈ R. In the second case
there is no bifurcation between A and B, and if we let B′ = cc([u ≥ λ], B), then
B′ = inf[B,Ω] and [A,B′] contains a bifurcation. Moreover, B cannot be a leaf
unless u is constant.

b) A ∈ CC([u ≥ λ]) for some λ ∈ R and either A is a leaf, or for any X ∈ U(u),
X (A, [X,A] contains a bifurcation.

Proof. Leaves of U(u) are regional maxima of u, hence there are finitely many of
them. Let B = [A,B] be a maximal branch in U(u). By Proposition 28 either
B ∈ CC([u ≥ λ]), or B ∈ CC([u > λ]) for some λ ∈ R. If B ∈ CC([u ≥ λ]) and
λ > infx∈Ω u(x), then, using Lemma 27, we would be able to extend the branch B
to the right. Hence, λ = infx∈Ω u(x), i.e. B = Ω. If B ∈ CC([u > λ]), then [A,B]
does not contain a bifurcation. Let B′ = cc([u ≥ λ], B), then [A,B′] must contain
a bifurcation, otherwise B would not be maximal. The argument in Lemma 27
proves that B′ = inf[B,Ω]. The last assertion follows from Proposition 29.

Now, observe that A ∈ CC([u ≥ λ]) for some λ ∈ R. Since B is maximal, if A
is not a leaf, then for any X ∈ U(u), X (A, [X,A] contains a bifurcation.

Since u has a finite number of regional maxima, there are finitely many max-
imal branches in U(u), since any two of them are disjoint.

Proposition 31 (finite structure of the lower tree). Assume that u ∈ C(Ω) is
a weakly oscillating function. The tree L(u) has a finite number of leaves and a
finite number of maximal branches. If B = [A,B] is a maximal branch of L(u)
with A,B being limit nodes, then

a) either B = Ω or B ∈ CC([u < λ]) for some λ ∈ R. In the second case
there is no bifurcation between A and B, and if we let B′ = cc([u ≤ λ], B), then
B′ = inf(B,Ω] and [A,B′] contains a bifurcation. Moreover, B cannot be a leaf
unless u is constant.

34 Chapter 3. Tree of Shapes: The Theory

b) A ∈ CC([u ≤ λ]) for some λ ∈ R and either A is a leaf, or for any X ∈ L(u),
X (A, [X,A] contains a bifurcation.

We have used the notation (B,Ω] = [B,Ω] \ {B}.

Proof. Leaves are regional minima of u, hence there are finitely many of them.
Let B = [A,B] be a maximal branch in L(u). By Proposition 28 either B ∈
CC([u ≤ λ]) or B ∈ CC([u < λ]) for some λ ∈ R. If B ∈ CC([u ≤ λ]) and
λ < supx∈Ω u(x), then, using the arguments in Lemma 27, we would be able to
extend the branch B to the right. Hence, λ = supx∈Ω u(x) and B = Ω.

If B ∈ CC([u < λ]), then [A,B] does not contain a bifurcation. Let us prove
that [A,B′] contains a bifurcation where B′ = cc([u ≤ λ], B). If B′ = Ω and
it does not contain a bifurcation we are in the previous case for B (we could
take B = B′). Thus, we may assume either that B′ = Ω and [A,B′] contains a
bifurcation; or B′ 6= Ω, that is λ < supx∈Ω u(x). We have to consider only the
last case. By (the proof of) Lemma 27, there is an ǫ > 0 such that if µ ∈ (λ, λ+ǫ),
then C := cc([u < µ], B′) does not contain any other connected component of
[u ≤ λ] besides B′ and contains the same regional extrema as B′. If there is
no bifurcation in [B,C], then we can extend [A,B] to the right. Thus, we may
assume that [B,C] contains a bifurcation, i.e., there is Y ∈ CC([u < α]) with
Y ∩ B = ∅ and Y ⊆ C. Notice that we have α ≤ µ. Let us prove that we may
assume that α ≤ λ. If λ < α ≤ µ and Y ∩ [u ≤ λ] 6= ∅, then we take V to be
a connected component of [u ≤ λ] inside Y . Then C contains V and B′, but
this is not possible in view of our choice of C. Hence Y ⊆ [λ < u ≤ µ], and we
deduce that Y contains a regional minimum of u not in B′, hence also C does
it, a contradiction with our choice of C. Thus, we may assume that α ≤ λ. Let
V := cc([u < λ], Y). Since Y ∩B = ∅, we have that V ∩B = ∅. If cc([u ≤ λ], V)
is disjoint to B′, then C contains two connected components of [u ≤ λ], again a
contradiction with our choice of C. Hence, B′ = cc([u ≤ λ], V), and in this case
[A,B′] contains a bifurcation since B and V are disjoint. Finally, the argument
in Lemma 27 proves that B′ = inf(B,Ω]. The last assertion in a) follows from
Proposition 29.

Since A is a limit node, then A ∈ CC([u ≤ λ]) for some λ ∈ R. Let us
prove that if A is not a leaf, then for any X ∈ L(u), X (A, [X,A] contains
a bifurcation, i.e., there is Y ∈ L(u), Y ⊆ A and Y ∩ X = ∅. Fix such an X.
Observe that infA u < λ, otherwise A ∈ CC([u = λ]) and A would be a leaf. If
there are more than one connected components of [u < λ] in A, our assertion
is true. Thus, we may assume that there is only one connected component of
[u < λ] in A. Let S ∈ [A,B], S ∈ CC([u < λ′]) with λ < λ′. Observe that
[X,S] contains a bifurcation otherwise we could enlarge [A,B] to the left. Let
Y ∈ L(u) be such that Y ⊆ S and Y ∩ X = ∅. Notice that we may write that
X ∈ CC([u < α]) with α ≤ λ and Y ∈ CC([u < µ]) for some µ < λ′ (if µ = λ′, then
Y = S, contradicting the fact that X ∩Y = ∅). Since there is only one connected
component of [u < λ] in S (otherwise there would be a bifurcation in [A,S] since
A identifies one of them), we have that either Y ⊆ A or Y ⊆ [λ ≤ u < µ]. In
the first case, we have that there is a bifurcation in [X,A]. Let us consider the

3.3. Combinatorial properties of the continuous tree 35

Figure 3.10: An image and the trees of its connected components of upper and
lower level sets (component trees). Left: original image. The numbers at the
bottom of the image denote the gray levels. The points p and q are two possible
points of infinity. Middle: the tree of connected components of upper level sets
U(u). They are denoted as squares with the value of their defining gray level
inside. Right: the tree of connected components of lower level sets L(u). They
are denoted as ellipses. In both trees, the level sets are depicted in black at the
left side of the nodes.

second case: if Y ∩ A = ∅, then [A,B] contains a bifurcation. Hence Y ∩ A 6= ∅.
Since Y is a node and A a limit node, then either A ⊆ Y , or Y ⊆ A. In the first
case, we obtain a contradiction since X ⊆ A and X ∩ Y = ∅. In the second case
we have Y ∈ CC([u = λ]), Y = A, and A would be a leaf. We conclude that there
are more than one connected components of [u < λ] in A and [X,A] contains a
bifurcation.

Since u has a finite number of regional maxima, there are finitely many max-
imal branches in L(u), since any two of them are disjoint.

3.3.5 TOS as fusion of some branches from ULT and LLT

Let us recall the following result which is essentially a rephrasing of Lemma 19.

Lemma 32 (holes of level sets are saturations of level sets). Let u ∈ C(Ω) be a
weakly oscillating function, λ ∈ R. The family of internal holes of all connected
components of [u ≥ λ] coincides with {Sat(O) : O ∈ cc([u < λ])}.

bulk_tex/sections_bookcm/Images/bigramp.eps
bulk_tex/sections_bookcm/Images/side_by_side_ultv2.eps
bulk_tex/sections_bookcm/Images/side_by_side_lltv2.eps

36 Chapter 3. Tree of Shapes: The Theory

Proof. By Lemma 19, if X ∈ CC([u ≥ λ]) and Y is an internal hole of X, then
there is O ∈ CC([u < λ]) such that Y = Sat(O). Conversely, let O ∈ CC([u < λ]),
and observe that Ω \ Sat(O) is the external hole of O. By taking a point q in
Sat(O) as the point at infinity, we may adapt the proof of Lemma 19 to obtain
that there exists Z ∈ CC([u ≥ λ]) such that Ω \Sat(O) = Sat(Z, q). Then Sat(O)
is a hole of Z.

The nodes of the tree S(u) are the saturations of the nodes of U(u) and L(u).
Thus, it is intuitive to think that we can construct S(u) by fusing the information
of the upper and lower trees, and this is indeed the case. This operation can de
done very simply because of the precise branch structure of both trees described
in Propositions 30 and 31.

We denote by [A,B]+ the interval of the upper tree determined by nodes
A,B ∈ U(u), and [A,B]− the interval of the lower tree determined by nodes
A,B ∈ L(u).

To fix ideas, let us assume that p∞ is a global minimum of u and let Λ =
cc([u = infx∈Ω u(x)], p∞). Observe that Λ is a leaf of L(u). Let LΛ(u) =
L(u) \ [Λ,Ω]−. All nodes of [Λ,Ω]− have Ω as saturation. If C ∈ LΛ(u), then
all nodes previous to it do not contain Λ. Thus, LΛ(u) is a union of maximal
branches of L(u). Notice that the only node of U(u) containing p∞ is Ω.

The trees U(u) and LΛ(u) are broken into maximal branches of the form
[A,B]i, i ∈ {+,−}, where A is either a leaf or a bifurcating node and B may
be a bifurcating node or not, in which case it coincides with Ω. Each branch
B = [A,B]i, i ∈ {+,−}, determines the set of shapes Sat(B) := {Sat(C) : C ∈ B}
of S(u). This will be proved in Lemma 33. Then, given [A,B]i, it suffices to
describe how to link the upper end of the interval to another interval either of
U(u) or LΛ(u).

Lemma 33 (branches of shapes are saturations of branches of level sets). Let
A,B ∈ U(u) (resp. L(u)) such that [A,B]+ (resp. [A,B]−) is a branch and
p∞ 6∈ B. Then Sat([A,B]+) (resp. Sat([A,B]−)) is an interval of S(u).

Proof. The proofs being similar, we show the result when A,B ∈ U(u). Obvi-
ously it is sufficient to prove it when [A,B]+ is a maximal branch. According to
Proposition 30, we can write A ∈ CC([u ≥ λ]) and B ∈ CC([u > µ]) with µ < λ
as A ⊆ B.

If C ∈ U(u) and C 6∈ [A,B]+ then clearly Sat(C) 6∈ [Sat(A),Sat(B)] (interval
of S(u)). We therefore assume C ∈ CC([u < ν]) and Sat(A) ⊆ Sat(C) ⊆ Sat(B),
which will lead to a contradiction.

If ν ≤ µ, then B is in a hole H of C. If H is an internal hole, we get
Sat(B) ⊆ H ⊆ Sat(C), a contradiction. If H is the external hole of C, we have
Sat(C) ∩B = ∅ whereas A ⊆ Sat(C) and A ⊆ B, a contradiction.

If µ < ν, observe first that ∂ Sat(C) ⊆ B. Indeed, ∂ Sat(C) ⊆ [u = ν] and
is connected, so either is in B or in a hole of B. It cannot be in a hole H since
we would have that A ⊆ Sat(C) ⊆ Sat(∂ Sat(C)) ⊆ H, a contradiction with
A ⊆ B. Let D = cc([u ≥ ν], ∂ Sat(C)). Then D is in the external hole of C and

3.3. Combinatorial properties of the continuous tree 37

D ⊆ B. Since A ⊆ Sat(C), we have that A∩D = ∅. Hence, there is a bifurcation
between A and B in U(u), which is contrary to the hypothesis that [A,B]+ is a
branch.

In Fig. 3.10 we show an image and its trees U(u) (middle) and L(u) (right).
Next to each node we see a schematic representation of the level set. In Figs. 3.11
and 3.12 we display the fusion of both trees for two different choices of the point
at infinity, the point p in the case shown in Fig. 3.11 and the point q in the case
of Fig. 3.12. Notice that the point p is a global minimum of u, while the point
q is not. The choice of the point at infinity is arbitrary and the structure of the
tree does not depend on it, only its orientation. Choosing the point at infinity
is equivalent to choosing the root of the tree; indeed, the root shape is the one
which contains the point at infinity. In both figures, the left image displays the
decomposition of both trees into maximal branches and encircled in a pointed
curve we display all nodes of the lower tree containing the point at infinity, hence
having Ω as saturation. Both trees are fused according to the rules described
below. Notice that the structure of the upper tree is a chain while the lower one
is not. Thus, the fusion of the trees illustrates the case of fusion of the maximal
branches of L(u). Since they are similar to the fusion rules for the upper tree,
the figures describe the generic situation.

Before explaining precisely the fusion rules for maximal branches, let us expose
their principle. If [A,B]± is a maximal branch of U(u) or L(u), B is an open
set defined by a strict inequality at a level λ. We can then consider the exterior
boundary of B, ∂ Sat(B) and the two sets cc([u ≥ λ], ∂ Sat(B)) and cc([u ≤
λ], ∂ Sat(B)) (one is designed by B′ and the other by N below). They are limit
nodes in U(u) and L(u) respectively, and their saturations are limit nodes in S(u).
These saturations are therefore nested and we link Sat(B) to the smaller one, call
it Sat(C). Then the interval [Sat(B),Sat(C)] of S(u) has no other element than
Sat(B) and Sat(C) themselves.

From now on, when using limit nodes we shall consider them as parts of the
corresponding tree.

Fusion rules for maximal branches of U(u). Let [A,B]+ be a maximal
branch of U(u). By Proposition 30, either B = Ω or B ∈ CC([u > λ]) for some
λ ∈ R. In the first case, there is nothing to say. In the second case there is no
bifurcation between A and B, and if we let B′ = cc([u ≥ λ], B), then [A,B′]+
contains a bifurcation. Observe that, by applying Lemma 32 to −u, we have that
Sat(B) is a hole of a connected component N on [u ≤ λ]. We compare the two
limit shapes Sat(B′) and Sat(N) (they are limit shapes by Proposition 25). Since
they are limit shapes of different type, either they are different or both coincide
with Ω. If both coincide with Ω, then Λ ⊆ N , and we may link Sat(B) to Ω.
Thus we may assume that Sat(B′) 6= Sat(N). Since Sat(N) intersects ∂B ⊆ B′,
then either Sat(N) (Sat(B′) or Sat(B′) (Sat(N). In the first case, we link
Sat(B) to Sat(N) which is the limit shape generated by N . Notice that N is the
lower end of a (not necessarily maximal) branch of L(u). In the second case, we
link Sat(B) to Sat(B′). In this case B′ is the lower end of a maximal branch of
U(u).

38 Chapter 3. Tree of Shapes: The Theory

29

58

87

116

145

174

203

232

inf
0

232

203

174

145

116

87

58

29

29

58

29

58

87

116

145

174

203

232

inf
0

232

203

174

145

116

87

58

29

29

58

232

203

174

145

116

87

58

58

29

0

29

Figure 3.11: Example of the fusion of both trees U(u) and L(u) for the image
in Fig. 3.10. The point p (at level 0) is taken as the point at infinity. Left: the
lower level sets containing p are surrounded by a pointed curve. Their saturation
gives the root. We used the value 0 to identify the root. The rest of the trees
is decomposed in maximal branches. The nodes that must be connected to the
other tree are shown. Middle: the arrows show the connections between the
maximal branches of both trees. Right: the tree of shapes obtained by fusion of
U(u) and L(u). The root is surrounded by a pointed line. In this case, squares
and ellipses denote shapes of upper and lower type, respectively.

Fusion rules for maximal branches of L(u). Let [A,B]− be a maximal
branch of L(u). By Proposition 31, either B = cc([u ≤ λ]) = Ω or B ∈ CC([u <
λ]) for some λ ∈ R. In the first case, there is nothing to say. In the second case
there is no bifurcation between A and B, and if we let B′ = cc([u ≤ λ], B), then
[A,B′]− contains a bifurcation. Observe that, by Lemma 32, we have that Sat(B)
is a hole of a connected component N on [u ≥ λ]. Again, we compare the two
limit shapes Sat(B′) and Sat(N). Since they are limit shapes of different type,
either they are different or both coincide with Ω. If both coincide with Ω, then
Sat(N) = Ω and λ = infx∈Ω u(x) but this is not the case, due to our choice of B.
Thus we may assume that Sat(B′) 6= Sat(N). Since Sat(N) intersects ∂B ⊆ B′,
then either Sat(N) (Sat(B′) or Sat(B′) (Sat(N). In the first case, we link
Sat(B) to Sat(N) which is the shape generated by N . Notice that N is the lower
end of a (not necessarily maximal) branch of U(u). In the second case, we link
Sat(B) to Sat(B′). In this case B′ is the lower end of a maximal branch of L(u).

Observe that:

(i) the final structure contains the saturations of all connected components of

bulk_tex/sections_bookcm/Images/fusion_p_orphansv2.eps
bulk_tex/sections_bookcm/Images/fusion_p_arrowsv2.eps
bulk_tex/sections_bookcm/Images/fusion_p_completev2.eps

3.3. Combinatorial properties of the continuous tree 39

174

203

232

inf

145

116

87

58

29

0

87

116

145

232

203

174

29

58

29

58

174

203

232

inf

145

116

87

58

29

0

87

116

145

232

203

174

29

58

29

58

232

203

174

145

145

29

58

29

58

87

116

Figure 3.12: Example of the fusion of both trees U(u) and L(u) for the image in
Fig. 3.10. This time the point q (at level 145) is taken as the point at infinity.
Left: the lower level sets containing q are surrounded by a pointed curve. Their
saturation gives the root. We used the value 145 to identify the root. The rest of
the trees is decomposed in maximal branches. The nodes that must be connected
to the other tree are shown. Middle: the arrows show the connections between
the maximal branches of both trees. Right: the tree of shapes obtained by fusion
of U(u) and L(u). The root is surrounded by a pointed line. Again, in this
case, squares and ellipses denote shapes of upper and lower type, respectively.
Observe that the tree of shapes obtained here is equivalent to the one displayed
in Fig. 3.11.

upper and lower level sets,

(ii) If A is a node (or limit node) in L(u) which is the upper end of an interval,
and B a node (or limit node) in U(u) which is the lower end of an interval, or
viceversa, and we have linked Sat(A) to Sat(B), we have chosen Sat(B) to be the
minimal limit shape in U(u) containing A. With this rule, we have not created
cycles in the fusion of both trees. Thus, we have constructed a tree.

In Figs. 3.11 and 3.12 we display the decomposition of both trees U(u) and
L(u) into maximal branches and their fusion. First the nodes whose saturation is
Ω have been separated and represented by a single shape, the root of the tree of
shapes Ω. Then the rest of both trees are separated into their maximal branches.
In Fig. 3.11 we see how a branch of L(u) is linked to a node of U(u) according
to the rules described above for the branches of L(u) (of type ”Sat(B) is linked
to Sat(N)”). We see also how a maximal branch of U(u) is linked to Ω (which
is the saturation of a node in both trees). In this case, it can be considered as a

bulk_tex/sections_bookcm/Images/fusion_q_orphansv2.eps
bulk_tex/sections_bookcm/Images/fusion_q_arrowsv2.eps
bulk_tex/sections_bookcm/Images/fusion_q_completev2.eps

40 Chapter 3. Tree of Shapes: The Theory

linking of type ”Sat(B) is linked to Sat(B′)” and also of type ”Sat(B) is linked
to Sat(N)”. In Fig. 3.12 we see how a branch of L(u) is linked to another node
of L(u) according to the rules described above for the branches of L(u) (of type
”Sat(B) is linked to Sat(B′)”). We see also how maximal branches of both trees
U(u) and L(u) are linked to Ω. Observe that the trees of shapes obtained in both
figures are equivalent.

Let S, T be two given shapes such that S ⊆ T . Let us prove that our con-
struction of the tree of shapes by fusion of U(u) and L(u) has connected them.
Observe that, since u is weakly oscillating, there are a finite number of leaves
and a finite number of singular values. Hence, there is a finite number of singular
shapes.

Lemma 34. Let S, T ∈ S(u), S ⊆ T . Then there is a partition of [S, T] into
maximal monotone sectionsMi, i = 1, . . . , r such thatMi is at the left ofMi+1

for each i = 1, . . . , r − 1.

Proof. Observe that given Q ∈ [S, T] there is a maximal monotone section con-
taining Q. Since there is a finite number of them, we have [S, T] = ∪r

i=1Mi where
Mi are the maximal monotone sections contained in [S, T]. We recall that each
Mi is an interval of shapes which may be open or closed at its ends. Notice that
Mi ∩Mj = ∅, for any i 6= j. Indeed, if Mi and Mj are of the same type, then
by Lemma 17 they cannot intersect. Since the only shape of upper an lower type
is Ω, ifMi andMj are of different type and they intersect, then Ω is the upper
extrema of one of them, say Mi, and the lower extrema of Mj (in which case
Mj = Ω). In that case, Mj would not appear since Ω already appears in Mi.
Thus we may order them so thatMi, i = 1, . . . , r, constitute a partition of [S, T]
into intervals,Mi is at the left of Mi+1 for each = 1, . . . , r − 1.

Let us notice that a monotone section of upper (resp. lower) type of the
tree of shapes is composed of saturations of nodes of a branch of U(u) (resp. of
L(u)). Indeed, if [S, T] is a monotone section of S(u) and S = Sat(cc([u ≥ λ])),
T = Sat(cc([u ≥ µ])), λ ≥ µ, then the interval [cc([u ≥ λ]), cc([u ≥ µ])]+ is a
branch of U(u) since it cannot contain any bifurcation of the upper tree. The
presence of such a bifurcation would imply the presence of a bifurcation in the
monotone section [S, T], a contradiction. The same argument can be done for
monotone sections of lower type.

Let us consider the interval [S, T] in S(u). Let us consider two consecutive
maximal monotone sections M and M′ in [S, T], the second one at the right of
the first one. Let us consider four cases:

(i) M and M′ are both of upper type. In that case, supM = Sat(B) and
infM′ = Sat(B′) where B ∈ CC([u > λ]) and B′ = cc([u ≥ λ]), B). Then there is
a bifurcation at level λ and we are in the situation described in the fusion rules
for U(u) where we linked Sat(B) to Sat(B′).

(ii) M is of upper and M′ of lower type. In that case, supM = Sat(B) and
infM′ = Sat(N) where B ∈ CC([u > λ]) is a hole in N ∈ CC([u ≤ λ])). Then

3.3. Combinatorial properties of the continuous tree 41

there is a bifurcation at level λ and we are in the situation described in the fusion
rules for U(u) where we linked Sat(B) to Sat(N).

(iii) M and M′ are both of lower type. In that case, supM = Sat(B) and
infM′ = Sat(B′) where B ∈ CC([u < λ]) and B′ = cc([u ≤ λ]), B). Then there is
a bifurcation at level λ and we are in the situation described in the fusion rules
for L(u) where we linked Sat(B) to Sat(B′).

(iv) M is of lower and M′ of upper type. In that case, supM = Sat(B) and
infM′ = Sat(N) where B ∈ CC([u < λ]) is a hole in N ∈ CC([u ≥ λ])). Then
there is a bifurcation at level λ and we are in the situation described in the fusion
rules for L(u) where we linked Sat(B) to Sat(N).

We have shown that each transition between two consecutive maximal mono-
tone sections of [S, T] has been linked when fusing the upper and lower trees.
The path from S to T in S(u) is reproduced in the fused tree.

Proposition 35. The fusion of U(u) and L(u) according to the fusion rules
produces S(u).

When N = 2 the method just described leads to an algorithm which is less
efficient than the algorithm [Mon00] However, this algorithm is the most natural
one and can be easily implemented when N ≥ 3. The resulting algorithm for N =
3 is the main contribution of the first part of this thesis.

42
C

h
a
p
te

r
3
.

T
re

e
o
f
S
h
a
p
es

:
T

h
e

T
h
eo

ry

p8

0 1

2

3
4

5

6

7

8

9

12

10

11

13

14

s4=s5

s0

s10s11=s13=s14

s2

s8

s3

s1

Figure 3.13: From left to right: a synthetic 2D image, its upper tree (with arrows down), its lower tree (with arrows up), and
the set of shapes, which are saturations of upper and lower regions. To define the saturation we have used a point p∞ inside
the small triangular region. The saturation of each region is defined by its external boundary, marked in bold. Notice that
the shapes have a tree structure, indicated by dotted lines. The external boundary of some orphan regions is shown by dashed
arrows. The dotted lines of the tree of shapes come from either arrows of the original tree, or from the dashed arrows that
define the external boundaries. (The numbers are only labels so that we can refer to them in the text.)

bulk_tex/sections_mydea/figures/imgmonassetrees.eps

4 Tree of Shapes: The Implementation

The goal of this chapter is to explain how the mathematical construction given
on Chapter 3 can be implemented on a computer. On Sections 4.1 and 4.2 we
propose two different discretizations of the image domain: one based on digital
geometry, and the other one based on graphs. On Section 4.3 we explain a data
structure to store trees of regions, and on Section 4.4 we highlight some algorithms
to construct and traverse these data structures. It is important to notice that the
data structures and the algorithms are independent to the kind of discretization
used.

4.1 First Discrete Approach: Geometry of Digital Images

In this section we talk about the geometry of voxels. This is a fairly straight-
forward generalization of the geometry of pixel-based images, described in the
seminal work [RK82] of Rosenfeld and Kak, and on the more recent book [Her98]
by Herman. The algorithm described to follow the border of a region is an adap-
tation of the algorithm [GU89] of Gordon and Udupa. The main conceptual
difference with those other works is that the justification of the types of con-
nectivity arises directly from the use of a semicontinuous interpolation, which is
much simpler than the smoothly complicated constructions explained in [LPR93]
that try to simulate directly the physical interpretation of figure 4.2.

Most of the content applies equally well to the 2D case. This means that,
unless illustrating an idea specific to 3D, all the examples will be two-dimensional
images without further commentary.

4.1.1 Voxels, facels, edgels and pointels

Let us suppose that we have an open rectangle of R3, called the domain, which
is tesselated into equal-sized cubes. These cubes are called voxels. A voxel is
bounded by at most six squares, its faces, called facels; by twelve segments, its
edges, called edgels; and by eight points, its vertices, called pointels. The cubes
centered at the pointels which have the same size and orientation as the voxels
are called dual voxels. The vertices of a dual voxel are at the centers of voxels,
and vice-versa. Notice that we have defined facels without orientation. Thus,
a facel is simply a square, and two voxels in contact can share a facel. When
we want to specify an orientation, we will talk about oriented facels. Given an
oriented facel, we can talk about its inner voxel and its outer voxel. See figure 4.1
for an illustration of these concepts.

We will use two definitions of neighboring voxels. Given a voxel v, its 6-
neighbors are the voxels that share a facel with v. The 26-neighbors of v are the
voxels that share some pointel with v. Many properties that we will talk about
are independent of the notion of neighborhood, and we will talk simply about M -
connectedness, where M is either 6 or 26. Thus, hat the number of M -neighbors
of a voxel is at most M , and it is exactly M when the voxel does not touch the

43

44 Chapter 4. Tree of Shapes: The Implementation

Figure 4.1: From left to right: Two voxels sharing a facel. Two voxels sharing
an edgel. Two voxels sharing a pointel. Two oriented facels with the same inner
voxel. Two oriented facels with the same outer voxel.

Figure 4.2: A physical interpretation of the two cases of connectivity. Left: a
configuration of three voxels in 6-connectivity. Center: the same configuration
in 26-connectivity. Right: a 3D configuration of voxels in 6-connectivity. Vox-
els in 6-connectivity can be understood as cubes with rounded edges, which can
only touch each other at whole faces. Voxels in 26-connectivity can be under-
stood as “wet” cubes, covered by a thin layer of fluid, so that when they slightly
touch the surface tension of the fluid connects them clearly. (Right figure taken
from [LPR93]).

boundary of the domain. See figure 4.2 for an intuitive graphical explanation of
the two definitions of connectivity.

The relation of neighborhood permits to define the relation of connectedness
(as its transitive closure) . A set V of voxels is called M -connected when for
any pair of voxels u,w ∈ V there is a sequence of voxels u = v1, v2, . . . , vn = w,
all of them belonging to V , such that every pair of consecutive voxels vi, vi+1

are M -neighbors. An M -connected set of voxels is called an M -region.

Border and boundary. Let R be a region. The border of R is the set of voxels
of R that have some neighbor which does not belong to R. The boundary of R is
the set of oriented facels whose inner voxel belongs to R and whose outer voxel
does not. Thus, it coincides with the boundary of R as an oriented simplicial
complex. Both the border and the boundary can have several connected compo-
nents, with the boundary having at least as many components as the border. See
figure 4.3 for an illustration.

bulk_tex/sections_mydea/figures/voxelsetal.eps
f/voxelconns.eps
bulk_tex/sections_mydea/figures/voxelconn2.eps

4.1. First Discrete Approach: Geometry of Digital Images 45

u v

Figure 4.3: A region of voxels marked in gray in a 2D image. The border has one
connected component and it is the set of all voxels of the region except the voxel
marked v. The boundary has two connected components, and it is the set of all
marked facels. Notice that the voxel marked u has one facel belonging to each
component of the boundary. This example works with both types of connectivity.

A

B
C

Figure 4.4: An oriented facel (pointing top, shown in gray) and three of its
possible neighbors using 6-connectivity. There are altogether 12 of them, but
usually only 4 of them will be actually realised as boundarying facels of a region.
The labels are used to refer to the facels in the next chapter.

Connectedness of the boundary The definition of the connected compo-
nents of the boundary is somewhat delicate. Let us treat first the case of 6-
connectivity. Note that we have not defined what does it mean for two arbitrary
oriented facels to be 6-neighbors. The decision whether or not two facels are
connected depends on the voxels of the region, and not on the facels themselves.
See figure 4.4 for an illustration of this. In any case, a given oriented facel has at
most 12 candidates for neighboring facels. The case of 26-connectivity is subtler,
because there is plenty of candidate oriented facels as neighbors. See figure 4.5.
When we talk about the implementation of these ideas on section 4.4.2, where
we describe an algorithm to follow the boundary of a region, we will explain a
trick to avoid most of the complication that results from this.

Border and proper voxels It may be tempting to think that there is some
relationship between proper voxels and voxels on the border. After all, when we
start with a region D of the tree and add some voxels to it to obtain its motherM ,

bulk_tex/sections_mydea/figures/borderboundary.eps
bulk_tex/sections_mydea/figures/boundaryfacels6.eps

46 Chapter 4. Tree of Shapes: The Implementation

D

E

F

Figure 4.5: An oriented facel (pointing top, shown in gray) and three of its
possible neighbors using 26-connectivity. There is a lot of them, but we will not
need to compute all of them. The labels are used to refer to the facels in the next
chapter.

M

D D D
DD D D D

D D D D
D D D D D
D D D D D

D D

Figure 4.6: A region M and its daughter D. The labels mark the proper voxels
of each region. Note that the border of region M is composed entirely of proper
voxels of D. This example works with both types of connectivity.

the region grows. And when a region grows, its seems that its border must also
grow. But this is not true. It may happen that the proper voxels of M , the ones
that we are adding, cover completely a hole of D and not belong at all to the
boundary of M . See figure 4.6 for an example where this situation occurs..

4.1.2 The semicontinuous interpolation of a discrete image

The upper semicontinuous interpolation of an image is simply the nearest-
neighbor interpolation, where ties are resolved in favor of the highest possible
value. Notice that ties occur only at a set of measure zero1, so that the inter-
polation is essentially the same as with any other resolution of ties. The only
difference is the mathematical convenience of the model.

1The ties occur at places which are equidistant to two or more sampling points; that is, the
faces, edges, and vertices of a cubical tessellation

bulk_tex/sections_mydea/figures/boundaryfacels26.eps
bulk_tex/sections_mydea/figures/borderproper.eps

4.2. Second Discrete Approach: Topographic Graphs 47

Figure 4.7: Semicontinuous interpolation in 2D. The sampling points have integer
coordinates. The interpolated function takes the values of the nearest sampling
point. Thus, the interpolated function is constant on squares, whose vertices have
half-integer coordinates. (Figure taken from [Mon00].)

In the language of mathematical morphology, the upper semicontinuous in-
terpolation is expressed as a dilatation of the sampling by a structural element
which is a closed cube. Namely, let us suppose that we have a discrete image fd,
which is given by a three-dimensional matrix:

fd : Xd = {1, . . . ,W} × {1, . . . ,H} × {1, . . . ,D} → R

and we want to define a semicontinuous function fc over a rectangle of R3. We
start with a preliminary interpolation

f̃c : Xc = [1
2
, W+ 1

2
]× [1

2
, H+ 1

2
]× [1

2
, D+ 1

2
] −→ R

x 7−→ fd(x) =

{

fd(x) if x ∈ Xd

−∞ otherwise

and then define fc as the dilation of f̃c by a closed cube B =
[

− 1
2 ,

1
2

]3
:

fc(x) = sup
y∈x+B

f̃c(y).

See figure 4.7 for an illustration of the semicontinuous interpolation in 2D.

The semicontinuous interpolation on cubical cells provides a justification of
the common choice of connectedness: higher values are connected across diagonals
through. This implies that we must use 26-connectivity for upper-level sets, and
6-connectivity for lower-level sets.

4.2 Second Discrete Approach: Topographic Graphs

In this section we study real-valued functions defined on the vertices of arbitrary
graphs. Thus, if G = (V,E) is a graph we will consider functions f : V → R.

bulk_tex/sections_mydea/figures/scint.eps

48 Chapter 4. Tree of Shapes: The Implementation

Topological operations on graphs

Let G = (V,E) be a graph. Any subset of vertices A ⊆ V determines an equiva-
lence relation ≡A on A

p ≡A q ⇐⇒ there is a path of adjacent vertices of A between p and q.

The classes of this equivalence relation are called connected components of A. The
class containing the vertex p is denoted cc(A, p), and this notation is extended
to cc(A, p) = ∅ when p 6∈ A. If the equivalence relation has only one class, or
equivalently cc(A, p) = A for any p ∈ A, we say that A is connected.

For a fixed p ∈ V , the operator cc(·, p) has the following properties, which are
immediate to prove from the definition:

Proposition 36 (properties of cc). Let G = (V,E) be a graph, let p ∈ V and
let A ⊆ V . The following properties hold:

1. cc(cc(A, p), p) = cc(A, p)

2. cc(cc(A, p), p) ⊆ A

3. A ⊆ B =⇒ cc(A, p) ⊆ cc(B, p)

There are three natural definitions of the boundary of a set of vertices:

Definition 37 (boundaries). Let G = (V,E) be a graph and let A ⊆ V . We
define

∂A := {(a, b) ∈ E : a ∈ A, b 6∈ A}

∂inA := {a ∈ A : ∃b 6∈ A, (a, b) ∈ E}

∂outA := {b 6∈ A : ∃a ∈ A, (a, b) ∈ E}

We call them, respectively, the boundary, the inner boundary and the outer
boundary of A. Notice that the boundary is a set of edges, while the inner and
the outer boundaries are sets of vertices.

Now we define the saturation operator. The intuitive idea of this operator is
that it fills the inner holes of sets. The holes are the connected components of the
complementary, and the inner holes are those that do not contain a previously
selected “vertex at infinity” p∞. Thus, the definition of saturation takes a set
and a point of infinity:

Definition 38 (saturation). Let G = (V,E) be a graph, and let A ⊆ V and p ∈ V .
We define

Sat(A, p) := V \ cc(V \A, p).
When p = p∞ is fixed and clear from the context, we may omit it and write
simply Sat(A).

4.2. Second Discrete Approach: Topographic Graphs 49

The following proposition describes the main properties of the saturation op-
erator on graphs. Compare this with 5. The properties are the same as those for
the topological saturation operator, but with the notions that only make sense
in the continuous case omitted.

Proposition 39. Let G = (V,E) be a graph such that V is connected, and let us
fix p∞ ∈ V . The following properties of the saturation operator hold:

1. Sat(Sat(A)) = Sat(A)

2. Sat(A) ⊇ A

3. A ⊆ B =⇒ Sat(A) ⊆ Sat(B)

4. Sat(A) = A ⊎ H1 ⊎ · · · ⊎ Hn, where Hi are all the connected components
of V \A which do not contain p∞ (the symbol ⊎ denotes a disjoint union).

5. In the previous decomposition, ∀i = 1 . . . n ∃ai ∈ A ∃bi ∈ Hi : (ai, bi) ∈ E.

6. A connected =⇒ Sat(A) connected

7. ∂ Sat(A) ⊆ ∂A

8. Sat(A) 6= V =⇒ Sat(A) ⊆ Sat(∂inA)

Proof. Properties 1–3 are immediate from the analogous properties for the cc
operator. Property 4 is a re-interpretation of the definition of Sat. Property 5 is
a consequence that V is connected. To prove 6 we have to build a path connecting
any two points of Sat(A), using the edges given by property 5. Properties 7 and 8
are best understood by means of a figure (see Figure 4.8).

Level sets on graphs

Once we have introduced the appropriate language of connected components and
saturations, it is immediate to define the trees of level sets of functions defined
on graphs.

Definition 40 (level sets on graphs, and their trees). Let G = (V,E) be a graph,
f : V → R and λ ∈ R. We define the upper and lower level sets of f , and the
associated trees of subsets:

[f < λ] := {v ∈ V : f(v) < λ}

[f ≥ λ] := {v ∈ V : f(v) ≥ λ}

LLT(f) := {cc([f < λ], p) : p ∈ V, λ ∈ R}

ULT(f) := {cc([f ≥ λ], p) : p ∈ V, λ ∈ R}

TOS(f, p∞) := {Sat(s, p∞) : s ∈ LLT(f) or s ∈ ULT(f)}

50 Chapter 4. Tree of Shapes: The Implementation

Figure 4.8: A set of vertices A and and the connected components of its com-
plementary. Since all the connectivity information is on the edges of the graph,
we can arrange the position of the vertices on the plane so that the connected
components are manifest. This simplifies a lot the reasoning of the discrete case.

The main difference between these constructions for graphs and the corre-
sponding ones for digital geometry, as developed on 4.1, is the lack of a nice
property of the saturation operator: that the boundary of a saturated set is con-
nected (5). In the case of digital geometry, this arises from the fact that the
continuous image domain is unicoherent. Here, since graphs are not usually uni-
coherent, we do not have this nice property. Indeed, it is difficult to follow the
boundary of a saturated set of vertices, because it may have several connected
components.

4.3 Data structures for storing trees of subsets

On this section we describe a data structure to store trees of subsets of a finite
set, as they have been introduced on definition 8. By finite, we mean that the
base space Ω is a finite set, so that the tree of subsets T is a-fortiori finite. This
data structure is independent of the kind of discretization (e.g., wether we have
used the discretization of section 4.1 or that of section 4.2). In fact, the same
data structure is used to store the trees of subsets that arise from Mumford-Shah
segmentations (see Section 7.3).

Data structures for storing trees (graphs without cycles) are one of the basic
building blocks of computer science [Knu73, Sed01]. They can store a tree of N
nodes using O(N) space. However, the data structures that we need, to store trees
of regions are slightly fancier than that. In our case, each node of the tree of
regions is actually a set of pixels. The trivial solution would be to attach to each

f2/bitxete.eps

4.3. Data structures for storing trees of subsets 51

0 1 2 3

4 5 6

7 8

9

10

(a) Each node to its mother

0 1 2 3

4 5 6

7 8

9

10

(b) Daughters and sisters

0 1 2 3

4 5 6

7 8

9

10

(c) Daughters and sisters with
different ordering

Figure 4.9: Different ways to represent the same tree

node of the tree a list of the pixels that it contains. However, this would waste
a lot of space, because each pixel would appear many times. For example, the
root of the tree contains all the pixels, and most of them also belong to other
regions. An efficient storage scheme can be obtained by exploiting the fact that
the subsets of pixels are nested. For example, if subset A contains subset B,
the list of pixels of B can be simply a pointer to the middle of the list of pixels
of A, provided that the pixels of A are suitably ordered. At the end, we only
need to keep a single list of all the pixels, suitably ordered and all the nodes of
the tree point to the appropriate place of this list. The root of the tree points
to the beginning of the list. Using this technique, we can store a tree of subsets
using O(N + P) space, where N is the number of subsets and P is the number
of pixels.

The previous construction allows to store the list of pixels of each node of the
tree. Thus, given a node of the tree we can access its pixels immediately. The
dual operation, given a pixel access the nodes it belongs to, is not immediate
from this data structure. This structure can be augmented with an additional
array of the size of the image, which contains the region indexes of the smallest
region containing each pixel. The augmented structure is redundant, but provides
constant-time access for any desired query. See 4.12 for an illustration of this
redundant storage scheme.

4.3.1 Data structures for trees

There are two easy ways to represent a rooted tree on a computer. See figure 4.9
for an illustration. The first way requires one pointer per node, and the second
way requires two pointer per node:

1. Each node points to its mother, and the root points to itself.

2. Each node points to a linked list of its daughters.

Each of these representations has some advantages over the other one. We
have chosen to use both of them at the same time. This adds a useful but harmless

bulk_tex/sections_mydea/figures/mothers.eps
bulk_tex/sections_mydea/figures/daughters1.eps
bulk_tex/sections_mydea/figures/daughters2.eps

52 Chapter 4. Tree of Shapes: The Implementation

redundancy to the data structure that facilitates writing the algorithms. For
example, we build our trees starting from the leaves, and we end up naturally
with a representation of the first kind. To obtain the second representation, we
use the following algorithm, that runs in linear time with the number of nodes.

foreach(p in nodes) {

node m = p->mother;

if (p != m) {

p->next_sibling = m->daughter;

m->daughter = p;

}

}

An operation that we can implement easily thanks to this double representa-
tion is changing the root of the tree. We need this operation because the root of
the tree of shapes depends on an arbitrarily selected point p∞. If we wanted to
use a different point we would need to change the root of the tree to the region
that contained properly the new point p∞. The fact that it is trivial to do so,
means that the initial choice of that point is not really important. The following
recursive function does the work.

void change_root(node r)

{

node m = r->mother;

if (r == m)

return;

unhook_node(r);

change_root(m);

<make m hang from r>;

}

4.3.2 Data structures for equivalence relations

Consider the abstract data type “collection of disjoint sets”. The collections
of disjoint sets can be seen as equivalence relations, because they determine a
partition of a universe. We use this data type to represent how the upper and
lower level sets merge as we decrease or increase the gray level.

There are three functions needed to work with the elements of the universe:

void dsf_make(element x);

creates a new set containing only the element x.

element dsf_find(element x);

returns the representative element for the set that contains the element x.

element dsf_union(element x, element y);

4.3. Data structures for storing trees of subsets 53

1 3 3 8 5 4 3 8 4

1 2 3 4 5 6 7 8 9

(a) Array of pointers

5 81 3

2 7 4

6 9

(b) Forest

Figure 4.10: The disjoint set forest {{1}, {2, 3, 7}, {5}, {4, 6, 8, 9}}

performs the union of the sets that contain the elements x and y, and returns the
representative element to the resulting set.

Disjoint set forest Note that there are many ways to implement this abstract
data type. A specially terse and efficient one is the data structure called “disjoint
set forest”, which is the one used in our program (see figure 4.10 for a graphical
depiction of this data structure).

In a disjoint set forest, each set is represented by a tree, and each of those
trees is implemented using the “pointers to the mothers” representation described
above (see section 4.3.1). Each node of a tree represents an element of the set.
The root of the tree is the representative element of that set. Initially, every
singleton is a tree with one single node. If the whole universe is known since the
beginning, then the disjoint set forest can be implemented simply as an array of
pointers, which is started by making each pointer to point to itself.

For example, if the elements of the universe are indexed by the integers from
zero to nine, then we use an array of ten pointers. Initially, all the pointers are
null. The function call dsf_make(3) makes the pointer at position 3 to point to
itself. The function call dsf_find(x) follows the pointers starting from x until it
finds a one pointing to itself which is returned. The function call dsf_union(x,y)
first finds the representative of x and y, and then makes one of them point to the
other one.

The Tarjan heuristics When equivalence relations are implemented as arrays
of pointers, some nasty stuff can happen after many union operations. After a
lot of unions, depending on the order in which we performed them, we can end
up with long strings of pointers. Those long strings are a problem because they
make the function calls to dsf_find very expensive. See figure 4.11. On the
other side, when the unions are performed in a convenient order, we can make all
the pointers to point directly to their representative. This is convenient because
then the function dsf_find is as cheap as it can be.

The heuristic union-by-rank says that, when making the union of two trees,
the one which is shallower has to hang from the root of the deeper, and not the
other way round. This minimizes the depth of the resulting tree.

bulk_tex/sections_mydea/figures/dsf_array.eps
bulk_tex/sections_mydea/figures/dsf_tree.eps

54 Chapter 4. Tree of Shapes: The Implementation

(a) Bad order of calls (b) Good order of calls

Figure 4.11: The tree structure depends on the order of the calls to the set-union
function.

Another important improvement is called path-compression. It consists in the
following: every time that a string of pointers is traversed, all the pointers of the
string are forced to point to the representative element. That way, successive
calls to dsf_find keep shortening the depths of trees.

Combining both union-by-rank and path-compression, we observe that the
depth of the trees does not grow very much (never higher than 5). Thus, we
can consider that all the operations run in constant time. The analysis of this
neat algorithm is described originally at [Tar75] and with full detail at [CLRS01],
chapter 21.

Our heuristics A little detail to take into account is that if we use path-
compression, then an exact accounting of the depth of each tree is no longer pos-
sible. What is still possible, however, is to keep an upper bound of the depths,
which is already sufficient. In our implementation, we use path-compression but
we do not use union-by-rank. Instead, we use a variant of it that could be
called union-by-graylevel. Recall that we use disjoint set forests to merge the
components of upper and lower level sets as they grow. Then, our heuristic uses
the graylevel of each levelset to decide the order of the unions. We are not aware
of any formal analysis of this heuristic. The only reference we have seen to it
was in a free software library of computer vision [Bru], where it is implemented.
Buried inside its source code, we find the following comment:

Used to be union by rank with path compression, but

now it just uses path compression as the global

parent index seems to be a faster approximation of

rank in practice.

4.3.3 Data structure for trees of regions

So far we have talked about implementing trees as combinatorial structures, now
the time has come to talk about implementing trees of regions of voxels (as defined
on section 4.1).

The main idea to represent such a tree is to separate the combinatorial in-
formation (the nesting of the regions) from the geometrical information (which
voxels belong to which region). There are two ways to do that, which are in some

bulk_tex/sections_mydea/figures/dsf_bad.eps
bulk_tex/sections_mydea/figures/dsf_good.eps

4.3. Data structures for storing trees of subsets 55

sense dual. Either we list for every region which voxels does it contain, or we list
for every voxel to which region does it belong.

(a) Each node of the tree points to an array with the coordinates of its voxels.

(b) Keep an array of pointers to regions, of the same size as the image, indi-
cating the smallest region that contains each voxel.

Each of these representations is complete, meaning that the original image can
be completely recovered from either of them. Then, keeping both structures is
redundant, but can be nonetheless very convenient, because each representation
favors a different kind of query. Spacewise, both representations can also be
stored efficiently. The array of pointers has a size proportional to that of the
image. The array of voxels also has a size proportional to the image, because
nested regions can share part of their arrays. At the end, only the array of voxels
of the root is needed, ordered in such a way that the other arrays can be simply
pointers to their slice of the big array. As there are linear time algorithms to pass
from one representation to the other, there is no need to save both of them. We
adopted the following convention: we save only the image of pointer to smallest
regions, and compute the list of voxels whenever we need it.

This data structure can be expressed easily in the C programming language.
We need a struct for the nodes of the tree, and another struct for the tree
itself. See figure 4.12 for a graphical visualization of how to store a simple tree
in memory using this data structure.

struct region {

// combinatorial information

struct region *mother, *daughter, *sister;

// geometrical information

int volume, proper_volume;

int (*voxels)[3];

// user-supplied data

float value;

void *data;

};

struct tree_of_regions {

int size[3];

int number_of_regions;

struct region *the_regions;

struct region **smallest_region;

struct region *root; // (points somewhere inside the_regions)

}

56 Chapter 4. Tree of Shapes: The Implementation

Figure 4.12: Redundant storage of a tree of shapes.

The two structures described above (that is: the tree plus the geometrical
information) have a size which is always at least that of the original image. There
is a third possibility, that may produce smaller sizes for simpler images, specially
those that are synthetic or heavily quantized:

(c) For each region, have a list of the oriented facels of its boundary.

In the worst case, the storage required for this representation is quadratic in
the size of the image, so it is not practical in general. We never store all the
boundaries of the regions, and we only compute them as required.

Thanks to the redundant representation, the following operations on trees run
in time proportional to their output, usually constant time, so they are as fast as
possible:

• Given a voxel, return the smallest region it belongs to

• Given a region, list all the voxels it contains

• Decide whether one region is an ancestor of another region

• Decide whether a voxel belongs or not to a region

• Decide whether two regions are disjoint or nested

• Given two nested regions, list all the regions in-between

The first two queries come directly from the representation. The first decision
can be implemented by comparing the volumes of the regions with the positions
of their voxels in the array of all voxels. The other decisions can be described
using the ancestor relation. Only to show that the data structure is very easy
to use, let us display the implementation of these functions. See Chapter 5 for
examples of real and useful applications.

f/tosdatas.eps

4.4. Algorithms 57

// decide whether region a is an ancestor of region b

bool ancestorP(tree_of_regions *t, region *a, region *b)

{

int ia = a->voxels - t->root->voxels;

int ib = b->voxels - t->root->voxels;

return (ib > ia) && ((ia + a->volume) > ib);

}

// decide whether voxel of index i belongs to region a

bool belongsP(tree_of_regions *t, region *a, int i)

{

region *s = t->smallest_region[i];

return (r == s) || ancestorP(t, r, s);

}

// decide whether regions a and b are disjoint

bool disjointP(tree_of_regions *t, region *a, region *b)

{

return !ancestorP(t, a, b) && !ancestorP(t, b, a);

}

4.4 Algorithms

Our main algorithm is the computation of the tree of shapes. There are two
strategies to build it. The first strategy, used to construct two-dimensional trees
of shapes [Mon00], builds the tree directly from the image data. This is possible
using some topological assumptions that do not hold in 3D. Another strategy is
to build first the upper and lower trees of the image, and then join into the final
tree of shapes, thanks to the way they are related. This second strategy is more
general, and it is the one needed to build contour trees; see [CSA03] and [PCM03].
Our choice for the 3D tree of shapes is the general strategy.

4.4.1 Building the upper and lower trees

Here we describe an algorithm to build the upper tree of an image of voxels. We
do not talk about building the lower tree because the algorithm is completely
analogous. To get the algorithm for the lower tree the comparison between gray
levels has to be reversed and 26-connectivity has to be replaced by 6-connectivity.

Let u : X → R an image of voxels, and suppose that we can traverse the
voxels decreasingly by graylevel (for example, if they are sorted beforehand). The
algorithm to build the upper tree starts with the regions of maximum level, and
makes them grow as the level decreases. Thus, the overall structure of algorithm
is a loop over the different possible values of the voxels, in decreasing order.
While the program runs, it keeps track of the new regions that appear and the
mergings that occur between already existing regions. Meanwhile a tree is built
to keep track of the new regions and the mergings between regions: the leafs of

58 Chapter 4. Tree of Shapes: The Implementation

the tree correspond the new regions, and the nodes of the tree with more than
one daughter correspond to the merged regions. At the end, all regions have
been merged into a single one, which corresponds to the root of the tree. To
keep track of the regions we use the disjoint set forest data structure described
in section 4.3.2. This structure allows us to keep a representative voxel of each
region, and to merge two regions in (almost) constant time.

Let us write the algorithm in some detail. It needs two data structures, which
are interleaved: a tree of regions (see section 4.3.3) and a disjoint set forest, which
are both initially empty, and which end up filled with all the voxels of the image
domain. It is a loop over all the graylevels g appearing in the image, starting
from the highest. Before each iteration, the following invariant holds:

Invariant of the loop: The tree of regions is completely built for
all the graylevels in (g,+∞) and each region of the DSF has a repre-
sentative which has the lowest gray value of the region it represents.

At each iteration of gray level g, we make two passes through all the voxels
of value equal to g. Let y1, . . . , yn be the set of voxels whose value is g. Notice
that when we add these voxels, some regions may be merged, some new regions
may appear, and some regions may grow at different places (see figure 4.13). We
traverse this set of voxels twice, the first time to build the new pieces of levelset,
and the second time to connect those pieces to the tree of shapes:

1st pass through the y_i:

add y_i to the DSF

for each neighbor v of y_i:

if v is already on the DSF:

dsf_union(y_i, v)

2nd pass through the y_i:

p = dsf_find(y_i)

if p is already on the DSF:

r = region of the tree containing p

else:

r = new region of the tree with value g

add the voxel y_i to the region r

for each neighbor v of y_i

if v has value higher than y_i :

s = largest region containing v

hang region s from region r

4.4.2 Following a boundary of a connected binary region

In this section we briefly describe an algorithm to traverse the boundary of a
binary region. More precisely, the algorithm traverses all the facels of a connected
component of the boundary of a connected region. There are two versions of this

4.4. Algorithms 59

Figure 4.13: A step in the construction of the upper tree. The part which is
already constructed is marked in dark gray. The new voxels of value g are marked
in light gray. The white background are those voxels not yet considered. Notice
that the new voxels may merge existent regions, create new regions, and grow
existent regions at different places.

algorithm, depending on whether the binary region is considered using 6 or 26-
connectivity. The implementation of both algorithms is identical except at one
place where the type of connectivity is used to compute the neighbors of a given
facel. They are flood-fill-like algorithms.

Flood-fill is the name that receive those venerable algorithms that change
the color of a connected region of pixels of the same color in an image. These
algorithms often appear inside painting programs, to paint regions with a new
color chosen by the user. Here we need them to traverse all the facels of the
border of a region starting at a user-supplied facel. The ideas are the same, but
the implementation is a little more cumbersome due to the fact that the facels
are not on the same plane.

Flood-fill algorithms are essentially graph-traversing algorithms. What hap-
pens is that the graphs they work with are not directly represented in memory,
but are implicitly represented by some other data structure, such as an image.
The interest of these algorithms lies in the fact that they can operate without
building the whole graph. This means that they can run using time and space
proportional to the output. For example, in a painting program, the time that it
takes to fill a small region does not depend on the size of the whole image, only
on the size of the region.

From the point of view of graph theory, the following algorithm is simply a
breadth-first search starting from the given facel. However, we do not have the
graph explicitly, but implicitly. The graph is built alongside its traversal.

Input

• A choice of connectivity, either 6 or 26.

• A boolean 3D image, which can be given explicitly as an image with values
in {0, 1} or implicitly, as a boolean function that we can evaluate at each

bulk_tex/sections_mydea/figures/buildingult.eps

60 Chapter 4. Tree of Shapes: The Implementation

voxel. We call R the (not necessarily connected) set of voxels with value 1.

• An oriented facel f0 such that its inner voxel belongs to R and its outer
voxel does not.

Data structures

• A hash table to store uniquely the set of facels we have already traversed.

• A FIFO queue to store the facels that we are planning to visit.

Algorithm

1. Put f0 into the queue.

2. Put f into the hash table.

3. While the queue is not empty:

a) Pick a facel f from the queue.

b) Compute the set S of facels neighboring f in the boundary of R.

c) For each facel g ∈ S: if g is not yet inside the hash table, put it there
and into the queue.

Output The set of voxels contained in the hash table.

The only nontrivial step in the algorithm is 3(b), because the definition of
“neighboring facel in the boundary” depends on the region R, and the kind of
connectivity. To understand that, take a look again at figures 4.4 and 4.5. The
case of 6 connectivity is analogous to the case of 4-connectivity in 2D, but instead
of having neighboring edgels in two directions, we have neighboring facels in four
directions. This means that it is easy to write a function that looks locally at
the boolean image and returns the list of the four neighboring facels. In 26-
connectivity, besides all the cases coming from 6-connectivity, it is not necessary
to consider all the new neighboring facels. It is sufficient to traverse those of the
forms labelled D and F in figure 4.5, and there are four of each form. Facels in
a position such as E will be visited later as the 6-neighbors of already visited
facels.

We use the boundary-following algorithm in three different places:

Boundary and border of a region If we have a tree of regions, we can pick
a region of it, a boundarying facel of this region, and produce the set of facels of
the c.c. of the boundary that contains the given facel. This is done by applying
the boundary-following algorithm to the boolean image defined by the region. If
we want the set of voxels of the border instead of the facels, these appear as the
inner voxels of the set of facels.

4.4. Algorithms 61

Output-sensitive marching cubes The standard implementation of the
marching cubes algorithm (see Section 7.1) traverses a whole image to extract
an isosurface, which usually has several pieces. The running time is independent
of the surface and is proportional to the size of the whole image. If, on the
contrary, we are only interested in one single piece of surface, we can run our
boundary-following algorithm to the boolean image defined by the threshold that
crosses a given voxel. For each voxel we traverse, we compute the triangulation
of the corresponding cell. The union of all those triangles gives a triangulation
of a single piece of isosurface, which is computed in time proportional to its size.
That way, we can navigate efficiently through the level surfaces of an arbitrarily
large image.

Triangulation of the boundary of a region This third case is a combination
of the other two. We traverse a boundary of a region of the tree, but instead of
storing the facels, we compute the triangulation of the corresponding cell. At the
end, we obtain a triangulated surface that approximates smoothly the boundary
of a region, with the correct topology. (Well, at least smoother than the set of
facels).

4.4.3 Algorithm for joining the trees

Let u : X → R an image of voxels and suppose that we have already computed
its upper and lower trees, as described in 4.4.1 (the upper regions considered
in 26-connectivity and the lower regions in 6-connectivity). We will describe an
algorithm to build the tree of shapes of u from this information. We recall as
needed the results from the previous chapters.

Proposition 41. If a set F of facels is a c.c. of the boundary of an upper
region s, then the same set of facels with the opposite orientation is a c.c. of
the boundary of some lower region s′ (and vice-versa). The regions s and s′ are
called adjacent, or adjacent through F .

Observation 42. The relation of adjacency through F is not unique; that is,
there can be different pairs of regions which are adjacent through the same F .
See, for instance, figure 3.13, where the lower regions numbered 13, 14 and 15
are adjacent to the upper regions 0 and 4, in all possible combinations, through
the same boundary F .

Observation 43. We have an algorithm to traverse the c.c. of the boundary of
a region that contains one given facel of it.

Now let us describe the algorithm to compute the tree of shapes. We are
given as input the upper and lower trees of the image, and a voxel p∞ ∈ X. This
defines a saturation operator over X. The c.c. of the boundary of a region s
containing the facel which is nearest to p∞ is the external boundary of f . The
region adjacent to s through this c.c. is called the outer adjacent region of s. The
algorithm to join the upper and lower trees has two steps: first we cut both trees

62 Chapter 4. Tree of Shapes: The Implementation

Image

=⇒
Figure 4.14: First step in the construction of the tree of shapes: we build the
upper and lower level set trees of the image.

=⇒
Figure 4.15: Second step in the construction of the tree of shapes: we identify
the background as the set of shapes that contain p∞ (dotted line) and the orphan
regions (black dots) in both trees.

into monotone branches, and then we paste the branches altogether to form the
tree of shapes.

Cutting into branches The algorithm needs to be able to label some regions
with marks, like “removed” and “orphan”. These marks are implemented as
flags inside the data structure for a region. The algorithm starts as follows (see
figures 4.14 and 4.15):

1. For both trees, mark the region that contains p∞ and all its ancestors as
removed. This removes all the regions of both trees that contain p∞, that
is, all the regions whose saturation is the whole domain.

2. Mark all the regions whose mother has been removed as orphans.

3. Mark all the regions that have any sister as orphans.

These three operations split all the monotone branches of both trees, and leave
us with a disconnected set of branches. Note that the oldest region of each branch
is marked as orphan. The next step, as suggested by the following proposition,
will be to assign a mother to each orphan region.

bulk_tex/sections_mydea/figures/image.eps
bulk_tex/sections_mydea/figures/upandlow.eps
bulk_tex/sections_mydea/figures/upandlowbgs.eps
bulk_tex/sections_mydea/figures/upandloworphans.eps

4.4. Algorithms 63

=⇒
Figure 4.16: Third and last step in the construction of the tree of shapes: we find
a mother for each orphan region.

Proposition 44. The tree of shapes can be obtained from this set of branches
hanging each orphan region somewhere, either to another region or to the root
(and identifying the equal regions that result after that).

Proof. This is simply a rephrasing of Proposition 35.

Joining the branches To complete the construction of the tree, we have to
assign a mother to each orphan region. There are two kinds of orphan regions,
those that are orphans because their mother was removed, and those that are
orphans because they had sisters. In each case, there are two possibilities for the
new mother. In the first case, the new mother can be either the outer adjacent
or the root. In the second case, the new mother can be either the outer adjacent
or the old mother. In both cases, the new mother will be the smallest region of
the two possibilities. Figure 4.16 shows an example of the join of two trees where
all these possibilities appear.

There are two things to notice:

• To compute the outer adjacent of a region we follow its external boundary
using the algorithm described in section 4.4.2. This is only necessary for
orphan regions.

• To compare which of two regions is larger we use the constant-time tests of
section 4.3.3.

Efficiency of the algorithm We have not performed yet a formal analysis
of the theoretical cost of the algorithm to build the tree of shapes. What we
can prove easily is that the worst-case cost is at most quadratic in the number of
voxels. This comes from the following situation: if all regions of both trees happen
to be orphan, then we will have to compute the boundary of all the regions, and
the sum of boundary sizes of all the regions is less than the square of the total
number of voxels. However, it is not clear whether this extreme possibility can
actually happen. In our experience, most of the shapes do not become orphan
and the algorithm runs in a reasonable time (always less than a minute for large
2D images, and less than 10 minutes for medical images of sizes up to 1003). In

bulk_tex/sections_mydea/figures/upandlowarrows.eps
bulk_tex/sections_mydea/figures/upandlowfinal.eps

64 Chapter 4. Tree of Shapes: The Implementation

synthetic or heavily quantized images, the program runs immediately, because
they have a very small number of shapes. The worst case seems to be images
with a lot of different values (e.g, floating point values) and with a lot of noise.

5 Tree of Shapes: First applications

This chapter explains four simple, direct and elementary applications of the 3D
Tree of Shapes. These applications are merely entry points into much deeper,
untreated here, fields of study. The goal of this chapter is not to develop these
applications, but to showcase the kind of high-level algorithms that are easy to
express using the proposed data structure.

5.1 Self-dual morphological filters

Natural operations with the tree of shapes As we have said in the intro-
duction, each image representation favors some operations. The tree of shapes,
being built from the level sets of the image, is well-suited to the application of
morphological operators, which are defined over level sets. However, the tree of
shapes is by no means necessary, or even the best choice, to implement most
morphological operators. For example, median filtering, erosion, dilation and
their combinations can be easily computed on an image represented as an array
of pixels. There are, still, some filters which are immediate to compute using the
tree of shapes, yet very difficult without it. Here we comment two of them: grain
filters [CM02] and branch simplification. It is thanks to the 3D tree of shapes that
we can easily compute grain filters on 3D images. Besides morphological, these
operations are auto-dual, that is, invariant with respect to inversion of contrast.

Grain filtering Grain filtering consists in removing the level sets of an image
whose size is smaller than a fixed threshold t. By “size”, we refer to area in 2D
or volume in 3D. Its effect is similar to the application of an opening followed
by a closing using a ball of radius t as structuring element, or a closing following
by an opening. These combinations are known as extrema killers. Since opening
and closing do not commute, there are two kinds of extrema killers, dual to
each other under contrast inversion. An advantage of grain filters over extrema
killers is that they are self-dual, and more efficient for large values of t. Grain
filters can be also compared to median filtering. A difference, which may be
regarded as an advantage or a disadvantage depending on context, is that median
filtering changes all the level sets of the image (smoothing their boundaries),
whereas grain filters only remove small level sets, leaving others unchanged. See
Figures 5.1 and 5.2 for examples of grain-filtering on 2D images, and Figure 5.3
for an example on 3D images.

Shape selection Grain filtering is a particular case of shape selection, which
in turn can be regarded as an extreme case of local contrast changes with step
functions. Shape selection is based on an arbitrary criterion to select or reject any
shape. The general procedure of shape selection is the following: for each shape
of the tree, if it does not satisfy the criterion, mark it to be removed. Then, all
non-removed shapes are used to reconstruct the filtered image. Shape selection
results in a reduction of the number of level lines, and this it is a simplification of

65

66 Chapter 5. Tree of Shapes: First applications

original image opening closing grain filter

Figure 5.1: From left to right: Original image, opening, closing, grain filter. For
this image, a similar effect can be obtained by median filtering or by an extrema
killer. The advantage of grain filters is that their speed is independent of the
size parameter (unlike the size of structuring elements or windows for the other
transforms).

original image t=2 t=10 t=1000
18351 shapes 11173 (61%) 4924 (27%) 715 (4%)

Figure 5.2: Grain-filtering in 2D, at different grain sizes

original image t=2 t=100 t=10000
295937 shapes 141005 (47%) 2414 (0.8%) 124 (0.04%)

Figure 5.3: Grain-filtering of a 3D image, at different grain sizes. First row:
central slice. Second row: projection.

f/p1apps/abruta.eps
f/p1apps/aopen.eps
f/p1apps/aclose.eps
f/p1apps/agrain.eps
f/p1apps/lena_0.eps
f/p1apps/lena_2.eps
f/p1apps/lena_10.eps
f/p1apps/lena_1000.eps
f/p1apps/fri_sliy.eps
f/p1apps/fri_p2_sliy.eps
f/p1apps/fri_p100_sliy.eps
f/p1apps/fri_p10000_sliy.eps
f/p1apps/fri_maxy.eps
f/p1apps/fri_p2_maxy.eps
f/p1apps/fri_p100_maxy.eps
f/p1apps/fri_p10000_maxy.eps

5.1. Self-dual morphological filters 67

the image. Notice, however, that the level lines which are kept are not changed,
regardless of how complicated they might be. Grain filtering is the particular
case of shape selection when the criterion is a threshold on the size of the shape.

Branch simplification Another particular case of shape selection is branch
simplification. It consists in removing all the shapes of each branch except a
representative central one. A naive, but useful, criterion for picking the represen-
tative is to choose the shape which is most similar to the neighboring shapes on
the branch (this means that the difference of volume between neighboring shapes
is the smallest). Whatever the criterion, branch simplification produces a tree
where all the branches have length one. The visual effect of this filter on images
is that some smooth edges are sharpened, because large branches correspond to
stacks of many parallel level sets, which usually occur on smooth edges. Prob-
ably, the main interest of branch simplification is not as much image filtering
but as automatic selection of interesting shapes. For example, some iterations
of grain filtering and branch simplification quickly reduce a 3D medical image of
millions of shapes to a representative set of a few shapes. See figure 5.4 for a
visual example of branch simplification and grain filtering.

Further development Shape selection can be used as a strategy for image
compression, particularly well suited to control the supremum norm. For that,
we can use a criterion to select shapes such that the reconstructed image has
minimum error and is encoded in a minimum space. This is discussed in detail
elsewhere [Igu06, BCIG07].

68 Chapter 5. Tree of Shapes: First applications

(1)

(2)

(3)

(4)

Figure 5.4: Simple images and their trees of shapes. Grain filtering turns (3) into
(1) and (4) into (2). Branch simplification turns (2) into (1).

f/p1apps/disc_binary.eps
f/p1apps/disc_tree.eps
f/p1apps/disc.eps
f/p1apps/disc_smooth_tree.eps
f/p1apps/disc_noisy.eps
f/p1apps/disc_noisy_tree.eps
f/p1apps/disc_smooth_noisy.eps
f/p1apps/disc_smooth_noisy_tree.eps

5.2. Visualization of images 69

5.2 Visualization of images

The problem of visualization So far, we have not paid much attention to the
visualization of 3D images, despite the fact that they can not be directly printed
on paper. We displayed slices, or voxels, or isosurfaces, and expected that the
content of the image was understandable from the figure. However, practical
visualization of 3D images is an extremely interesting and difficult problem per
se, in striking contrast with the 2D case, were the visualization technique does
not usually go further than gamma-adjustment. The goal of this section is to
explain how the tree of shapes can be used as an aid to visualization.

Standard methods of visualization The first observation is that the whole
information content of a 3D image can not be printed into a 2D paper or screen.
This means that, except for very simple images, the visualization is necessarily
an interactive process. Thus, there is a contrast between the passive act of view-
ing a 2D image, where the user merely stares at the data; and the active act of
viewing a 3D image, where the user must move some slides to rotate, crop, slice
or select isosurfaces from the data. See Figure 5.5 for some examples of these
techniques. All these techniques are standard, and they are part of any soft-
ware that deals with 3D images, such as medical imaging packages, microscopy,
molecular chemistry, etc. [ITK, MAYAVI, AMIRA]. Probably, the most convinc-
ing of these methods is volume rendering, where the image contents are treated
as transparencies on the volume. By editing the mapping from image values to
transparency levels (the so-called transfer function), and rotating the image do-
main, volume rendering provides a glimpse of the whole image content which is
quite satisfactory even for moderately complex images.

Shape navigation The tree of shapes can be used as an addition to these
standard techniques. The most immediate improvement is to enhance global im-
age thresholding by what we call shape navigation. Let us explain that. In the
standard setting, when the user selects a threshold, an isosurface is produced.
By moving the threshold inside its one-dimensional range, the user sees different
isosurfaces. Now, any one of these isosurfaces may have many connected com-
ponents. Each of these connected components is the boundary of a single shape,
which corresponds to a node in the tree of shapes. If the image is stored using
using its tree of shapes, then this shape can be selected, independently of the
other components of the same isosurface. Once a shape is selected, its parent and
child shapes can be traversed iteratively, all the way through the branch the orig-
inal shape belongs to. This is analogous to moving a global threshold, but here
the user only sees a single connected component, ignoring the rest of the image.
Moreover, when the navigation reaches the bottom of a branch (being stuck in
shape that has more than one child), the user is given the choice of which branch
to take, by default the one with largest volume. Notice that both thresholding
and shape navigation are one-dimensional traversals, but thresholding is linear
and shape navigation has ramifications. Besides visualization, shape navigation

70 Chapter 5. Tree of Shapes: First applications

can be used to define quickly a region of interest on a large data-set. With some
practice and a suitable user-interface (see Figures 5.6 and 5.7), we have found
that it can be as fast as a hand-made crop.

Shape editing With the aid of a proper interface, the tree of shapes provides
many operations to view and select parts of the image, or do some simple editing
to it. All the following operations are available:

• view the tree structure, and traverse it

• display the boundary of the “current” shape

• select a point in the image and find its corresponding shape

• highlight monotone branches

• apply morphological operators on the data

• manually select shapes

• select pieces of shapes, automatically and manually

• display histograms and statistics related to the current shape and current
branch (ideally, this data should be displayed inside the tree structure, to
easily find shapes with some extremal property inside their branch)

• overlay with common visualizations (volume rendering, projections, thresh-
olds)

5.2. Visualization of images 71

Figure 5.5: Some images of different kinds, as viewed by different methods. First
column: tomography of inner brain vasculature. Second column: magnetic reso-
nance of head tissues. Third column: synthetic image. Fourth column: density
of a color histogram. First row: orthographic average projection. Second row:
orthographic maximum projection. Third row: orthographic slices (requires in-
teraction for selecting the slices). Fourth row: isosurface (requires interaction for
selecting the isosurface, and rotating the domain). Fifth row: volume rendering
(requires interaction for editing the transfer function, and rotating the domain).

f/p1apps/vmat_cta_avg.eps
f/p1apps/vmat_mri_avg.eps
f/p1apps/vmat_syn_avg.eps
f/p1apps/vmat_rgb_avg.eps
f/p1apps/vmat_cta_max.eps
f/p1apps/vmat_mri_max.eps
f/p1apps/vmat_syn_max.eps
f/p1apps/vmat_rgb_max.eps
f/p1apps/vmat_cta_sli.eps
f/p1apps/vmat_mri_sli.eps
f/p1apps/vmat_syn_sli.eps
f/p1apps/vmat_rgb_sli.eps
f/p1apps/vmat_cta_iso.eps
f/p1apps/vmat_mri_iso.eps
f/p1apps/vmat_syn_iso.eps
f/p1apps/vmat_rgb_iso.eps
f/p1apps/vmat_cta_vol.eps
f/p1apps/vmat_mri_vol.eps
f/p1apps/vmat_syn_vol.eps
f/p1apps/vmat_rgb_vol.eps

72 Chapter 5. Tree of Shapes: First applications

º go to the parent shape
» go to the largest child
· go to the next sister (if any)
¼ go to the largest shape of the current branch
½ go to the smallest shape of the current branch
¶ go to the previous sister (if any)
µ go to the largest sister

Figure 5.6: Commands for shape navigation. The first three commands suffice
for navigation. The rest of the commands are there for convenience. In a user
interface, these commands can be mapped to keys or to mouse movements. With
some practice, the commands become rather automatic and the user can browse
through huge 3D images to find whatever features she wants to.

½ » ·

Figure 5.7: Example of shape navigation to explore the blobs of a density function.
The navigation starts at the middle of a branch, then moves to the bottom of that
branch (notice the singularity), and then traverses the top of the two branches
after the singularity.

f/p1apps/snav1.eps
f/p1apps/snav2.eps
f/p1apps/snav3.eps
f/p1apps/snav4.eps

5.3. Color histogram analysis 73

5.3 Color histogram analysis

Color histograms as 3D images Color histograms are a common source
of 3D images. We can use the tree of shapes (or the tree of upper level sets)
as a tool to analyze these histograms. Many operations on this tree of shapes
correspond to operations on the colors of the original image. We discuss briefly
the construction and visualization of useful color histograms, the analysis of these
histograms using our data structure, and a simple color segmentation method
based on the branches of the tree. The techniques are a direct generalization of
the corresponding methods for gray-level images (see Figures 5.8 and 5.9).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250

Figure 5.8: A gray image and its 1D histogram. The three main colors of the
image appear as three large modes of the histogram.

Figure 5.9: A color image and its 3D histogram, using our proposed visualization
based on the three of shapes. The five main colors of the image are clearly
displayed as large blobs.

f/p1apps/caracutre.eps
f/p1apps/caracutre_histogram.eps
f/p1apps/casablanca.eps
f/p1apps/casablanca_histogram.eps

74 Chapter 5. Tree of Shapes: First applications

Construction of color histograms Given a standard 24 bit RGB image,
its color histogram is defined in a natural way as a gray-level 3D image of size
2563. The value of the pixel at coordinates (i, j, k) is the number of pixels on
the original image whose RGB components are (i, j, k). There are some practical
problems with this natural definition. The first problem is the large size of the
histogram image, which has 224 voxels, needing about 64MiB to be stored. The
second problem is that it is usually very sparse, even for very high resolution input
images. This means that its values are not useful as a density in color-space. This
problem is often aggravated by artifacts such as JPEG compression, which reduces
the number of bits to encode each color channel, so that some colors of the RGB
can never appear. The third problem is that the histogram image may have a huge
dynamic range, specially for synthetic images, or for real images with a synthetic
part such as a black surrounding frame. The first and second problems are
related, and can be dealt with by quantizing the RGB color space to, for example
64 values for each component, and smoothing out the resulting histogram by a
small kernel (e.g., a cube of size 33). This process of smoothing and downsampling
results in smooth histograms which can be interpreted as color densities, for most
images, except the very small ones, or synthetic ones. To avoid the third problem,
concerning the high dynamic range of the histogram, we store the logarithm of the
pixel counts. Notice that the operations of smoothing and taking the logarithm
are not at all commutative. On Figure 5.10 we display graphically the sparsity and
dynamics before and after applying the post-processing of histograms described
on this paragraph.

Figure 5.10: Downsampling and smoothing a color histogram to obtain a useful
color density. Left: central slice of histogram before processing. Right: central
slice of histogram after processing.

Visualization of color histograms, standard methods Besides the general
methods for visualizing 3D images (namely: slices, isosurfaces, average projec-

f/p1apps/arlet_chslicen.eps
f/p1apps/arlet_schslicen.eps

5.3. Color histogram analysis 75

tions, extrema projections), there are some methods which are specific for color
histograms. These methods are designed for highlighting the highest values of the
image, which correspond to the more frequent colors. For full-color histograms
of size 2563, the simplest method is to display a dot for each nonzero value of
the histogram, with the corresponding color. Since color histograms tend to be
very sparse, this is usually a small cloud of points inside RGB cube. Rotating
the cube, the user can see easily the regions with higher density of points. A
variation of this is to draw each dot as a sphere whose radius is proportional to
the number of pixels of the corresponding color. This variation enhances the visi-
bility of the large blobs. For smoothed color histograms which can be interpreted
as a density, it is useful to look at their level surfaces. The thresholds for the
level surfaces can be selected automatically or by hand, to emphasize the blobs of
large values. Apart from these methods to view 3D histograms, which in theory
display the whole information of the histogram, it is common to display three 1D
histograms, one for each color channel. This is clearly less informative, because
the combinations of channels are lost. An intermediate option is to display three
2D histograms, one for each pair of color channels. All of these common methods
are illustrated on Figure 5.11.

Visualization of color histograms using trees Let us describe a method to
display color histograms as 2D color images, whose output seem to be immediately
understandable by many people. Once we have a useful color density, as described
on the previous paragraph, it makes sense to compute its tree of shapes (or its
tree of upper level sets, which almost always coincides, because color densities
do usually do not have local minima). The tree of shapes is a planar graph, and
it can be drawn by any standard graph-drawing algorithm [TT86, KK89] . By
“drawing”, we mean assigning to each vertex of the graph a pair of coordinates
(x, y) so that if we locate each vertex at its assigned coordinates in the plane, the
resulting drawing looks good. Graph drawing is essentially a heuristic process,
and for color histograms have chosen the algorithm neato from the standard
package Graphviz. Once graphviz has decided the coordinates of each vertex,
we draw each vertex as a coloured disk, using the properties of the color region
that corresponds to this vertex. The color of the disk is the average color of
the pixels inside that region; and the radius of the disk is the logarithm of the
number of pixels inside the region. The resulting 2D images contain, in theory,
all the information of the original 3D histogram. Moreover, the user can see at
a glimpse which are the main colors of the histogram, by looking at the thickest
branches of the tree of shapes. See Figure 5.12 for some examples.

Applications of gray-scale histograms In the case of gray-scale images, the
most immediate application of histograms is to help with thresholding and quan-
tization. Histogram-based thresholding is a common, if somewhat rude, method
to segment gray-scale images. It is consists in partitioning the one-dimensional
gray scale into two intervals, and classifying the pixels of the image according
to which of these intervals their color belongs. This can be regarded as a par-

76 Chapter 5. Tree of Shapes: First applications

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

Figure 5.11: Some common ways to display the same color histogram. (a) a 1D
histogram for each color channel (b) a 2D histogram for each pair of channels (c)
a dot for each color that appears in the image (d) a sphere for each color, with
volume proportional to the number of occurrences of that color (e) single level
surface (f) multiple level surfaces, with transparency

ticular case of quantization, whereby the gray-scale is partitioned into a number
of intervals, called quantization steps. There are three natural ways to obtain
the quantization steps: 1) a fixed number of equal-lenght intervals, resulting in a
blind quantization that does not depend on image contents; 2) a fixed number of
equal mass intervals, resulting in an adaptive quantization of the image; 3) one
interval for each mode of the histogram, resulting in a different kind of adaptive
quantization.

Color segmentation (quantization) by selecting branches The opera-
tions of thresholding and quantizing color images are easy to define abstractly,
copying the definitions for gray-scale images. However, the actual techniques
are necessarily much more complicated, for they entail the segmentation of a
3D volume in color-space instead of a 1D interval in gray-space. Depending on
the context, color space segmentation is called quantization or palette building.
The tree of shapes, by representing the density function as a one-dimensional
structure, enables the generalization of some thresholding and quantization tech-

f/p1apps/casablanca_hvis_channels.eps
f/p1apps/casablanca_hvis_dots.eps
f/p1apps/casablanca_hvis_single.eps
f/p1apps/casablanca_hvis_32d.eps
f/p1apps/casablanca_hvis_spheres.eps
f/p1apps/casablanca_hvis_auto2.eps

5.3. Color histogram analysis 77

niques to color images. The branches of the tree are analogous to the modes of
the histogram. This gives rise to a naive method to build a coarse palette: for
each terminal branch of the tree, assign to all the colors of this branch the same
representative color, such as the most frequent color among them. The palette
obtained this way has as many colors as large modes in the 3D histogram. To
obtain a finer palette, we can proceed by subdividing the largest branches into
two or three sub-intervals. Each sub-interval corresponds to a hollow region on
color space of nearly uniform density. This region can be easily subdivided into
any number of equal-mass parts to refine the coarse palette.

Further development The color space manipulations described above are ar-
guably very primitive. However, the study of color densities by the tree of shapes
is not yet seriously developed. Some of the most poignant issues that have to be
solved are the following. First, we have to understand the effects and problems of
the subsampling, quantization, smoothing and logarithms used to produce densi-
ties out of scattered data. Second, we have to use color spaces more meaningful
than RGB, and understand how this affects the outcomes of visualization and
palette building. Since color space coordinates are generally continuous, the ef-
fect of changing the color space is akin to re-sampling the original colors, but
this should not change the topology of the density function, apart from quanti-
zation errors. The main effect of changing the color space is that it changes the
metric by which we measure the sizes of color densities. For example, a uniform
color density in RGB is not at all uniform in HSV. This effect can be seen on
Figure 5.13, where the near-black colors are clearly over-represented in HSV. It
has been argued that the best color spaces for color histograms are the percep-
tually uniform spaces [SPK02]. Finally, a third issue that must be understood
is how to perform branch selection and partition specially tailored to histograms
(as opposed to the branch partition that we could use for general 3D images).
See also [VBVV07] for a similar topological approach to the analysis of color
histograms based on its local differential descriptors.

78 Chapter 5. Tree of Shapes: First applications

Figure 5.12: The tree of shapes of color histograms, as visualized by a standard
graph-drawing program (neato). These pictures are the graphs of the tree of
shapes, suitably decorated. Each node is a coloured to the mean color of the
corresponding region on colour space, and the radius of the disc is the (logarithm
of) the pixel count inside that region.

f/p1apps/frame_3.eps
f/p1apps/frame_3_histogram.eps
f/p1apps/baboon.eps
f/p1apps/baboon_histogram.eps
f/p1apps/caracutre.eps
f/p1apps/caracutre_histogram_rgb.eps

5.3. Color histogram analysis 79

Figure 5.13: Visualization of RGB and HSV histograms. The purpose of this
experiment is to asses the robustness of the visualization with respect to the
downsampling and smoothing of histograms. Since the RGB-HSV map is contin-
uous, both densities have the same topology, and their trees of shapes should be
the same. Any difference must come from quantization and resampling errors.
Visually, we see that the difference is small (the main branches of both histograms
are equivalent), thus we can conclude that the visualization is quite robust.

f/p1apps/frame_7.eps
f/p1apps/frame_7_histogram.eps
f/p1apps/frame_7_histogramhsv.eps

5.4. Optical flow analysis 81

5.4 Optical flow analysis

We have seen on Section 4.1 that it is natural to assume 8 and 26-connectivity
for upper level sets and 4 and 6-connectivity for lower level sets. This is nat-
ural in absence of further knowledge about the desired connectivity. However,
sometimes there is further knowledge about the connectivity in the form of a
graph that connects pairs of neighboring data points. In that case, it makes
sense to extend the data structures and algorithms above to functions defined
on the vertices of arbitrary graphs. Video analysis is one of this cases: besides
the usual connectivity of pixels on each single frame, we have a natural notion of
connectivity between pixels on consecutive frames given by the optical flow.

Given a video sequence we can build the appropriate graph in the following
way. First, we pre-compute a dense optical flow of the whole video sequence using
any of the methods available the literature (we tried some of them with similar
final results [BBPW04] [BBM09], [KGC10] [PB10]). This flow assigns a vector
on every pixel of each frame but the last. Now, the vertices of the graph are
defined as all the pixels of the video, each one assigned its corresponding gray
level. The edges of the graph are of two kinds: spatial edges and temporal edges.
Spatial edges join each pixel with its 8-neighbors on the same frame. Temporal
edges are defined using the pre-computed optical flow: If the flow vector on pixel
(x, y, t) is (u, v), then we add to the graph an edge joining pixel (x, y, t) with
pixel (x+[u], y+[v], t+1), where the square brackets denote the nearest integer.

On the following subsections we explain how the trees of level sets of this
graph are a flexible and useful data structure. This data structure, which we
call “the tubes”, encodes temporally coherent segmentations of all the objects
on the video, which can be used for tracking. The tubes are useful to write
higher level algorithms on the video: as an example we provide a simple method
for monocular depth estimation. This method can be improved using better
segmentations than the bi-level sets used here, and by combining the results with
other depth cues. However, the data structure is exactly the same, and here we
only want to showcase its power.

5.4.1 A data structure for segmented videos

We have just described how to build a graph from a given video sequence. Since
the vertices of this graph are assigned gray-level values, we can compute the tree
of level sets of this graph, as explained on Section 4.2. Pruning and simplifying the
branches of this graph corresponds to applying temporally coherent morphological
operators (cf. Section 5.1) to the video sequence. A selection of regions of this
tree can be regarded as a segmentation of the video. For example, by selecting
very few regions we obtain a very coarse segmentation of the video into temporally
coherent bi-level sets. We call the segments of this segmentation the “tubes” of
the video. The intersections of tubes with frames are called “regions”. Thus, the
regions of a given frame are segmentation of that frame. Alongside the tree, we
can store the region-adjacency graph of the segmentations of each frame. That
way, we can follow a given region in time, see how its neighbours change in time,

82 Chapter 5. Tree of Shapes: First applications

etc. Even if the segmentations are not very good (preferably, they will be over-
segmentations), it is much easier to deal with a few hundred regions, having the
evolution of their connectivity stored in a small graph, than to deal with millions
of unstructured pixels.

Specifically, the data structure contains four lists of objects:

1. list of all the pixels

2. list of all the frames

3. list of all the tubes

4. list of all the regions

The list of pixels and the list of frames are trivially related, because each
frame contains the same number of pixels. The relationships among the other
lists are the true interest of the data structure, since they hint a combinatorial
representation for the video objects. See Figure 5.14 for a diagram illustrating
the relative inclusions between these structures.

pixels

regions

frames tubes

video

boundaries

Figure 5.14: Inclusion relationships between the parts of the data structure. A
video is divided into frames, and into tubes. The intersection of a tube with a
frame is a region. Each region is a set of pixels. Neighboring regions on the same
frame are separated by their common boundaries.

5.4.2 Simple computations using the tubes

The mere act of storing a video sequence using “the tubes” lends itself to certain
higher level algorithms, which provide raw analysis of the objects that appear in
the video. Here we list four of these algorithms. The algorithm for relative depth
from motion will be an example of a more complex one.

Tube statistics The simplest thing that we can do with the tubes is to compute
statistics of all the regions. For each tube, we can see how its area evolves along
frames, its mean motion (to select immediately the fastest moving objects in the
video), the evolution of the length of its boundary, etc.

5.4. Optical flow analysis 83

Tube topology The tubes can be classified by their topology, looking how it
evolves in time. The simplest case is that of a tube which intersects each frame
(from a certain interval of frames) in a single connected region. A different case
is that of two objects that merge or split as time passes, for example when one
object occludes another one of the same color. In that case, the tube has the
shape of the letter Y, with the junction appearing at the frame where the objects
merge or split. By single traversal of the data structure, we can build a list of
the branched and unbranched tubes, and of the regions that they span along the
video.

Optical flow regularization We can user the structure of tubes and regions
to improve a given dense optical flow. If we suspect, as often happens, that the
optical flow is wrong or imprecise near the boundaries of the objects, we can
discard those samples of the dense flow, and extrapolate their values from the
inner parts of the region. This is a regularization of the optical flow in a single
frame. But we can also smooth the flow along several frames, to enhance its
temporal consistency. The connectivity of the regions assures that we will not be
mixing flow samples from different layers of movement.

Flow from segmentation As an extreme case of the previous computation,
we can construct an optical flow from scratch, just by looking at evolution of the
tubes in time. If we find the best match from each region into the next one, we
already have a model of the movement of that region. By sampling that motion
on the pixels of the region, we produce a dense optical flow. While it is very
crude, this method does not depend on the resolution of the video, only on the
structure of the tubes. Thus, it can be used as a starting point for more precise
algorithms. The quality of the results depends ont the criterion for registering
pairs of consecutive regions. A naive criterion that minimizes Hausdorff distance
(or that matches the center of mass) will produce incorrect results for occluded
objecs, but perfect results for objects which are on top of all the others, and move
in a plane perpendicular to the line of view. In some circumstances, this may be
useful.

5.4.3 Monocular depth estimation: perceptual principle

Depth perception from a single image is an easy task for the human visual system:
people who have lost an eye can lead a normal life, and everybody can easily recon-
struct real-world scenes from a single photograph. According to current theories
of vision [Kan79, Mar82, YB96] this is achieved by integrating the information
of several depth cues. There is a rather large list of cues for depth perception,
including perspective, texture gradients, distance fog, focus, T -junctions, shading
and size. Each of these cues is not sufficient alone, and any single one may lead to
incorrect depth perception. However, combining the information from all these
cues produces very reliable information. In computer vision, it is easy to obtain
information from each of these cues, but difficult to integrate the information
from all of them into a single 3D reconstruction.

84 Chapter 5. Tree of Shapes: First applications

Depth perception from multiple images adds new cues to this list, thus in-
creasing the reliability of the depth information. The most prominent addition
to the list is parallax, which can be produced either by binocular perception or by
observer movement. A different cue, closely related to our purpose, is depth from
motion, whereby objects moving towards the observer increase in size, and ob-
jects moving away from the observer decrease in size. The brain is very fast and
very precise in using this information to compute the crash time of approaching
objects. The change of size can be expressed locally by means of the divergence
of the optical flow: the optical flow of an approaching object will have positive
divergence, and the optical flow of a distancing object will have negative diver-
gence. This idea has been used successfully for collision avoidance in free-moving
robots [NA02]. Notice that this is a local criterion which works on the interior of
objects, and tells how the objects move in the direction of the observer.

Here, we introduces a new simple cue for depth perception from multiple
images. Unlike depth from motion, this cue provides a local criterion which
works on the boundaries between objects, looking how the objects move in the
direction perpendicular to the observer, and telling how the objects are located
in the direction of the observer. The cue is based on the fact that the boundary
between two objects moves in the same way as the object which is closer to the
observer (because the closest object occludes the other behind that boundary). In
terms of divergences, an occlusion boundary produces a band of highly negative
divergence around it, and a disocclusion boundary produces a band of highly
positive divergence around it. Compared to parallax or depth from motion, the
proposed criterion is more general because it does not assume the rigidity of the
objects (although our naive implementation does). On the other hand, it only
gives a relative ordering of the objects, not a distance.

Now, let us state more formally the promised perceptual principle. Let us
assume that we have a perfectly computed dense optical flow and a perfect seg-
mentation of the video frames into objects. In that case, the following criterion
provides a relative ordering of neighboring objects: The boundary between two
moving objects in the scene follows the movement of the object which is closest
to the camera. See Figures 5.15 and 5.16 for two examples of this criterion. We
assume that the criterion is intuitively true and no further explanation is given
beyond these two figures.

Actually, the criterion is not true in full generality. There are some situations
where it leads to an incorrect depth ordering (see Figure 5.17). Also, when there
are shadows or reflections, most optical flow methods will rarely ignore their
movement, as they should. For practical purposes, we will ignore these cases.
It is up to the user of the method to decide whether these counterexamples are
relevant for his intended application.

5.4.4 Monocular depth estimation: Algorithm

After stating the perceptual criterion for monocular depth estimation, we intro-
duce an algorithm that uses it to compute a relative depth ordering of a video.

5.4. Optical flow analysis 85

frame t = 0 frame t = 1 frame t = 1
(if A above B) (if A below B)

Figure 5.15: Local illustration of the criterion, around a point located on the
boundary between A and B. Region A moves in the direction vA, region B
moves in the direction vB. The boundary between the two regions moves in the
same direction as the region which is above.

The algorithm is based on the “tubes” data structure described above (Subsec-
tion 5.4.1).

The algorithm works by selecting all pairs of neighboring regions, and making
a decision on which region of each pair is above or below the other. Suppose that
we have two neighboring regions A and B. Let us define the following notation
(see also Figure 5.18:

• Ai is the region A on frame t = i, for i = 0, 1

• Bi is the region B on frame t = i, for i = 0, 1

• ci is the boundary between Ai and Bi, for i = 0, 1

• R0 is the model of movement between A0 and A1

• S0 is the model of movement between B0 and B1

Notice that if there are no occlusions and the models of movement are correct,
then we have R0(A0) = A1 and S0(B0) = B1. Thus, since the transformations
are continuous, it must be that R0(c0) = c1 and S0(c0) = c1. This implies
that S0 = R0, both movements are parallel to the boundary. When there are
occlusions, the movements of A and B differ. The criterion 5.4.3 states that c1
is the image of c0 under the movement of the object which is above. Thus,
comparing R0(c0) and S0(c0) to c1, we can decide which of A or B is above.

There are many choices to be made when implementing this criterion for
digital videos. Let us suppose, as above, that we have been given a spatio-
temporal segmentation and a dense optical flow. To turn the criterion into an
algorithm we must make precise two things: how to move a boundary by a given
optical flow, and how to follow that movement. The first thing is easy to define,
using the given segmentation. For each region of the segmentation, we build a
model of its rigid movement using the given optical flows on its interior. This
model can be either projective or affine, using all or a selection of the optical

f2/critsyn1.eps
f2/critsyn2.eps
f2/critsyn3.eps

86 Chapter 5. Tree of Shapes: First applications

(−2,0) (−6,−1)

Figure 5.16: Local illustration of the criterion. Top: first frame, with segmenta-
tion boundaries in green. Bottom: second frame, with segmentation boundaries
in green. The mean flows of each region are shown. The mean flow of the tree
correctly moves the boundaries from one frame to the next. The mean flow of the
background moves the boundaries to another location (dotted lines). According
to the criterion, both boundaries of the tree support the hypothesis that the tree
is above the background.

flow vectors within that segment. Since we are using over-segmentations, the
segments tend to be small and thus affine models are enough.

The computation of the action of movement over a boundary is more delicate.
A first choice is to notice that c0 is a sampled curve, and so are R0(c0) and S0(c0).
Then, we can compare each of these sampled curves to c1. This comparison is
illustrated on Figure 5.18. This first choice is apparently simple, but cumbersome
to implement, because there is no natural choice of curve comparison in that case.
A second choice is to measure the overlapping of the displaced regions using
Hausdorff distance (area of symmetric difference). Thus, we compare R0(A0)
to A1 and S0(B0) to B1. The pair which matches better will correspond to
the region which is above. The advantage of this second choice is that it can
be implemented very easily in linear time, by moving each pixel in the video
according to the movement of its region, and looking whether the image goes
to the corresponding region on the next frame, or to a different region. This
comparison is illustrated on Figure 5.19. Here follows the pseudo-code of the
algorithm:

Input: a spatio-temporal segmentation of a video and a dense optical flow F .

Output: a relative ordering of pairs of neighboring regions of the segmentation.

f2/flowersrec.eps
f2/criterion.eps

5.4. Optical flow analysis 87

Figure 5.17: Counterexample to the criterion: flat flexible object folding behind
a corner. In that video sequence, if the optical flow is correctly computed, the
criterion gives a wrong relative ordering on the marked areas.

t = 0 t = 1

Figure 5.18: Notation used on the description of the criterion. The two figures
depict the local situation around a boundary c separating regions A and B.
Since c1 is closer to S0(c0) than to R0(c0), this means that S0 is a better model
of movement of the boundary c0, thus that region B is above region A.

Algorithm:

• for each region At on frame t:

– RAt,At+1
:=movement_model(At, F)

• for each pixel p on frame t:

– At := region_of_pixel(p)

– q := RAt,At+1
(p)

– Bt+1 := region_of_pixel(q)

– if B 6= A:

f2/counterexamplem.eps
f2/critalgo1.eps
f2/critalgo2.eps

88 Chapter 5. Tree of Shapes: First applications

t = 0 t = 1

Figure 5.19: Notation used on the description of the algorithm. The two figures
depict the local situation around a boundary separating regions A and B. Point p
belongs to region A0, but R0(p) belongs to B1. This means that B is occluding A.
If A was above, we should have R0(p) belong to A1.

∗ vote +1 that Bt is above At.

Interpretation of the algorithm. We move each pixel of the video according
to the model of movement of the segment A it belongs to. If it falls in a different
segment B, that means that B is occluding A, and we record this fact. See
Figure 5.19 for a graphical explanation.

First remark on the algorithm. The output of the algorithm is a list of
votes for each pair of regions, saying which one is above. By setting a threshold
on difference of votes (e.g., 1), we obtain the desired partial ordering.

Second remark on the algorithm. As it is, the algorithm only finds oc-
clussions, but not disocclussions. To obtain those, we must run it “back-
wards in time”. This can be done by using either a bi-directional optical flow,
such as that of [ADPS07], or by naively inverting the movement of each re-
gion RAt+1,At

:= R−1
At,At+1

.

Third remark on the algorithm. The algorithm gives a relative ordering
to every pair of neighboring segments. In practice, we work with oversegmented
videos, where most segments are parts of the same rigid objects. In that case,
most of the information given by the algorithm will be neither meaningful nor
useful. We still need some way of distinguishing random output from useful
output.

f2/critalgop1.eps
f2/critalgop3.eps

5.4. Optical flow analysis 89

Heuristics

We have started this section whit the hypotheses that we have a perfect seg-
mentation and a perfect optical flow. Then we have stated that in that case the
criterion gives a correct ordering between neighboring regions. Of course, the two
starting hypothesis are impossible to fulfill in practice. Thus, we ask ourselves
how robust is the method to incorrect segmentations and incorrect optical flows.

Before having access to the results of extensive experimentation, we take note
of the following tweaks that help to make the computation more robust:

Erosion. The algorithm requires a model for the movement of each region.
Since we have a dense optical flow, the simplest model is that each pixel follows
its own optical flow. However, dense optical flows tend to be imprecise around
occlusion boundaries, which is precisely where we want it to be precise. To im-
prove the optical flow around occlusion boundaries, we do the following. For each
region of the segmentation, we take the pixels which are far from the boundaries
of that region (i.e., we compute an erosion of that region). The optical flow on
these inner pixels is used to build an affine model, which is later extended to the
whole region. This produces a model for each region which is not affected by the
errors of the dense flow around occlusion boundaries.

Weighting by divergence. We have seen that, around occlusion boundaries,
the divergence of the optical flow takes values very far from zero. If the movement
of the objects is rigid and perpendicular to the line of sight, the divergence of the
optical flow vanishes on the interior of objects. The integral of the divergence
on the non-vanishing part along an occlusion boundary is proportional to the
relative motion of both regions (regardless of the smoothing of the dense flow).
Thus, it makes sense to compute that integral to reinforce the pixel count of the
algorithm.

Thresholds. In order to reduce cluttering of the output (i.e., many non-
meaningful results), we can apply several post-processing criteria. We have al-
ready discussed weighting the result of each boundary by the absolute value of
the divergence along that boundary. Many other weightings seem natural at this
point: the gradient of the original image, the difference of motion models for the
regions on each side of the boundary, the lenght of the boundary, the straight-
ness of the boundary (because spurious boundaries are more likely to be ragged),
the area of the smallest region of that boundary (because flow models for small
regions are more likely to be noisy), etc.

Experiments

We display the results of our analysis for three sample videos on Figures 5.20,
5.21, 5.22 and 5.23. In each figure we show, from left to right: 1,2) Two con-
secutive video frames of the sequence. 3) A segmentation of the first frame with
arrows indicating the movement of each segment. 4) The computed orientation

90 Chapter 5. Tree of Shapes: First applications

of each boundary. 5) The divergence of the optical flow. The orientations of the
boundaries are visualized as follows: the light side of the boundary corresponds
to the object which is above, the dark side to the object which is below. The
divergence of the flow is displayed in order to realize that the interesting occlusion
activity happens at places where |div(F)| is high.

All these results are produced using hand-tuned segmentations The results for
general automatic segmentations are more difficult to visualize due to cluttering
and to repeated edges.

At this point, the main problem of the automatic results is clutter, due to
the use of too fine segmentations. If we fine-tune by hand the parameters of the
segmentations to avoid over-segmentation, we can suppress most of the clutter,
with some effort. The weighting by the divergences explained above can then be
used to weight the importance of each boundary, in order to sort them by their
meaningfulness. A simple automatic criterion for assessing the meaningfulness of
each occlusion boundary is provided by the test explained below on Section 8.2.

5.4. Optical flow analysis 91

t = 0 t = 1 segmentation ordering divergence

Figure 5.20: Analysis of a synthetic video. The computed interpretation is cor-
rect.

t = 0 t = 1 segmentation ordering divergence

Figure 5.21: Analysis of a real video. The tree is correctly interpreted to be
nearer to the camera.

t = 0 t = 1 segmentation ordering divergence

Figure 5.22: Analysis of a real video. The person is correctly interpreted to be
in front of the wall.

t = 0 t = 1 segmentation ordering divergence

Figure 5.23: Analysis of the same video as in Figure 5.22, with a finer segmen-
tation. Notice that the relative ordering between the paper and the wall is not
meaningful.

f2/synflow_f0.eps
f2/synflow_f1.eps
f2/synflow_segb.eps
f2/synflow_ord.eps
f2/synflow_div.eps
f2/flowersflow_f0.eps
f2/flowersflow_f1.eps
f2/flowersflow_segb.eps
f2/flowersflow_ord.eps
f2/flowersflow_div.eps
f2/shirtflow_f0.eps
f2/shirtflow_f1.eps
f2/shirtflow_segb.eps
f2/shirtflow_ord.eps
f2/shirtflow_div.eps
f2/shirtflow_f0.eps
f2/shirtflow_f1.eps
f2/shirtflow2_segb.eps
f2/shirtflow2_ord.eps
f2/shirtflow_div.eps

Part II

A 3D Edge Detector

93

6 Historical context of edge detectors

The third part of this thesis is devoted to the description of a new edge detector
for 3D images. The goal of this chapter is to motivate the context for the proposed
edge detector. On Section 6 we briefly explain the methods and the applications
of 2D edge detectors. On Section 6 we state the general statistical principle upon
which our edge detection is built. On Section 6 we explain the methods and the
applications of 3D edge detectors, highlighting the difficulties that are specific to
3D.

6.1 History of edge detection in 2D

Edge detection is the task of finding the boundaries between the objects that ap-
pear in a digital image. Segmentation is a different, but closely related problem,
which consists in finding the objects themselves. Both problems have different
constraints and applications. As each segmentation gives rise automatically to
edges, but not the other way round, edge detection is a strictly more general
problem (see, e.g., Figure 6.1). From a mathematical standpoint, edge detec-
tion finds the discontinuities of a function and segmentation finds a partition of
the domain. Edge detection, being of a lower-level nature than segmentation,
is aimed at picking structures all over the image and usually needs no initial-
ization. To put both problems face to face, we can say that edge detection is
an extraction of features appearing in the image, while segmentation provides a
global interpretation of it.

Figure 6.1: Edges are not necessarily boundaries of segmentations. Left: a crack-
tip. Right: image of a bean.

People have been using 2D edge detection for years (see [Jul59]) for many
tasks. For example, to obtain a visually appealing “primal sketch” [MH80,
HWL83] of a picture, to reduce the amount of information present in an image,
to get a manageable list of “features” to perform registration [AF87, HLF+97,
Bro92] of two images, or shape matching [MAK96, LMMM03]; and finally as a
first step towards the segmentation of the image into regions. For an account of
its applications to computer vision see [FP03].

95

f/cracktip.eps
f/bean.eps

96 Chapter 6. Historical context of edge detectors

Let us briefly review the main approaches to edge detection. A gray level
image can be realistically modeled as a real-valued function u(x) where x repre-
sents an arbitrary point of a rectangle Ω in RN (N = 2 for usual pictures, 3 for
medical images and movies for example) and u(x) denotes the gray level at x. In
this continuous setting, when an image u : Ω → R is a smooth function, edges
are usually defined in terms of a differential operator. Most, if not all, of them
are based on one of the following three:

The norm of the gradient |Du| =
√

u2
x + u2

y produces an image which is inter-

preted as a measure of the “edgeness” at each point of the image domain. Many
detectors (e.g., Sobel [Dav75], Prewitt [Pre70], Roberts [Rob65], Kirsch [Kir71]
and the morphological gradient [BL79]) can be interpreted as numerical schemes
to approximate this norm. The main advantage of these operators is that they
are fast and easy to compute. Their main limitations are that their output is
difficult to use and blurry edges are not well localized.

The Laplacian. According to Marr-Hildreth [MH80], edges can be defined as
zero-crossings of the Laplacian ∆u = uxx + uyy. This method has the advantage
of being able to directly produce curves which are well-localized, but it may lead
to false detections (e.g., at almost flat zones where noise dominates).

Canny’s operator D2u(Du,Du) = u2
xuxx + 2uxuyuxy + u2

yuyy is the second
derivative of u along its gradient lines. Its zero-crossings are called Haralick’s
edges [Har84], and they are better localized than the zero-crossings of the Lapla-
cian [HS85].

Since Canny’s operator is the second derivative of u along its gradient lines, it
vanishes where the first derivative of u is maximal in the direction of the gradient.
Instead of computing second derivatives, these maxima can be found directly by
looking at the values of the derivative at the neighboring pixels in the gradi-
ent direction and discarding those pixels that have higher contrasted neighbors.
This process, called non-maximum suppression, forms the basis of an efficient
implementation of Canny’s filter. The explicit details of the method (see [Der87]
and [Can86]) are somewhat intricate because the choice of previous filtering is
critical to ensure the best localization. The result of this non-maximum suppres-
sion is then pruned using two threshold parameters in a process called hysteresis.
Thus, Canny’s edge detector, while being able to give very good results, uses
three parameters which are usually set by hand, specifically for each image, by
visual inspection: The first parameter is the width of the (necessary) initial lin-
ear filtering, whose optimal value depends on the overall amount of noise in the
original image, and the other two parameters are thresholds, whose optimal value
depends on the distribution of the contrast.

Edge detectors usually give as edges a set of pixels, and those have to be
connected to produce a set of curves. Active contours or snakes were devel-
oped to obtain a boundary segmenting a region of the image (or a set of re-
gions) [KWT88, CKS97, MSV95, CCA92, KKO+96]. They are interfaces (curves
in 2D images, surfaces in 3D images) that evolve to minimize an energy func-
tional. The minimization is usually performed using gradient descent starting
from a given initialization. The choice of a good initialization is thus critical

97

because the energy functional may have several local minima. Other particu-
lar approaches, based on segmentations, include finding a partition of the image
domain that globally minimizes an energy, as in graph cuts [BK03]; or find-
ing watersheds (i.e., connected components of lower level sets) of the gradient
norm [VS91, SSV+97].

6.2 Edge detection in 3D

While traditional edge detection was initially introduced for 2D images, most of
the techniques can, at least theoretically, be extended to 3D images. However in
three-dimensional images, the boundaries between objects are not curves in the
plane but surfaces in space. In that setting, the summarizing property of edges is
even more important because these images can not be easily visualized as a whole
(whithout resorting to specialized rendering techniques). On the contrary, a set of
surfaces in space is easy to visualize, specially if the user can rotate interactively
the whole image domain. Even when the surfaces are nested it is useful, because
the surfaces can be endowed with transparency. Thus, edge detectors are an
invaluable tool in 3D visualization, for they provide an efficient way to glance
through the content of whole images. Aside from visualization, 3D edges are
used also for other tasks, e.g. registration [HLO99] or landmarking [PSO+01].

Edge detection is often more appealing in 3D than in 2D, because the occlusion
phenomenon does not occur in 3D images, and occlusions are one of the two things
that make edge detection hard (the other one being textures).

6.3 Edge detection by Helmholtz principe

Desolneux, Moisan and Morel proposed in [DMM01] a new method for edge
detection (named DMM, from now on), based on a general theory (see [Low85,
GH91, DMM04]) aimed at giving sensible values to perceptual thresholds. It is
possible to apply that theory directly to set the hysteresis thresholds for Canny’s
filter, but DMM is more elaborate in that it finds a separate threshold for each
edge, according to its size and its contrast. The main steps of this method are
the following:

(i) The family of level lines of the image and the distribution of the modulus
of the gradient are computed and stored.

(ii) Then, all arcs of level lines are subsequently tested, one by one, to verify
that they are well contrasted. The arcs that pass the statistical test are the
output of the algorithm (they are named meaningful edges).

This algorithm contains no tunable parameters because the minimum contrast
required for a given curve to be meaningful is determined automatically by the
statistics of the image contrast. With respect to Canny’s detector, it has the
advantage of not producing an unstructured set of edge points, but a set of
continuous planar curves on the image domain (e.g., with sub-pixel precision).

98 Chapter 6. Historical context of edge detectors

Let us mention that, in order to refine the computation of the boundary of an
object, a meaningful level line may be used as an initialization for a classical
active contour model [DMM03]. It is worth noting that [DMM01] introduced two
variants of this algorithm, testing either whole level curves or arcs of them, and
the respective outputs were named meaningful boundaries and meaningful edges.
Our method is based on the second, more general, variant.

7 Digression on triangulated surfaces

The second part of this thesis proposes a method for 3D edge detection whose
output is a finite set of triangulated surfaces in the image domain. On this chapter
we explain some general properties and algorithms for triangulated surfaces. The
content of this chapter belongs to a field of study which is sometimes disparaged
by the image processing community as a part of computer graphics, and by the
computer graphics community as a part of image processing. Nevertheless, we
find its many details worthy of interest. On Section 7.1 we explain how to obtain
level surfaces of a given 3D image with sub-voxelic precision. On Section 7.2 we
explain how to compute lenghts of curves defined on surfaces. On Section 7.3 we
explain a method to obtain segmentations of functions defined on surfaces.

7.1 Consistent Marching Cubes

The Marching Cubes algorithm takes a 3D grid of gray values and a threshold,
and produces a triangulated surface separating the grid points above and below
that threshold. The original incarnation of this algorithm had a topological incon-
sistency problem because the produced triangulations were not always boundaries
of polyhedra. This problem was solved on subsequent versions of the algorithm,
by carefully modifying the look-up table. Thus, a modern implementation of
Marching Cubes will always produce closed surface triangulations.

However, there remains a different topological problem: for many 3D images,
the triangulations produced by Marching Cubes at different thresholds may inter-
sect, specially when those levels are close. This phenomenon is specially prevalent
at textured parts of the image where many different cases of the Marching Cubes
look-up tables are triggered together. However, it can appear even for very reg-
ular images, as shown on Figure 7.1

The marching cubes algorithm is used to compute a triangular mesh approxi-
mation to the isosurface of a function sampled at points of a 3D orthogonal grid.
The idea is to process independently each cubical cell formed by 8 contiguous
samples. Linear interpolation along the edges of the grid is then used to compute
the vertices of the isosurface aproximation.

The original marching cubes algorithm, as described initially in [LC87], has
a well-known consistency problem that gives rise to holes in the generated trian-
gulations (see [vGW94]). These holes can appear only inside cells that contain a
singularity. While this hardly poses problem when the surface is used for visu-
alization, it certainly calls for trouble when the surface is used as an object for
further computation, as we do.

In the literature one can find several attempts to solve the topological in-
consistencies, leading to two successful variants of the original algorithm. One
possibility is to require that the polyhedron given by the algorithm has the same
topology as the trilinear interpolant of the sample points. A complete case by
case study of the singularities of a trilinear interpolant inside a cubical cell ap-
pears in [Nie03]. This method has the disadvantage that it gives triangulations

99

100 Chapter 7. Digression on triangulated surfaces

Figure 7.1: Two isosurfaces of the same 3D image at different thresholds, as
computed by the VTK library. The two surfaces are drawn with different colors,
to emphasize the places where they intersect. The image is obtained by sampling
at the grid points the distance to straight line.

that are too complicated and require the introduction of new points outside the
edges of the grid. Another, more pragmatic approach, takes the table of cases of
the original algorithm and modifies it a bit, with some care, so that the resulting
triangulations have no holes. This is the method used in the [va] library. This
“combinatorial” approach does not resort to an interpolation of the function, so
that it is not clear what it is computing. Again, this is not a problem at all when
the purpose of the triangulation is to give nice visualizations, which it does, but
we needed something consistent with our tree of shapes.

For that, we designed our own variant of the marching cubes algorithm, see
figure 7.2 for its table of cases. Our requirement was that the surfaces should
have the same topology as the borders of the shapes. This turns out to be an
easy requirement to fulfill, and it gives automatically a consistent table of cases:

bulk_tex/sections_sevenrp/f/intersecting_isosurfaces.eps

7.1. Consistent Marching Cubes 101

Figure 7.2: Lookup table for our version of the Marching Cubes algorithm. There
are 256 cases altogether, which can be obtained as rotations of those shown here
plus the mirror image of case 11.

we only have to require that all the vertices whose value is above the threshold
(marked as black dots in the table) are not separated by the triangulation.

Let f be the distance function to some straight line in R3. The isosurfaces
of f are cylinders. If we sample the function f at the points of a regular grid
we obtain a three dimensional image of voxels. Now, using Marching Cubes we
can try to extract the isosurfaces of that image. Popular programs such as VTK

or amira give surfaces that are not convex at all, whereas as cylinders they should
be convex; see figure 7.3. Even if the vertices of the triangulation lie nearly on
the isosurface, the edges that connect those vertices are far from being correct,
resulting in small concavities in some places. This nonconvexity is not an artifact
due to the small radius of the cylinder: as we will see, it happens for any radius.
It is the result of an indeterminacy in the Marching Cubes algorithm.

Where do the anomalies come from? Well, take a look at case number 8 of
the Marching Cubes table in Figure 7.2. There are two possibilities of triangula-
tion, shown in Figure 7.4. Likewise, most of the other cases also allow different
possibilities. For example, there are 14 ways to triangulate the hexagonal border
in case 9, corresponding to the 14 different triangulations of an hexagon 7.6.

Note that the choice of triangulation does not change the topology of the
surface (when viewed as a simplicial cell complex). Classical Marching Cubes

bulk_tex/sections_fancymc/figures/tablecubes.eps

102 Chapter 7. Digression on triangulated surfaces

Figure 7.3: Some isosurfaces obtained by VTK (left) and amira (right).

Figure 7.4: Two triangulations for case 8 of Marching Cubes.

Figure 7.5: The two triangulations give different surfaces when the points on the
edges are not coplanar.

f/newcils_vtk.eps
f/newcils_amira.eps
bulk_tex/sections_fancymc/figures/cas4.eps
bulk_tex/sections_fancymc/figures/duesopcions.eps

7.2. Graph cuts on surfaces 103

Figure 7.6: The fourteen ways to triangulate an hexagon.

choses once and for all a triangulation for each case and applies it every time
this case appears. Another criterion, equally reasonable, would be to choose each
time a triangulation at random. The purpose of our study is to show that there
are better ways to choose triangulations. Two sensible criteria are proposed.

Before going on further, let us see an example where this choice makes a
difference. Of course if in case 8 the four vertices are on the middle of the cell
edges, then they lie on the same plane, and both triangulations give rise to the
same surface. However, it is customary to locate the vertices ei on the cell edges
at a position corresponding to the linear interpolation of the function along that
edge. In that case the two triangulations can give very different surfaces, see
figure 7.5.

The example of the cylinders is simple enough to be able to know which is the
correct solution. By visual inspection, it is apparent that some edge flips would
render the surface convex. The good choice of the edges is the one that best
approximates the isosurface. Another way of looking at it, is that the good edges
are those most well aligned with the generatrix of the cylinder. This coincides
with the direction of minimal curvature.

7.2 Graph cuts on surfaces

Let us address the following problem: given a triangulated surface and a patch of
it, compute the length of the boundary of that patch. The patch of the surface
is given by a set of vertices of the triangulation. There are two naive, immediate
approaches to this problem.

The first approach is based in considering the triangulation to be a polyhedral
surface. In that case, we can use the given set of vertices to define a continuous
surface patch, by taking the union of the Voronoi cells of the surface at those
vertices. Then we compute the length of the boundary of that region, which is
a polygonal line. This computation gives an estimation of the boundary length
which is consistenly larger than the desired length. This can be seen, for example,
when using a planar triangulation of equilateral triangles of side l. Then, we

are approximating the desired boundary by hexagons of side
√

3
2 l = (0.866 . . .)l.

bulk_tex/sections_fancymc/figures/trihex.eps

104 Chapter 7. Digression on triangulated surfaces

Notice that if we estimate lengths in that way, the precision can never be increased
by refining the triangulation because we are always approximating the boundary
by hexagons.

The second approach is based in considering the triangulation to be a (combi-
natorial) graph. In that case, we simply count the number of edges of the graph
such that exactly one of its endpoints belongs to the given set of vertices. The
problem with this approach is that it gives always a natural number as a measure
of length, so that it is necessarily imprecise. Moreover, this method does not take
into account the shapes of the triangles, so that very small triangles are given the
same weight as larger ones. This problem is mitigated when using triangulations
given by Marching Cubes, since their edges are never larger than

√
3, however,

this is still a limitation.

Besides its obvious shortcomings, the second approach is more interesting for
three reasons: it is very easy to implement, it can be made more precise by
assigning weights to the edges, and its precision can be arbitrarily improved by
adding more edges to the graph. Let us explain this. First, notice that the same
computation of the first approach can be exactly simulated by assigning suitable
weights to the edges of the graph, in the following way: the weight of each edge
must be the length of the boundary of the Voronoi cell that crosses it (if any).
Then, it is natural to ask if these weights provide the best possible results. The
answer turns out to be negative. For instance, in the example given above of
the regular tesselation of the plane into triangles of side l, the optimal weights
are closer to 1

2 l. For example, these weights give asymptotically exact results
for the length of straight segments whose slope is a multiple of 60 degrees. For
other slopes, the depth estimation given by the cut is slightly larger than the real
length.

Now, what is the best way to set the edge weights so that the graph cuts give
an optimal approximation of the metric? While the optimal weights for a regular
tesselation can be computed manually, there is a general technique for assigning
such weights based on Crofton’s formula. See [San53], Chapter 3 for the theory in
a continuous setting, and [BK03] for a discrete example. In the case of arbitrary
triangulations, the optimal weights are given by the following formula

ωe =
1

2
leθe (7.1)

where le is the length of the edge and θe is the angle “spanned” by this edge, for
example the average of the angles of the two neighboring triangles. This formula
has an intuitive interpretation in terms of the triangle fans around each vertex:
it corresponds to estimating the length of any segment that crosses the triangle
as the average length of all possible segments crossing that triangle (at least in
the case of small angles θe, such that θe is a good approximation of sin θe). In the
particular case of the regular tesselation commented above, this formula gives all
weights equal to π

4
√

3
l = (0.453 . . .)l. These weights are better than 1

2 l, because

they give lenght estimations of straight lines that are slightly above or sligthly
below than the exact value, depending on the slope of the line.

7.3. Mumford-Shah segmentation of surfaces 105

Let us recall the result of all this development: we have a method for comput-
ing the lenght of boundaries on triangulated surfaces, based on weighted cuts of
the graph associated to the triangulation. This method can be made as precise as
needed, by refining the triangulation or by adding new edges to the graph and up-
dating their weights according to formula 7.1. We use this method later, in order
to compute the lenghts of the boundaries given by Mumford-Shah segmentation
of surfaces.

7.3 Mumford-Shah segmentation of surfaces

The Mumford-Shah functional [MS88] is a starting point of various methods for
image segmentation ([KLM94], [CV01]). The definition of the functional can be
extended immediately to arbitrary manifolds endowed with arbitrary metrics.
Since the functional measures the boundaries of a partition of the space, it leads
naturally to a discretized algorithm where these boundaries are measured using
cut metrics [BK03], possibly weighted locally using the image contents ([KWT88],
[CKS97]). For our purposes, we only need this algorithm to segment functions
defined over 2D surfaces embedded in 3D space. Nevertheless, on this section we
explain the algorithm in the general setting of arbitrary manifolds.

7.3.1 The simplified Mumford-Shah functional on the plane

Let Ω ⊆ R2 be a rectangle and let I : Ω → R be a fixed function, called the
“image”. The Mumford-Shah functional [MS88] assigns a number to each func-
tion u : Ω → R which is smooth outside of a set K ⊆ Ω. It has the following
form

E(u,K) = α

∫

Ω

(u− I)2 + β

∫

Ω\K

‖∇u‖+ γH1(K)

where α, β, γ are positive parameters. The first two integrals are taken with re-
spect to the Lebesgue measure on the plane, and H1(K) is the one-dimensional
Hausdorff measure, that coincides with the length for rectifiable sets. A
pair (u,K) that minimizes E(u,K) is called a Mumford-Shah approximation of I
with parameters α, β and γ. The three parameters define the trade-off between
the fidelity, the smoothness and the simplicity of the approximation. Notice that,
since the functional is homogeneous on the three parameters, there are only two
independent parameters.

A common simplification of the above functional is to restrict u to piecewise
constant functions. Then it is easy to see that the Mumford-Shah approximation
is determined by the partition {Ωi} of Ω that minimizes the following functional:

Eλ,I({Ωi})
=

∑

i

variance of I on Ωi + λ
∑

i,j

length of border between Ωi and Ωj .

We will generalize this second version of the Mumford-Shah functional for
spaces Ω more general than a rectangle in the Euclidean plane. There are two

106 Chapter 7. Digression on triangulated surfaces

things to do, one for each term of the function: to define a volume measure on
the manifold (that allows us to define variances of functions on open sets) and to
define a lenght or area measure (that allows us to measure the boundaries of the
regions).

7.3.2 Mumford-Shah on manifolds

We start by restricting a bit the space of functions that we consider, to ease the
definition of the functional. This is more a stylistic device than a real restric-
tion, because here we are not going to perform a mathematical analysis of the
functional.

Definition 45 (space of approximations). Let Ω be an n-dimensional smooth
manifold. The space of approximations over Ω is the set of functions f : Ω →
R that are constant over finite partitions {Ωi} of Ω such that for any i, j the
set ∂Ωi ∩ ∂Ωj is a finite union of (n− 1)-dimensional smooth submanifolds of Ω.

Then we define the Mumford-Shah functional on the space of approximations.

Definition 46 (Mumford-Shah functional). Let I : Ω → R be a fixed function,

and let ω ∈ ∧n
(Ω) and ζ ∈ ∧n−1

(Ω) be fixed nondegenerate differential forms of
degrees n and n−1 respectively. The Mumford-Shah functional of parameter λ ≥
0 assigns the following energy to a partition {Ωi}:

Eλ,I,ω,ζ({Ω1, . . . ,Ωn}) =
∑

i

∫

Ωi

∣

∣

∣

∣

∣

I −
∫

Ωi
Iω

∫

Ωi
ω

∣

∣

∣

∣

∣

2

ω +
∑

i,j

∫

∂Ωi∩∂Ωj

ζ.

The first observation is that the choice of the volume form ω allows to produce
approximation functions out of partitions of Ω: simply assign the constant equal

to the mean value

R

Ωi
Iω

R

Ωi
ω

of I to each region Ωi. Likewise, the volume form

allows us to compute the variances. This means that the planar Mumford-Shah
functional is a particular case of this (at least over our space of approximations),
when ω and ζ are respectively the Euclidean area and length forms.

There are many meaningful ways to choose the forms ω and ζ. The simplest
possiblity is when Ω is equiped with a Riemannian metric g. Then there is a
natural volume form

ω =
√

|det g|dx1 ∧ · · · ∧ dxn = ∗(1)

and a natural (n− 1)-dimensional “area” form

ζ = natural area form = ∗(dl).

An interesting case of the above is when Ω is a surface of R3 with the metric given
by the embedding. Then, this functional can be used over functions defined on
that surface.

7.3. Mumford-Shah segmentation of surfaces 107

=⇒
Figure 7.7: Changing the boundaries inside a small disk to obtain only equal-
angled triple junctions.

=⇒
Figure 7.8: Changing the boundaries inside a small disk to obtain only equal-
angled triple junctions.

More generally, there is no need that ω and ζ come from one and the same
Riemannian metric. For instance, to segment a regular two-dimensional image
it makes sense to set ω as the Euclidean area and ζ as an active-contour met-
ric [CKS97] that depends on I such as

ζ = v(|∇I|) dl (7.2)

where dl is the ordinary Euclidean length and v is some decreasing function such
as v(x) = 1

1+x . The net effect of this is that, while in the classical Mumford-Shah
approximation all the boundaries are penalized in the same way, in the modified
version it is more expensive to cut in the middle regions of low gradient than
regions of high gradient.

Notice that the use of non-Euclidean metrics on the functional may solve (or at
least mitigate) the well-known “120 degree problem”. Minimizers of the classical
Mumford-Shah functional only allow for triple junctions, and those in turn can
only have three 2

3π angles. This fact is easy to prove: if we have a non-triple
junction or one without 2

3π angles then we can change the approximation inside
a small disc of radius ǫ around the junction, to have only triple junctions of equal
angles. This will certainly make the boundaries shorter, and thus the length term
will be smaller. If ǫ is small enough, the variance term on the functional can only
change proportionally to ǫ2 and the length term changes proportionally to ǫ. This
means that the whole functional can always be improved by transformations as
those depicted in figures 7.7 and 7.8. Thus, at the optimum all triple junctions
must have equal angles.

bulk_tex/sections_msmanifolds/figures/msqcentvint1.eps
bulk_tex/sections_msmanifolds/figures/msqcentvint2.eps
bulk_tex/sections_msmanifolds/figures/mstcentvint1.eps
bulk_tex/sections_msmanifolds/figures/mstcentvint2.eps

108 Chapter 7. Digression on triangulated surfaces

This “120 degrees” phenomenon is not usually a problem in practical imple-
mentations, because the scale at which those angles occur tends to be smaller
than the image discretization. However, it is unsuitable as a theoretical model,
for it does not allow T -junctions, which are arguably essential features of images.
Our minor generalization of the functional (e.g., when the Euclidean length is
replaced by a snakes-like metric) allows any angles on junctions. To see that this
is true, simply consider how does an affine transformation of the Euclidean plane
affect the functional: optimal partitions transform to optimal partitions, while
the 120 angles may transform to any angle. In the more general case, the metric
may nearly vanish along some curves which meet at arbitrary angles, and the
optima of the functional will strongly prefer those curves.

7.3.3 Discretization and algorithm

Let us describe how to implement the ideas above as a computer program. We
propose a discrete setting, where each point of Ω is the vertex of a graph G,
whose edges connect some neighboring points. In Section 7.2 we explained how
to assign weights to those edges in such a way that cuts of the graph approximate
an arbitrary metric. Now, let us explain how to find good enough local minima
of the functional by merging regions of this graph, using the method introduced
on [KLM94]

The parameter λ in the Mumford-Shah functional controls the trade-off be-
tween the fidelity of the approximation to the original image and the simplicity
of the approximation. When λ→∞ the only term that counts is the sum of the
lengths of the borders and the best approximation is that of the whole image by
its mean value. When λ→ 0 the only term that counts is the variance (or error)
and the best approximation is an exact copy of the image (with small enough
pieces).

In the discrete setting these “small enough” pieces are precisely the vertices
of the graph G, and this is a starting point for our merging algorithm, because it
is a global minimizer of the functional. The problem of finding global minima for
higher values of λ looks too hard and we will not try to solve it. Instead, we will
conform on finding approximations of this minimizer that give reasonable-looking
approximationss. Namely, we will look for segmentations with the property that
their energy can not be minimized by merging two regions of the partition:

∀k, l E({Ω1, . . . ,Ωn}) < E({Ω1, . . . , Ω̂k, . . . , Ω̂l, . . . ,Ωn,Ωk ∪ Ωl}).

Partitions {Ωi} with the property above are called 2-normal partitions. Instead
of looking for partitions which are global or local minima of E we will aim only
for 2-normal partitions.

Because there is no clear way to choose a single value of λ that gives reasonable
segmentations, it is customary to compute at once those approximations for all
values of λ. In general, the optimal partitions determined by different values of λ
need not be related at all. But if we are happy with 2-normal partitions then
there is a clever strategy to do it: start with the exact partition for λ = 0, and

7.3. Mumford-Shah segmentation of surfaces 109

look at the first pair of regions that would make fail the definition of 2-normality
as we increase λ. Then merge this pair of regions and keep increasing λ until
reaching the trivial partition {Ω}.

The procedure that we have just described serves to build a binary tree of
mergings that represents a hierarchy of partitions. Each node of the graph repre-
sents a region Ωi ⊆ Ω. The leafs are the smallest possible pieces, and the root is
the whole Ω. Once this tree is built it is easy to prune it to obtain 2-normal seg-
mentations having a pre-defined number of regions. Let us write more formally
this procedure:

Input:

• A graph (representing a discretization of the space Ω)

• Values on the vertices on the graph (representing the image I)

• Weights on the vertices of the graph (representing the volume form ω)

• Weights on the edges of the graph (representing the boundary form ζ)

Output:

• A binary tree of mergings (that can be pruned to obtain a collection of 2-
normal segmentations for all possible values of λ).

Algorithm:

1. Build a region-adjacency graph out of the original connectivity graph

2. While the region-adjacency graph has more than one vertex:

• Collapse the pair of adjacent nodes i, j that minimize the following
number

|Ωi||Ωj |
|Ωi|+ |Ωj |

‖mi −mj‖2
lij

.

where |Ωi| =
∫

Ωi
ω, mi =

R

Ωi
Iω

R

Ωi
ω

and lij =
∫

∂Ωi∩∂Ωj
ζ. Now it remains to explain

how to compute discrete approximations to these integrals.
We have used the setting above to segment the contrast over each level surface

of the image.
As far as we know, this is the first time that the Mumford-Shah functional is

used to segment data defined on surfaces.

8 Complete description of the proposed edge detector

We will follow the main steps of the DMM algorithm in order to construct an
edge detector for 3D images. Thus, the first step of our edge detector will be
to compute the family of its level surfaces. For that, we use the Tree of Shapes
described on Part I. Other closely related data structures are those developed by
Cox-Karron-Ferdous [CKF03], by Pascucci-Cole-McLaughlin [PCM03], by Carr-
Snoeyink-Axen [CSA03], and by Sarioz-Kong-Herman [SKH06].

The proposed edge detector consists of two steps: first we produce a finite
family of candidate surfaces and then we select the most contrasted ones (if any)
among this family. In Section 8.2 we give a general definition of well-contrasted
subsets of an image according to an a contrario statistical test. In Section 8.3 we
construct a family of surface patches to which we may apply the contrast test.
The two sections together form the core of the method.

8.1 Hypotheses of the method

Our method relies on the following assumption: in an ideal case (e.g., a perfect
acquisition method giving infinite resolution images without noise) the bound-
aries of the objects can be obtained by thresholding the image intensity. This
assumption holds for a wide class of real world images, like many medical im-
ages, namely, X-ray computed tomographies and magnetic resonances, where the
acquisition apparatus measures the density of a physical or chemical property of
objects in space. In practice, however, a single threshold does not suffice, because
there are artifacts due to the reconstruction of the image, and the limitations
inherent to its finite representation. For example, thin vessels having the same
width as a voxel appear in the images much darker than the interior of large
vessels, even if the contrast agent concentration or the measured property is the
same in both places. See Figure 8.1 for an illustration of this fact. Note that not
all 3D images satisfy this assumption. For example, in ultra-sound images the
objects are defined mostly by textures, and for these the proposed method will
likely not give good results (nor the existing methods described above).

Let us summarize the main assumptions underlying the proposed method of
edge detection:

(H1) The edges are formed by large pieces of level surfaces of the original gray
scale image.

(H2) The edges have as high contrast as possible.

Let us give some arguments in favor of the soundness of these assumptions. First,
observe that if an image has no constant regions, any voxel is on a level surface,
and therefore any arbitrary surface can be trivially approximated as a union
of pieces of level surface, indeed, voxels. Thus, the key of point of our first
assumption lies on the word “large”. Without this word, it is always true, but
of no use at all. The assumption is then useful as a heuristic to show that the
output of our algorithm will be a small set of large pieces of surface, and not a

111

112 Chapter 8. Complete description of the proposed edge detector

Figure 8.1: Two different isosurfaces of the same medical image. Note that each
choice of threshold segments well some part of the image, but no threshold gives
a globally correct segmentation.

large set of tiny pieces. Let us discuss to what kind of images this hypothesis
applies.

8.2 Selection of meaningful patches from a given

collection

Let us define the concept of well-contrasted subset of an image. The definition
is a slight generalization of the one given in [DMM01, DMM04] based on an a-
contrario model: Knowing the distribution function for the image contrast, we
would sample the contrast values of the image at a randomly selected set of points,
and we would look whether the sample had a distribution with exceptionally
high contrast. In that case, this set of samples would be accepted as a well-
contrasted set. Numerically, this reduces to selecting the sets which are large
and whose minimum contrast is high. For a thorough discussion of the statistical
foundation of this method, see [GH91], where it was described using the vivid
name “conspiracy of random”. For the intuitive idea in our case, see Figure 8.2.
Notice that this a-contrario model is not based on an image of noise, but on noisy
curves over the original image.

The norm of the gradient defines a contrast for every point on the image
domain. We regard the values of the contrast at each voxel as independent and
identically distributed random variables, Xi, whose distribution is given by the
histogram of the contrast. This notation will be used throughout this section.
This is a good model when a few voxels are chosen randomly over the image
domain, but it fails when the voxels are not chosen independently (for instance,

bulk_tex/sections_3ded/aneur_iso_inside.eps
bulk_tex/sections_3ded/aneur_iso_outside.eps

8.2. Selection of meaningful patches from a given collection 113

Statistics Geometry

Figure 8.2: Well-contrasted level curves of an image. These figures display three
different sets of 10 points thrown in the domain of the lena image.
Left : points thrown randomly. Middle: points thrown randomly in places where
the gradient is high. Right : points on a well-contrasted level curve.
The first subset will fail the test described on Section 8.2, and the other two
subsets will pass it. However, only the third subset will be presented to the test
by the method described on Section 8.3.

if they are specially chosen along the boundary of an object). This failure is
precisely what we look for, as the method can be regarded as an hypothesis
testing of the independence assumption.

In the following paragraphs we describe a general setting to detect whether a
sample from a distribution has abnormally large values. This device can be used
to detect exceptionally well-contrasted subsets of an image. The proposed edge
detector is a particular case of this when the subsets are the level surfaces of the
image (or their connected parts).

To measure the contrast of sets of points we use an arbitrary statistic f , which
for now is a parameter of the method:

contrast({Xi}) := f(X1, . . . ,Xn).

This statistic serves to summarize the whole contrast distribution of the set of
points into a single real number. It may help to think that f is increasing in each
of its components, but this is not logically needed for the following propositions
to hold. Possible choices of f are the minimum X(1), the mean value n−1

∑

Xi,
the median X(n/2), or some other quantile X(q

100
n). From the statistic f we need

its distribution functions Fn:

Fn(µ) := P(f(X1, . . . ,Xn) ≥ µ)

which are decreasing functions of a real variable with values in the [0, 1] inter-
val. Notice that these are the complement of the usual cumulative distribution

bulk_tex/sections_3ded/threelenas.eps

114 Chapter 8. Complete description of the proposed edge detector

function of f(Xi). We also define for every positive integer n a meaningfulness
function Sign as

Sign(x1, . . . , xn; ǫ,N) := log ǫ− logN − logFn(f(x1, . . . , xn))

which is a real-valued function of n real variables (and two real parameters ǫ,N).
In the following, when the subindex n of both F and Sig can be deduced from
context, it will be omitted.

Now we define our statistical test. Suppose that we are going to deal with N
sets of samples of the contrast:

Si = {Xi
1, . . . ,X

i
ni
} i = 1, . . . , N

Definition 47. We define the meaningfulness of the set Si as
Sig(Xi

1, . . . ,X
i
ni

; ǫ,N). We say that the set Si is meaningful when its
meaningfulness is positive. If we want to emphasize the parameters ǫ and f we
will talk about ǫ-meaningfulness of Si in the f-sense, or of whether the set Si is
ǫ-meaningful in the f-sense.

Notice that the set Si is meaningful when

N · Fn(f(Xi
1, . . . ,X

i
ni

)) < ǫ

and this is the usual definition of “meaningfulness” given in [DMM01, DMM04].
The quantity on the left hand side of the previous inequality is then called the
Number of False Alarms of the set Si.

Definition 47 is justified by the following proposition.

Proposition 48. Under the same statistical model as definition 47, the expecta-
tion of the number of ǫ-meaningful sets is smaller than ǫ.

The proof of the proposition is an easy consequence of this elementary result.

Lemma 49. Let Y be a random variable and let G be its distribution func-
tion G(y) = P(Y ≥ y). Then, for t ∈ [0, 1]

P(G(Y) < t) ≤ t.

Proof. Let V be the random variable that counts the number of ǫ-meaningful sets.
Notice that V is a function of the variables Xi

j . We want to prove that E(V) ≤ ǫ.
Let Vi be the random variable that equals 1 if the set Si is ǫ-meaningful and 0
otherwise, thus

E(V) = E(V1) + · · ·+ E(VN).

Now we have

E(Vi) = P(Vi = 1) = P
(

N · F (f(Xi
1, . . . ,X

i
ni

)) < ǫ
)

= P
(

F (f(Xi
1, . . . ,X

i
ni

)) <
ǫ

N

)

≤ ǫ

N
,

8.2. Selection of meaningful patches from a given collection 115

where the last step is the application of the lemma to the random variable Y =
f(Xi

1, . . . ,X
i
ni

), whose distribution function if G(y) = F (y). Substituting this
result in the previous formula we get

E(V) =
ǫ

N
+ · · ·+ ǫ

N
= ǫ

The above proof is adapted from the proof given in [CMS05].
The original definition of meaningfulness given in [DMM01] used the statis-

tic f = min. There is a reason to allow for different choices of f , that can give
more robust detectors; see for example Section 9.2 where it is used with a statistic
other than f = min. In the case of the minimum, the function F can be obtained
directly from the distribution of the contrast, which is approximated using its
histogram:

H(µ) = P(X ≥ µ) :=
number of voxels with |Du| ≥ µ

total number of voxels
.

Then we have
Fn(µ) = H(µ)n

where n is the number of points in the subset (the number of arguments of the
function f). This minimum is a special case of the quantiles:

Proposition 50 (Distribution of quantiles). Let X1, . . . ,Xn be independent
and identically distributed random variables with distribution function H(µ) =
P (X1 ≥ µ) and let X(1), . . . , X(n) be the outcomes of these variables ordered
increasingly. Then X(k) is a random variable whose distribution function is given
by a binomial tail of parameter H(µ):

P (X(k) ≥ µ) =
k−1
∑

i=0

(

n

i

)

(1−H(µ))iH(µ)n−i. (8.1)

in particular, we have the distribution of the minimum computed before: P (X(1) ≥
µ) = H(µ)n.

The right hand side of equation (8.1) , denoted B(n, k,H(µ)), is the incom-
plete beta function (written as B(n, k, p) = Ip(k, n−k+1) in the common notation
of [AS65]). This is a well-known special function which can be efficiently com-
puted just as easily as sin or exp. We used the GSL library [G+02] which provides
a function call for it.

Remark 1. In allowing for a choice of statistic f we are motivated by the fact
that the minimum contrast is not a robust descriptor: if one single point of the
set has very low contrast, the whole set is discarded regardless of the contrast of
all other points. We refer to Figure 8.3 for a synthetic image illustrating this
phenomenon. In that figure we have a well-contrasted object, surrounded by level

116 Chapter 8. Complete description of the proposed edge detector

Figure 8.3: An image where level lines selection using f = min fails to detect a
boundary which is visually obvious. Left: the image. Right: its contrast.

curves whose gradient is maximum at almost the totality of their points. However,
all the curves cross a blurred region of the image, where the gradient can be made
to be arbitrarily low. Then, none of these curves will be detected as meaningful.
There are two approaches to deal with this kind of problem: either we work with
parts of level curves instead of whole level curves, or we choose a different statistic
such f = 10th quantile. The first approach is the one chosen here, but the use of
a robust statistic f is much faster and, in some cases, gives similar results.

8.3 Production of candidate patches

This section treats the main difference between the 2D and 3D versions of the
edge detector.

The objects of our study are parts of level surfaces. This is the place where
our method differs from the 2D case: a connected subset of a surface can be much
more complex than a connected subset of a curve (which is determined by its two
endpoints). This means that we can not treat all the connected subsets of each
level surface, as is done in 2D: the search space would be too large. The first
aid in the reduction of this search space comes from the observation that we are
not really interested in all the subsets of a surface that pass the ǫ-meaningfulness
test, but only in those that are “maximal” in the following sense:

Definition 51. ([DMM01]) Let S be a level surface of the image. A connected
subset S ⊆ S is maximal meaningful when it is meaningful and

• it does not contain a strictly more meaningful connected subset

• it is not contained in a more meaningful connected subset

Proposition 52. ([DMM01]) Maximal meaningful subsets in the min-sense are
disjoint inside its level surface.

Definition 51 was given in [DMM01] when the set S is a level curve and S an
edge curve, that is, a connected subset of Si. In that case the NFA is given by

bulk_tex/sections_3ded/minimumbad.eps
bulk_tex/sections_3ded/minimumbadg.eps

8.3. Production of candidate patches 117

the function

F (µ, l) = N ·H(µ)l (8.2)

where N is the number of edge curves of the image. Since edge curves are con-
nected subsets of level curves, N can be computed for a given image. Definition
51 is analogous to the one given in [DMM01]. For the time being, we assume
that N is a constant that can be computed. Then, the proof of proposition 52 is
the same as in [DMM01] and is based on the observation that, for a fixed value
of µ, the function F (µ, l) is nondecreasing in l.

Proposition 53. Let S be a level surface of the digital image u. Maximal mean-
ingful subsets of S are connected components of upper level sets of the modulus
of the gradient restricted to S.

Observe that there may not be any meaningful connected subset of S, in which
case the proposition is vacuously true. In case there is one, then the connected
subset with the smallest NFA is maximal meaningful.

Proof. Let S be a maximal meaningful subset of S, and let µ = minx∈S |∇u(x)|.
If y is a neighboring point of S with |∇u(y)| ≥ µ, we could add the point y to S
without increasing the NFA, contradicting the fact that S is maximal meaningful.
Thus, all neighboring points of S have a modulus of the gradient lower than µ,
and the statement of the proposition holds.

Proposition 53 suggests an strategy for computing the maximal meaningful
subsets of S. We can find one of them on the collection of upper level sets of
|∇u| restricted to S, and then searching recursively into its complementary.

But it turns out that the maximal meaningful subset of a level surface tends
to be topologically very complex, with many holes and a complicated boundary.
This happens because there is no restriction on the form of a maximal meaningful
subset, besides being connected. See Figure 8.4.

Figure 8.4: The maximal meaningful subsets of a level surface may not coorespond
to physical features. Left: a level surface of an image colored by the contrast.
Middle: the (connected) maximal meaningful subset of this surface. Right: the
node of the Mumford-Shah hierarchy with maximal significativity.

bulk_tex/sections_3ded/msgood_whsu.eps
bulk_tex/sections_3ded/msgood_maximal.eps
bulk_tex/sections_3ded/msgood_best.eps

118 Chapter 8. Complete description of the proposed edge detector

The proposed approximation, suggested by the observation above, is to re-
strict ourselves to a reduced class of well-behaved subsets. A reasonable way to
produce such a class of connected subsets of all sizes is a hierarchy of partitions
(Figure 8.5).

Definition 54. A hierarchy of partitions over a set M is a family H of subsets
of M such that

• M ∈ H

• There is a subclass L ⊂ H, whose elements are disjoint and cover M . They
are called the leaves of the hierarchy.

• Any element of H which is not a leaf can be represented as a disjoint union
of leaves.

• Any pair of elements of H are either disjoint or nested.

Restricting the family of connected subsets of level surfaces S to a hierarchy
of partitions we define F (µ, l) as in 8.2, with N equal to the sum of all nodes of
the hierarchies associated to all S.

Once we have a hierarchy of partitions for a given level surface, it is easy
to select the maximal meaningful objects of this partition in a greedy way (see
Figure 8.6). We first compute the meaningfulness of each object, which can be
done in linear time in the case f = min. Then we pick the object which is most
meaningful. This clears from the search all the descendants and ancestors of this
object within the tree of subsets, because we want a set of disjoint patches. Then
we pick the most meaningful object in the remaining part of the tree, and we
keep doing that iteratively until no more patches can be picked.

8.4 3D Edge Detection Algorithm

On Section 8.2 we have explained how to detect when a set of points from a given
family of sets is significantly well-contrasted. On Section 8.3 we have explained
how to produce a large but manageable family of subsets to apply this test to.
The sets of this family are patches of level surfaces, of all sizes, where the image
contrast is as homogeneous as possible. Putting these two ingredients together
we obtain the proposed edge detector:

Input:

• Original gray scale image, u

• Sensitivity parameter, ǫ > 0, (ǫ = 1 by default)

Output:

• A set of patches of surface, Γ

8.4. 3D Edge Detection Algorithm 119

lambda=0

lambda=1

lambda=max

root=trivial partition

of one piece

leafs= pieces of the finest

partition

Figure 8.5: A hierarchy of partitions whose depth is indexed by a scale parame-
ter λ. The leaves of the tree represent the points of the discrete surface, and the
root of the tree represents the whole surface. Notice that the total number of
nodes, being a binary tree, is proportional to the number of leaves (exactly the
double minus one).

Algorithm:

1. Compute the image of contrast g = |∇u|

2. Let N be twice the sum of the surface areas of all the level surfaces. This
will be the total number of tests to be done.

3. For each connected component S of each level surface of the gray scale
image:

a) Generate a mesh of triangles to represent S

b) Interpolate the contrast at the vertices of the triangulated surface S

c) Compute the Mumford-Shah tree, T , of the contrast function on S

d) Perform the statistical test with f = min to all the nodes of T

e) While there are still nodes in T :

i. Pick the node q of T that passes the statistical test with highest
score

ii. Output the patch of surface corresponding to q

iii. Remove from T the node q and all its ancestors and descendants

bulk_tex/sections_3ded/pisamstree.eps

120 Chapter 8. Complete description of the proposed edge detector

q

Figure 8.6: Each node of the tree in Figure 8.5 represents a connected patch of
surface. Once we have selected the most meaningful node (in this figure, the
enlarged one), we can remove all the nodes that are not disjoint with this one.
They are all the ancestors and descendants, marked by the dotted line in this
figure. Then we are left with the rest of the nodes in the tree.

Notice that this modular design allows us to try some variations of the algo-
rithm. For instance, we can use a different statistical test or a different set of
surface patches (for example, all the shapes of the tree). Another variation that
gives specially good results consists in setting the contrast g equal to the output
of Canny operator, instead of the norm of the gradient. See Figure 8.7 for an
example where this makes a difference.

smooth edge gradient norm Canny

Figure 8.7: Combination of our method with Canny’s. We can use the output of
Canny detector as the contrast for our method, thus enhancing the localisation
of the detected features. In this figure we show the detected curves of a synthetic
2D smooth edge in both cases.

bulk_tex/sections_3ded/pisamstreepart.eps
bulk_tex/sections_3ded/smoothdisk_closeup.eps
bulk_tex/sections_3ded/gradientcurve.eps
bulk_tex/sections_3ded/cannycurve.eps

9 Further notes about the proposed edge detector

9.1 Exclusion principle

The output of our edge detector (and that of the second version of DMM, based
on portions of level lines) is usually highly redundant in the following sense:
edges appear represented as bundles of surfaces (or curves). Here we introduce
an exclusion principle to reduce the redundancy of the output, by picking the best
representative of each bundle. It is based on a similar principle used in a segment
detector [DMM00] to reduce output redundancy. As this method works exactly
in the same way in 2D and 3D, we only describe here the 2D case and then we
can easily support the explanation with figures. For the 3D case, it suffices to
replace “curve” by “surface” and “square” by “cube”.

The proposed “exclusion principle” works by dividing the image domain into
small square regions (e.g. of pixel size, but not necessarily so), and imposing
these two requirements on the final set of curves:

(i) Each square belongs to at most one curve

(ii) Each curve passes the statistical test

Note that we say that a square P belongs to a curve C when C crosses through P .
Of course, the first requirement is not usually fulfilled by the original set of
curves. The exclusion method works by removing parts of curves until the first
requirement is fulfilled. Then, it removes the remaining pieces of curves that do
not pass the test. See figures 9.1 to 9.4 for a graphical explanation.

There are in general non-unique ways to reduce the original set of curves so
that the first requirement is true. We propose the following greedy strategy to
force uniqueness:

1. Start with the set of all curves

2. While there are still curves that pass the test:

a) Pick the curve C that passes the test with highest score

b) The curve C owns all the squares that it crosses

c) Delete the parts of all the other curves that cross through squares
owned by C

d) Output C and remove it from the set

3. Delete the remaining curves

Remark 2. In the previous algorithm, the “curves” we speak about are not neces-
sarily connected. For example, when we remove a piece in the middle of a curve,
the remaining two pieces are still considered “one curve”. This can be seen on
the upper curve at Figure 9.4(b).

121

122 Chapter 9. Further notes about the proposed edge detector

Remark 3. The proposed exclusion principle has a scale parameter, namely the
size of the grid. We make the natural proposal to set it to the same size as the
voxels of the original image.

9.2 Size statistics and other heuristics

Let us study the cost of our algorithm. An image of m voxels has O(m) level
surfaces (in fact, it has exactlym when all the values are different). A typical level

surface has O(m
2
3) points (this is the area of one side of a cube of volumem). This

is a very rough estimate, which happens to underestimate the complexity of the
algorithm for real images, for further empirical analysis on this topic see [CDD06]
and for a mathematical justification see [AGM99]. Thus, the cost of traversing all

the points of all level surfaces is about O(m
5
3), which is very large, and therefore

too slow to scan the surfaces. Recall that a typical size for medical images
is m = 1283. We can make the algorithm much faster by discarding from the
beginning those level surfaces which we know beforehand that will not produce
any useful patches.

Here we discuss three ways to prune the input tree to reduce the number
of processed surfaces: pruning very small surfaces, filtering the tree using robust
statistics, and pruning the tree using the gray-level values. These are independent
steps. The first one does not require any a priori information, but can incorporate
it. The other two steps may be applied or not whether we have the required a
priori information.

The first pre-processing step we propose is pruning the smallest shapes of the
tree. When working with the tree of shapes of real images, one notices that usually
most of the shapes in the tree have a small volume and belong to the noise that
appears inside homogeneous regions (see Figure 9.6, right). We can realize this
behaviour by plotting the number of shapes of each volume, as done in Figure 9.7.
A good model for the number of small shapes in a textured region of volume M is
a power law of the form p(v) = M

6v3/2 , meaning that there are about p(v) shapes
of volume v (see also [AGM99]). This model seems to be independent of the kind
of noise and is quite accurate (for the purpose of realising that most shapes in
the tree are rather small) for v < 20. On Figure 9.7 the number of small shapes
for some images is plotted as dots, and the estimated power-law is plotted as
a continuous line. The only differences that we observe are due to images with
large saturated regions, where there is no texture.

All of these surfaces (say, of volume less than 10 voxels) are too small to
pass the statistical test, so they can be discarded from the beginning. This will
effectively discard most level surfaces of the image. While there is no study of
the computational cost after this optimization, in practice this pruning helps
to make the algorithm more tractable: for relatively small images of size 603

our implementation on a PC takes between one and five minutes, and we could
process images of up to 1283 voxels in less than one hour.

9.2. Size statistics and other heuristics 123

Figure 9.1: The two synthetic cases that we are going to consider below. Left:
two curves “covering the same object”. Right: two curves “covering different
objects”.

Figure 9.2: Marking the squares according to which curves cross each one.

Figure 9.3: Assignment of at most one curve to each square, thus fulfilling the
first requirement.

Figure 9.4: Performing the statistical test for the remaining pieces of curve, thus
fulfilling the second requirement. Left: only the lower curve passes the statistical
test. Right: both curves pass the statistical test.

bulk_tex/sections_3ded/uex_same.eps
bulk_tex/sections_3ded/uex_different.eps
bulk_tex/sections_3ded/uex_sameg.eps
bulk_tex/sections_3ded/uex_differentg.eps
bulk_tex/sections_3ded/uex_samegg.eps
bulk_tex/sections_3ded/uex_differentgg.eps
bulk_tex/sections_3ded/uex_sameggr.eps
bulk_tex/sections_3ded/uex_differentggr.eps

124 Chapter 9. Further notes about the proposed edge detector

The number “10” in the previous paragraph is only an example. An appro-
priate bound can be computed from the image data. For instance, when f = min
and ǫ = 1, a set of size l and minimum contrast µ is meaningful whenNH(µ)l < 1,
or equivalently when l > − log(N)/ log(H(µ)). Thus, if µ1 is the last-to mini-
mum contrast of the whole discrete image, then − log(N)/ log(H(µ1)) is a lower
bound for the size of a meaningful subset. This lower bound is not trivial
when NH(µ1) > 1, which is usually the case. When f is another robust statis-
tic, this bound is not easy to compute analytically, but it can nevertheless be
obtained by a pre-computed table lookup to find the inverse of Fl(µ). These
bounds on the area of meaningful level surfaces provide equivalent bounds for
the minimal volume of a meaningful level surface, because for a discrete image
the perimeter of a surface is bounded by its volume (each boundarying voxel is
also part of the interior).

A second pre-processing step that can be applied consists in pruning out low
contrasted shapes. As in [DMM01], the statistical tests of section 8.2 can be
applied to the set of all level surfaces (without breaking those into pieces). The
purpose of this pre-processing is to reduce the number of level surfaces that will
be analyzed by the Mumford-Shah hierarchy, hence reducing the computational
time. This may be a risk when the discarded surfaces have well-contrasted parts.
But it could be justified if we have the a priori information that this is not the
case.

The third pre-processing step, which is only useful in some common special
cases, is pruning the tree of shapes using a-priori information. This data structure
allows to use easily some a-priori information about the intensity ranges of the
desired objects that may drastically reduce computational burden. For example,
if we know that all gray values in some interval belong to noise, or to structures we
are not interested in, we can immediately discard the level surfaces of those values.
In X-ray computed tomography images, where the gray values have physical
meaning, this means that we can discard most bones and background structures
from the beginning and significantly reduce computation time and increase the
quality of the output.

9.3 Surface Joining

Surface reconstruction is the problem of finding a closed surface Γ ⊆ R3 from a
given set of surface samples S ⊆ R3. When the samples are themselves small
patches of surface, the problem may be called surface joining.

All the following surface reconstructors

• Osher-Zhao: E0(Γ) =
∫

Γ
dS

• “reverse Osher-Zhao”: E1(Γ) =
∫

S
|dΓ|

• Adjustment of distance functions: E2(Γ) =
∫

R3 |dS − |dΓ||

9.3. Surface Joining 125

• Bayesian interpolation: E3(Γ) = |S| ln |Γ| −
∫

S
ln

∫

Γ
p(y|x) dσ dy where p is,

e.g., a Gaussian

• Combinations of the above (E0 + E1, etc.)

have trivial global minima. We would like to explore whether it is possible to
construct a new functional whose global minimum gives a meaningful surface, at
least when the data points are as good as possible. Maybe this is impossible,
and then we could try using hints that are usually given to the problem, such as
surface normals on the points. The purpose of having a functional with a good
global minimum is that it will be efficiently implementable using graph cuts and
without any user-supplied initialization.

Notice that there are ways to attack this problem which are not based on
the minimization of energy functionals (e.g., Mémoli et al.). Here we only want
to explore the functional approaches, or those approaches that can be reduced
directly to functional minimization, even if they are not stated that way (e.g.
Sagawa et al.)

Our edge detector does not produce a segmentation of the image domain into
parts, but a set of boundaries. This may be enough for some applications like
visualization or detection of structures, but it does not correspond to a segmen-
tation. Let us discuss here a procedure to paste together a set of patches of level
surfaces to produce a closed output surface (or a set of them). The method is
based on a reconstruction algorithm introduced in [ZOF01].

Let S ⊆ Ω be a set of edges and let dS : Ω→ R be the distance function to S.
Suppose that S covers part of the boundary of an object. A common approach
to recover the whole boundary of the object is to search for closed surfaces Γ that
are local minima of the following functional

E0(Γ) =

∫

Γ

dS(x)dA,

where dA denotes the area element. These minima can be found by starting
from an initial guess, a user-supplied closed surface which approximately contours
the object, and then letting it evolve by gradient descent of E0. The Gâteaux
derivative of E0 is

∇dS(x) ·N + dS(x)κ

where N is the outwards unit normal to Γ and κ its mean curvature. In an
implicit formulation, where Γ is the zero level set of a function φ, the gradient
descent of E0 can be described by the evolution of the following PDE:

∂φ

∂t
=

(

∇dS ·
∇φ
|∇φ| + dS div

(∇φ
|∇φ|

))

|∇φ| .

Further regularization (mainly for display purposes) can be added to the
model if we replace the functional above by adding the term λ

∫

S
dA to the

above functional, λ > 0. For large values of λ the functional approaches the area

126 Chapter 9. Further notes about the proposed edge detector

times λ, and its optima approach minimal surfaces. For small values of λ, only
sharp edges are smoothed out.

This reconstruction method is not definitive (it will fail at junctions where
more than three regions meet), but it usually improves the quality of the visu-
alization by smoothing out the ragged appearance of the surface patches. It has
two important problems to be used in full generality for this application. The
first problem is the choice of the initial surface. Examples of reasonable initial
surfaces are the boundary of the image or the most meaningful shape of the tree,
but either method can fail when there are multiple objects to be detected, spe-
cially when they are nested. The second problem is that the functional E0 has a
global minimum of zero (attained at the empty surface). In practice, this means
that the minimization can collapse if the surface “misses” the objects that we
want to reconstruct.

9.4 Experimental results

We display and comment the results of our method when applied to a few sample
images: two synthetic images, a magnetic resonance, and an X-ray computed
tomography. In the synthetic images the task is to find the boundaries that
generated them. In both medical images the task is to find the border of a vessel
that contains a cerebral aneurysm. We compare the results with those obtained
by simple thresholding and by Canny’s filter. We also illustrate the difficulties
that appear when we try our edge detector for the video segmentation

9.4.1 Experimental results on synthetic images

The first example is a synthetic image built in the following way. A sphere of
radius 15 has been drawn at the center of a 403 black image, and the interior of the
sphere has been colored in three different homogeneous regions. Then, a gaussian
noise of variance 10 has been added to the image, to add some texture. Figure 9.10
shows a slice of this image, and the output of the proposed edge detector. Notice
that the output is a set of three smooth level surfaces, corresponding to the
boundaries of the four large homogeneous regions on the image. This first example
is a best case for our method, and serves as a check that the algorithm is working
well. Notice that no global threshold can produce all the boundaries of the image,
and that Canny’s detector misses the junctions.

The second example is a synthetic image built in the following way. A black
sphere of radius 19 has been drawn at the center of a 503 white image, and
then we added to it a ramp function of slope 1. This means that the contrast
of both the background and the inside of the sphere are constant (equal to 1)
and the borders have a much higher contrast. Then the image has been made
more textured by adding a gaussian noise of variance 5 and blurring it with a
gaussian of width 3. Two level surfaces of this image are shown in the right
part of Figure 9.11. Notice that no level surface can surround the whole sphere,
but that many surfaces contain a band touching the sphere. This image is an

9.4. Experimental results 127

example of a worst case for our algorithm (and a best case for Canny’s). However,
the algorithm manages to find the good parts of all level surfaces, as shown on
Figures 9.11 and 9.12.

Remark 4. The two synthetic images above are intentionally low-resolution to
emphasize the sub-pixel accuracy of the output.

9.4.2 Experimental results on medical images

The first real example we show is the computed tomography image discussed
in the introduction (see Figure 8.1). Its size is 180 × 84 × 72. It is a noisy
image with several artifacts (e.g. dark shadows, radial anisotropic noise), due
to the reconstruction algorithm. The proposed edge detector finds the correct
boundaries at several difficult places, but still misses some small arteries. See
Figure 9.13 for a discussion on the image, and Figure 9.14 for the output of
the proposed edge detector, and a comparison with Canny’s. After linking the
patches via the functional described on Section 9.3, we find a single surface which
is better than the best manually-set global threshold.

The second real image is an anatomic MRI image of size 111×65×57. While
this image is not as noisy as the previous one, it has an artifact which produces a
problem like that of the second synthetic example. Namely, the image domain is
partitioned into three bands, where the gray levels have a different starting point
(so that the histograms are displaced). Even if this is an artifact easily tractable
in a pre-processing stage, the proposed edge detector produces good results when
applied directly on the raw data. See Figure 9.16 for slices and projections, and
Figure 9.17 for the result of the proposed edge detection, compared to a manually
selected isosurface.

9.4.3 Experimental results on videos

We can apply the proposed edge detector to gray-level videos, when we regard
them as 3D images. The resulting output is a set of surfaces, which can be
intersected with each frame to produce a set of curves. This can be interpreted
as a set of edge curves evolving in time. A similar result can be obtained by
applying a 2D edge detector to each frame independently. The advantage of the
3D approach is that it provides temporal coherence: we know that this edge on
frame t = 0 is corresponds to that other edge on frame t = 10; the tracking is
already done. The disadvantage is the memory constraint, imposed by the fact
that we have to keep an uncompressed video into memory together with several
additional structures. Thus, only a few seconds can be processed at once.

How good are the results of our edge detector on videos? That depends on how
good are the level surfaces of the video, because the result of the edge detector is a
selection of them. This is equivalent to the level curves of each frame containing
good edge curves; which happens almost always, except for images where the
objects are defined by different textures of the same colors.

128 Chapter 9. Further notes about the proposed edge detector

There is, still, a subtlety concerning the way the gradients are used as a local
contrast function: only the spatial part of the gradient is needed. Using the whole
spatio-temporal gradient makes no sense and could lead to very bad results. To
understand this fact, let us first look at the best possible case for edge detection
on video: a smooth black disk slowly moving on a white background, at about
one pixel per frame (Figure 9.18). The tree of shapes of the resulting 3D image
is a stack of nested “tubes”. The central tube has the largest overall contrast
and is selected as a single surface by the edge detection algorithm. In this case,
the 3D gradient works well. Now imagine that the disk is moving faster, at
about 20 pixels per frame (Figure 9.19. The visual effect of the video is very
similar, just faster. The structure of the level surfaces is also a single stack of
nested tubes. However, the behaviour of the gradient norm is very different. The
highest gradients do not occur on the boundaries of the disk at each frame, but on
the interior of the disk, over the pixels which on the next frame are not occupied
by the disk (corresponding to occlusions and disocclusions). The gradient norm
along the boundaries of the disk is lower than that, since the disk is smooth.
Thus, the result of the 3D edge detector is a set of lunes, perpendicular to the
temporal direction, marking the occlusions and disocclusions of the disk as it
moves. This is a wrong result. A correct result can be obtained immediately if
we replace the norm of the 3D gradient by the norm of the spatial component of
the gradient. With this slight modification, the edge detector can be used to find
temporally coherent edge curves in many videos.

We can treat even faster movements, where the objects share no pixels be-
tween frames (all the pixels are occlusions and disocclusions). For that, external
information from a pre-computed flow-field may be used, and compute the trees
of regions using the graphs of optical flow as in Section 5.4, instead of a regular
3D grid.

9.4. Experimental results 129

Figure 9.5: Isosurface at level 0 of a gaussian noise image of size 103. This surface
has 2356 triangles, which is larger than the number of voxels of the image. This
is the typical behaviour of the isosurfaces that cross through large regions of the
image which have almost constant value (plus some texture).

Figure 9.6: Three thresholds of the same image. The first two thresholds show
some image content. The third one shows mainly background noise. The level
surface on the third image has one large and very convoluted component and
many small and almost spherical components.

bulk_tex/sections_sevenrp/f/noisy_isosurface.eps
bulk_tex/sections_3ded/amiraisosurfaces1.eps
bulk_tex/sections_3ded/amiraisosurfaces2.eps
bulk_tex/sections_3ded/amiraisosurfaces3.eps

130 Chapter 9. Further notes about the proposed edge detector

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.1 1 10 100 1000

nu
m

be
r

of
 s

ha
pe

s

volume

3d CTA image 1283

(1283 / 6) x-1.5

3d uniform noise 403

(403 / 6) x-1.5

3d gaussian noise 10*20*30

(10*20*30 / 6) x-1.5

Figure 9.7: Number of shapes of each size, for some images. The interesting
pattern is that all the curves start decreasing more or less linearly with slope − 3

2
(on the log− log scale shown here). This means that the number of shapes of
each size decreases very fast, as there are ∝ v−1.5 shapes of volume v, for small v,
and these small shapes belong to the texture of noise. This also means that most
of the shapes on the tree are small: in a typical tree of shapes, about half of the
shapes enclose a single voxel.

bulk_tex/sections_3ded/histoshapes.eps

9.4. Experimental results 131

Figure 9.8: Example of bad minima in some of the above functionals. Black:
points that we want to approximate as a closed curve. Blue: curve close to a
global minimum of E0. Red: global minimum of E1.

Figure 9.9: Example of data overfit. Black: points that we want to approximate
as a closed curve. Red: curves close to a global minimum of the functionals,
over-representing the data.

bulk_tex/sections_sevenrp/f/malsminims.eps
bulk_tex/sections_sevenrp/f/no_minima2.eps
bulk_tex/sections_sevenrp/f/no_minima.eps

132 Chapter 9. Further notes about the proposed edge detector

Figure 9.10: Best case for our algorithm. Segmentation of a piecewise constant
image with added texture. From left to right: slice of the image, output of the
proposed edge detector, output of Canny’s edge detector. The 3D images are
clipped to show the interior of the object.

Figure 9.11: Worst case for our algorithm. Segmentation of a piecewise constant
image with an added ramp function. From left to right: slice of the image, output
of the proposed edge detector, two isosurfaces of the image.

bulk_tex/sections_3ded/eds1slice.eps
bulk_tex/sections_3ded/eds1result.eps
bulk_tex/sections_3ded/eds1canny.eps
bulk_tex/sections_3ded/eds2slice.eps
bulk_tex/sections_3ded/eds2result.eps
bulk_tex/sections_3ded/eds2tresholds.eps

9.4. Experimental results 133

Figure 9.12: Effect of the post-processing pipeline on the synthetic worst-case
image (Figure 9.11). Left: before exclusion principle, 207 patches. Middle: after
exclusion principle, 9 patches. Right: after edge linking, one single surface patch.
In this figure, the edge linking is performed using a higher resolution than the
input image and without any smoothing. When using the same resolution as the
input image, an almost perfectly spherical surface is obtained.

Figure 9.13: A real CT image. From left to right: Maximum intensity projection,
vertical slice, horizontal slice. The slices show several artifacts, and the anisotropy
of noise.

bulk_tex/sections_3ded/eds2raw.eps
bulk_tex/sections_3ded/eds2exclusion.eps
bulk_tex/sections_3ded/eds2osher.eps
bulk_tex/sections_3ded/edr1mip.eps
bulk_tex/sections_3ded/edr1slicex.eps
bulk_tex/sections_3ded/edr1slicez.eps

134 Chapter 9. Further notes about the proposed edge detector

Figure 9.14: Edge detection on the CT image. Left: Output of the proposed edge
detector. Right: Output of Canny’s edge detector, using hand-tuned parameters
to obtain the best result for this image. The main advantage of the proposed
method, besides the lack of tunable parameters, is the format of the output:
instead of a large set of voxels we have a small set of triangulated surfaces,
sampled at sub-voxel precision.

Figure 9.15: Output of the experiment on Figure 9.14, after joning the edges via
Osher-Zhao functional. The result is a clean set of five disjoint surface patches.

bulk_tex/sections_3ded/edr1result_bisvis.eps
bulk_tex/sections_3ded/edr1canny.eps
bulk_tex/sections_3ded/edr1joinage_bis.eps

9.4. Experimental results 135

Figure 9.16: A real MRI image. Left: Maximum intensity projection. Right:
Average projection (notice the different averages over three bands). The results
of our edge detector on this image appear on Figure 9.17

bulk_tex/sections_3ded/edr2mip.eps
bulk_tex/sections_3ded/edr2avg.eps

136 Chapter 9. Further notes about the proposed edge detector

Figure 9.17: Processing of the real MRI image from Figure 9.16. Top: manu-
ally selected isosurface that segments well the upper part of the image. Middle:
output of the proposed edge detector, 14 surface patches. Notice that the two
structures which are not vessels (they are parts of bones) can be easily removed
manually. Bottom: result of edge linking via Osher’s functional.

bulk_tex/sections_3ded/mri2iso.eps
bulk_tex/sections_3ded/mri2result.eps
bulk_tex/sections_3ded/mri2osherc_vis.eps

9.4. Experimental results 137

(a) Temporal slice closeup (b) Result (3D gradient) (c) Result (2D gradient)

Figure 9.18: Video of a slowly moving smooth disk, and results of our 3D edge
detector using different contrast measures. Since the movement is slower than a
pixel per frame, there is no difference on the results.

(a) Temporal slice closeup (b) Result (3D gradient) (c) Result (2D gradient)

Figure 9.19: Video of a fast moving smooth disk, and results of our 3D edge
detector using different contrast measures. Only the result using 2D gradients
makes sense.

f/slowdisk_slice.eps
f/slowdisk_3dgrad.eps
f/slowdisk_2dgrad.eps
f/fastdisk_slice.eps
f/fastdisk_3dgrad.eps
f/fastdisk_2dgrad.eps

Part III

Cheeger sets and affine invariants

139

10 Historical context of Finsler-Cheeger sets

This part of the thesis was originally motivated by its application to edge link-
ing. We formulated the problem of edge linking in terms of the computation of
an anisotropic Cheeger set. Incidentally, this formalism encompasses also other
image processing tasks, like the computation of active contours or the problem
of colorization by diffusion of color samples along the level lines of a gray-level
image. We discovered other connections with the generation of affine invariants
associated to level sets and level lines and gave and interpretation of the MSER
affine invariant as a kind of Cheeger sets. Thus, the main themes of this chapter
are: Finsler metrics, Cheeger sets, total variation, partial differential equations
and affine invariants.

10.1 Historical context of Finsler metrics

After more than a thousand years trying to prove Euclid’s fifth postulate, peo-
ple finally realized that Euclidean geometry was not the only geometry possi-
ble. The first complete description of a non-Euclidean geometry, by Bolyai and
Lobachevsky, was done in an intrinsic manner, by giving a list of axioms for
points and lines. In modern terms, this was the definition of a space of constant
negative curvature. Soon, it was clear how to build actual models of this and of
many other non-Euclidean geometries. It fact, since ancient times these models
of non-Euclidean geometries had been in plain view: surfaces. Gauss’ theory of
surfaces clarified the notion of intrinsic geometry, by identifying the properties
of a surface which do not depend on the way this surface is embedded in space
(curvature). However, the metric on the surface was still inherited from the Eu-
clidean metric of space. It was Riemann, in 1854 [Rie54], who made the huge
leap of abstraction and defined metric as an arbitrary field of quadratic forms
on a manifold (he also defined the notion of n-dimensional manifold at the same
time). All the previous geometries, Euclidean and non-Euclidean, turn out to be
particular cases of Riemannian geometry.

Let us recall the formal definition of Riemannian metric, adapted to our pur-
poses. Let M be an open rectangle in Rn. A function which assigns to each
point x ∈ M a symmetric, positive definite, matrix Gx is called a Rieman-
nian metric on M . The length of a vector ξ emanating from point x is defined
as

√

ξtGxξ. This definition assures that the set of vectors emanating from a single
point (called the tangent space at that point) is a normed vector space. Stan-
dard constructions define the length of arbitrary curves on M , and the geodesic
distance between pairs of points of M . See equations 10.1 and 10.2 for these
constructions in a slightly more general setting.

Traditionally, the definition of Riemannian manifold is given in a more general
setting than in the previous paragraph, as a metric structure on an abstract
manifold, not necessarily a rectangle of Rn. There are two interpretations of
these metric structures: extrinsic, or coming from an embedding of the manifold
into a higher-dimensional Euclidean space; or intrinsic, coming from an arbitrary

141

142 Chapter 10. History of Finsler-Cheeger sets

metric field defined on a given Euclidean space. These two interpretations are
equivalent via parametrizations on one sense, and (locally) via Nash embedding
in the opposite sense. However, they have a very different flavour and they lead
to different intuitions about the same objects. See Figure 10.1 for an example of
these two views. Of course, for the kind of metrics used in image processing it
is more natural to think of Riemannian manifolds as metric fields on a fixed flat
space.

Figure 10.1: Two views of the same Riemannian manifold: a complicatedly curved
submanifold of a flat space, or a flat manifold with complicated metric field
defined on it. In both cases, a closed geodesic is shown.

Today, Riemannian metrics are a standard tool in many scientific disciplines.
Perhaps the most well-known is general relativity, where space-time is modelled
as a Riemannian manifold, and matter is defined from the curvature of the metric.
For our purposes, we will focus on the applications of Riemannian geometry to
image processing. In that field, many ideas and methods are derived from physical
analogies. For example, to blur an image corresponds to apply the heat equation
using the image data as initial condition. Thus, it is often quite natural to replace
the Euclidean metric of the simplest models with Riemannian metrics, in order to
obtain more powerful models. In that case, the metric is usually derived from the
image contents. The first use of Riemannian metrics for image analysis can prob-
ably be traced back to the snakes of Kass-Witkin-Terzopoulos [KWT88]. These
snakes are curves which evolve to minimize a length, locally weighted by the
image contents in some way. For example, if the length is weighted by a decreas-
ing function of the image gradient, the minimal curves tend to approach sharp
edges of the image. Although the inventors of snakes did not use a geometric
language, the snakes were later identified as geodesics of a suitable Riemannian

f/geodesic.eps
f/monf.eps

143

manifold by Caselles-Kimmel-Sapiro [CKS97]. An independent usage of Rieman-
nian metrics in image processing is the introduction of anisotropic diffusion by
Perona-Malik [PM90], which is the diffusion equation on a suitable Riemannian
manifold1. This is useful because it allows to enhance the images by allowing
diffusion on flat zones, removing noise, while disallowing diffusion along sharp
edges, preserving their sharpness. See [Wei98] and [KMS00] for reviews of differ-
ent metrics used for image diffusion.

Despite its wide usage, Riemannian metrics are not the most general metric
structures possible. For example, when studying crystals, it is found that the
speed of light inside a crystal depends on the direction. This variation of speed
is not well-modeled with a Riemannian metric, because the “unit ball” is not an
ellipse, but a convex polyhedron. Actually, it is the dual polyhedron of the shape
of the (perfect) crystal [Tay78], [PT04]. Thus, an appropriate generalization of
Riemannian metrics is obtained by dropping from the definition the requirement
that they be given by a quadratic form (or equivalently, that the local unit balls
are ellipses), and allowing arbitrary convex functions (or equivalently, that the
local unit balls are arbitrary convex sets). This generalization of Riemannian
metrics is precisely Finsler metrics.

Finsler metrics are the most general metric structures on manifolds. Given a
manifold M , a Finsler metric ϕ assigns a length ϕ(x, ξ) to any vector ξ emanating
from each point x ∈ M . Such a function, called a metric integrand can be used
to define the length of any directed piecewise smooth curve γ : [0, 1]→M as

length(γ) :=

∫ 1

0

ϕ(γ(t), γ′(t))dt. (10.1)

To assure that the lengths of curves are independent of their parametrizations,
the only requirement on the function ϕ is to be positively homogeneous on the
second argument: ϕ(x, λξ) = λϕ(x, ξ) for any λ > 0. The distance between two
points of M can be defined as the infimum of the lengths of all curves joining
them:

d(p, q) := inf {length(γ) | γ : [0, 1]→M, γ(0) = p, γ(1) = q} (10.2)

This distance is a positive function on pairs, which vanishes only when p = q,
and satisfies the triangle inequality. In general it is not symmetric, d(p, q) 6=
d(q, p). The symmetry of d corresponds to the symmetry of the Finsler metric:
ϕ(x,−ξ) = ϕ(x, ξ). Together with homogeneity, the symmetry property can be
written as ϕ(x, λξ) = |λ|ϕ(x, ξ), for λ ∈ R.

Besides symmetry, there are other conditions on ϕ which give interesting
particular cases of Finsler metrics:

1. symmetric: ϕ(x,−ξ) = ϕ(x, ξ)

2. uniform: ϕ(x, ξ) = f(ξ)

1Actually, the authors of [PM90] proposed a more complicated nonlinear model where the
metric evolves alongside the image

144 Chapter 10. History of Finsler-Cheeger sets

3. isotropic: ϕ(x, ξ) = g(x)|ξ|

4. riemannian: ϕ(x, ξ) = |A(x) · ξ|, where A(x) is a non-singular linear map.

Each of these particular cases has different applications. For example, isotropic
Finsler metrics are widely used in image processing (sometimes, under the con-
fusing name of “anisotropic”, e.g. in [PM90]), to model image-dependent lengths
of curves, and as a background for image-dependent diffusion. Uniform Finsler
metrics are used in crystallography, as a model for the speed of growth of a crys-
tal along each spatial direction. A diagram of many possible particular cases is
shown on Figure 10.2.

For technical reasons, namely that ξ → ϕ(x, ξ) is a norm, it is also required
that ϕ be convex on its second argument. Other technical conditions, such as
linear growth or coercivity, will be introduced when they are needed.

10.2 Historical context of Cheeger sets

Cheeger constants, and their associated Cheeger sets, are powerful tools in the
study of global properties of spaces. In the case of compact Riemannian mani-
folds, as originally introduced by Cheeger [Che70], they provide a bound for the
first eigenvalue of the Laplacian. This continuous theory has a discrete analogue
in graph theory, where the Cheeger constant of graphs, often called the conduc-
tance (e.g. [Bol98], p.221), opens the door to the rich world of spectral graph
theory [Chu97]. There are many related definitions of “Cheeger constant”, both
in the continuous and discrete setting.

The continuous, and original, definition of the Cheeger constant applies to
compact manifolds, with or without boundary. Given an n-dimensional compact
manifold with boundary Ω, its Cheeger constant is defined as

h(Ω) := inf
A⊆Ω

|∂A|
|A| . (10.3)

In the previous formula, |∂A| is the (n−1)-dimensional measure of the boundary
of A, and |A| is the n-dimensional measure of A. The intuitive interpretation is
that a set A that minimizes the “Cheeger ratio” min |∂A|

|A|

wants to have a volume

large as possible, while having a boundary as small as possible. If Ω is a closed
domain of Euclidean space, a dimensionality argument proves that minimizers of
the Cheeger ratio will touch the boundary Ω (otherwise they could be scaled by
a positive constant to obtain a smaller ratio). A Cheeger set of Ω is any set for
which the infimum in 10.3 is attained. They are known to be unique for the case
of convex or callibrable sets [AC09].

A related definition, which applies to manifolds without boundary, is

h(Ω) := inf
A⊆Ω
0<|A|

|∂A|
min{|A|, |Ω \A|} . (10.4)

145

ϕ(x, ξ)
Finsler

ϕ(x, ξ) = f(ξ)
uniform

ϕ(x,−ξ) = ϕ(x, ξ)
symmetric

f(−ξ) = f(ξ)
uniform symmetric

ϕ(x, ξ) = ‖A(x) · ξ‖
Riemannian

ϕ(x, ξ) = ‖A · ξ‖
uniform Riemannian

ϕ(x, ξ) = g(x)‖ξ‖
isotropic

ϕ(x, ξ) = λ‖ξ‖
scaled Euclidean

ϕ(x, ξ) = ‖ξ‖
Euclidean

Figure 10.2: Particular cases of Finsler metrics. There also many technical condi-
tions not displayed on this table, such as convexity, linear growth and coercivity.

In that case, the interpretation is different. Here the Cheeger constant measures
how thin is the thinnest “bottleneck” on Ω, with respect to the volume of Ω.

The discrete definition applies to graphs. It is based on the continuous defi-
nition for manifolds without boundary. Given a graph G = (V,E), the Cheeger
constant of G is defined as

h(G) := min
A⊆V

0<|A|< 1
2
|V |

|∂A|
|A| .

The value of the Cheeger constant h(G) measures the thinnest “bottleneck” of

146 Chapter 10. History of Finsler-Cheeger sets

G. It is strictly positive if an only if G is connected. The fact that h(G) is very
small means that there are two sets of vertices which are connected by a very
few edges (a bottleneck). The fact that h(G) is large means that any partition
of V in two subsets has many edges between the two subsets. Notice that an
equivalent definition is

h(G) := min
A⊆V
0<|A|

|∂A|
min{|A|, |V \A|}

The relationship between the discrete and the continuous definitions is ex-
plained in the review paper by Brooks [Bro93], and fully analyzed for the particu-
lar case of random geometric graphs on a recent article by Arias-Castro [PPAC10].

Cheeger constants and Cheeger sets have been seldom used in image pro-
cessing, sometimes for segmentation [SM02], but mainly as a technique for par-
titioning the high dimensional graphs that appear in clustering of large image
datasets [CM07], [JJH06]. Other works use structures which are closely related
to Cheeger sets in anisotropic metrics, without saying explicitly so [MCUP04],
[SMS02].

10.3 Historical context of variational problems and PDE

Variational problems are optimization problems in a continuous setting, often
with infinite degrees of freedom. These degrees of freedom are typically repre-
sented either by a subset of some space, or by a mapping between spaces. The
definition of Cheeger constant given above is an example of variational problem
defined on sets, where the objective function to be minimized is the perime-
ter/area ratio. The cases of sets and of real-valued functions are closely related,
because a subset of a space Ω can be represented by its {0, 1}-valued indicator
function or, more generally, as the level set of some function. The process of
transforming a variational problem from sets to functions can be formalized as
a relaxation, or convexification, and is very useful, since the tools of functional
analysis can be applied to the transformed problem. This is a very useful step,
because the collection of all appropriate functions, being a topological vector
space, has a richer structure than the collection of all subsets.

A general method for solving many variational problems is the direct method.
Let L be a space of functions and let F : L → R be a functional which we want
to minimize, i.e., find a function u ∈ L where the infimum

inf
u∈L

F (u) (10.5)

is attained. The scheme of the direct method is as follows: by definition of
infimum there exists a sequence un ∈ L such that limn→∞ F (un) = infu∈L F (u).
In general, the sequence un is not convergent in the space L. However, under
suitable compactness conditions, we can extract a subsequence of un which is
convergent in L to a certain function u. If F is lower-semicontinuous (a very
general and easy to meet condition), then the function u is a minimizer of the

147

variational problem. This proves existence of the solution. Uniqueness is a more
delicate issue which must be dealt with using other methods; typically variations
of the maximum principle, or by approximating the given functional F with a
sequence of functionals Fn with better properties.

In image processing, variational problems are extremely common tools [MS95].
Many problems in image analysis are directly stated as variational problems. For
example image segmentation consists in finding the “best” partition of the image
domain into two parts, or into an arbitrary number of parts. Each definition of
“best” is usually described by a functional that evaluates the partition, which
has to be minimized. This functional is often an integral on the boundary of the
partition (such is the case, for example, for Active Contours [KWT88, CKS97]),
an integral on one part of the partition, or a weighted sum of two kinds of terms
([MS88]). Sometimes, these methods are presented by giving a computational
solution to a variational problem that is not explicitly stated. Another example
of variational problem arises in non-rigid registration [PCA99], where two images
have to be matched by an arbitrary deformation, and there are many functionals
imposing smoothness of the deformation, and measuring the correctness of the
match. A general form of many variational problems for image analysis has two
terms: a regularity term and a data attachment term. This common case has a
probabilistic interpretation, where the regularity term corresponds to a prior of
the model, and the data attachment corresponds to the likelihood [Mum94].

Partial differential equations are closely related to variational problems,
because a problem such as 10.5 can be often be rewritten, at least symbolically,
as F ′(u) = 0. Many PDE do not have classical solutions, that is, smooth func-
tions satisfying the expression of the equation. Even when they have a classical
solution, it is very difficult to prove its existence directly. Instead, it is better to
use generalized solutions. Thus, a standard method of “solving” a PDE involves
three steps: (1) define a space V of suitable functions; (2) define what does it
mean for a function of V to satisfy the PDE; (3) prove existence and uniqueness.
The definitions on (1) and (2) are generally ad-hoc, so that the proof of existence
and uniqueness can be constructed. In practice, one starts with a standard proof
of existence and uniqueness, and fine-tunes the definitions of the functional space
and the solution until the proof is right. The proof usually involves re-writing
the PDE as a variational problem, which is then solved by a direct method (find
a minimizing sequence, etc.). As a last step, one may (4) recover a classical
solution from a generalized solution by checking its regularity once it has been
constructed.

Just like variational problems, PDE are used extensively in image process-
ing [Sap01]. First, they arise as methods to solve variational problems, where
an arbitrary initial function is evolved towards the minimum of the desired func-
tional. But they also have interest in themselves, specially diffusion and related
equations, as a method to produce a scale-space out of a given image [Wit83],
[FtHRKV92], [AGLM93].

148 Chapter 10. History of Finsler-Cheeger sets

10.4 Historical context of total variation

The total variation of a single-variable function f : [a, b]→ R is defined as

TV (f) := sup
a=x0<···<xn=b

n
∑

i=1

|f(xi)− f(xi−1)| (10.6)

where the supremum runs over all partitions of the interval [a, b] into a finite
number of sub-intervals [xi, xi+1]. The space of functions of bounded varia-
tion BV ([a, b]) is defined as the set of functions f such that TV (f) <∞. There
are many elementary results describing the nice properties of single-variable func-
tions of bounded variation. For example, the space BV ([a, b]) can be charac-
terized as the set of functions which can be expressed as the difference of two
monotone functions. As a more interesting example, when f : [a, b] → R is
differentiable, we have that

TV (f) =

∫ b

a

|f ′(x)|dx, (10.7)

but this formula is less general than the definition, which works for arbitrarily
discontinuous functions.

For higher dimensional functions, the situation is more complicated: even the
definition of total variation is difficult to write. If Ω is a domain of Rn, the
definition given by 10.6 can not be generalized directly to functions f : Ω → R.
However, formula 10.7 has a direct analogue:

TV (f) =

∫

Ω

|∇f(x)|dx. (10.8)

This formula provides a definition for the total variation of smooth functions on Ω.
This definition can be generalized to arbitrary functions by using derivatives in the
sense of distributions. Namely, if u is a differentiable function, the function |∇u|
equals the point-wise supremum of ∇u · z, for all vector fields z : Ω → Rn such
that |z(x)| ≤ 1. The same supremum is achieved almost everywhere even if we
restrict z to differentiable vector fields compactly supported within Ω. Thus,
swapping the supremum and the integral we have

TV (u) =

∫

Ω

|∇u| = sup
z∈C∞

0 (Ω,Rn):|z(x)|≤1

∫

Ω

∇u · z (10.9)

and, integrating by parts,

TV (u) = sup
z∈C∞

0 (Ω,Rn):|z(x)|≤1

−
∫

Ω

u div z. (10.10)

Now, this coincides with 10.8 when u is smooth, but it can be applied to ar-
bitrary (measurable) functions u. This is indeed the generalized definition of
total variation for functions of several variables. More formally, measure theory

149

provides the appropriate framework to talk about total variation, whence any
function u ∈ L1(U) gives rise to a (vector-valued) Radon measure Du, which is
its gradient in the sense of distributions. The total variation of this vector-valued
Radon measure is precisely TV (u). Two textbooks on the kind of measure theory
that we need here are [EG92a] and [AFP00].

Total variation is closely related to Cheeger sets, through a chain of ideas
that links the eigenvalues of the Laplacian, isoperimetric constants (similar to
the Cheeger constant, but dimension-less), and dual variational problems. See
the original article of Cheeger [Che70], and [Gri06] for a very readable overview.
From our point of view, this relationship can be stated succintly in the following
way. Let us consider the minimization problem

min
u≥0

TV (u)

‖u‖L1

. (10.11)

Now, using the coarea formula, this problem can be restricted to functions u
which are characteristic functions, leading directly to the Cheeger ratio. Thus,
algorithms for minimizing the total variation lead to methods of calculation of
Cheeger sets [Cha04], [BCC07].

Independently of its relationship to Cheeger sets, total variation has seen many
fruitful applications to image processing. Its main interest comes from the fact
that it provides regularity or data attachment terms which do not favor smooth
boundaries (as opposed to the commonly used L2 norm). See [ROF92], [CE05],
[ABCM00].

10.5 Affine invariants in object recognition

The last chapter of this thesis will deal with affine invariants and their use in
object recognition. Affine invariants are related to Finsler-Cheeger sets in an
unexpected and beautiful way (equation 14.5). Now, let us introduce briefly the
need for affine invariants in object recognition.

Object recognition can be succinctly defined as the task of deciding whether
two images are photographs of the same object. In an ideal world, object recog-
nition is a trivial task: to decide whether two images represent the same object,
compare the pixels of both images, one by one. If they all coincide, then the ob-
ject is the same and we have a match. Of course, in the real world this will never
work. Even two images of the same object taken with the same camera under the
same conditions will have different pixels. A large part of the research in object
recognition consists in identifying and reversing the distortions that appear be-
tween different images of the same object. Since reversing unknown distortions
is hard, a clever idea consists in computing quantities from the images which are
robust (or even invariant) to these distortions. Then, instead of comparing the
original pixel values, compare these new, invariant, quantities (called descriptors
or features). Let us make a list of the different kinds of image distortions that we
may encounter. They are summarized on the following table, where I : R2 → R

denotes an image that is distorted.

150 Chapter 10. History of Finsler-Cheeger sets

image distortion formula interesting special cases

contrast change I 7→ g ◦ I g(x) = ax + b

g : R → R increasing g(R) finite (quantization)

deformation I 7→ I ◦ T T affine
T : R2

→ R2 continuous

linear operator I 7→ k ∗ I k positive (blur)
k : R2

→ R convolution kernel

noise I 7→ I + n n white gaussian noise
n : R2

→ R random function

occlusion I 7→ χMJ + (1 − χM)I M convex (new object)
M ⊂ R2, J : R2

→ R other image M concave (new background)

Let us discuss briefly these distortions and how they are tackled by the use
of invariants. Occlusion and noise are hard distortions with loss of information.
The other distortions on the table are easier to study because they are the result
of some small group acting on the set of all possible images.

Occlusion corresponds to a basic operation in image formation, thus it is the
most important distortion of all. However, it is very difficult to model occlusion
directly, so it is generally ignored as a source of invariants in the context of
detection or recognition. The possibility to detect partially occluded objects is
recovered later by using local features that describe small parts of objects. Thus,
we can say that occlusion invariance is achieved by using only local features.

Noise is an inevitable artifact of image acquisition. It is due mainly to physi-
cal effects which are not taken into account, and to the sampling and quantization
of pixels. Noise invariance is, by definition, impossible to achieve. The best we
can aim for is noise robustness. This is achieved by comparing the feature descrip-
tors using a suitable descriptor metric, instead of comparing them by equality.
This requires a threshold on this descriptor metric, or some other criterion to
accept to reject matched features.

Image blur is the result of many things: out of focus camera, camera move-
ment, aperture diffraction, pixel sampling and interpolation, etc. Although it is
in theory an invertible operation, computing the inverse is an ill-posed problem.
A typical way to obtain features invariant to blur is to use a multi-scale repre-
sentation of the images. When the blur kernel has a small support, then at some
scale the effect of the blur will disappear.

Contrast changes arise from from illumination changes, white-point cor-
rection, gamma correction, etc. Exact invariance to contrast changes is assured
by using only morphological operations to construct the features and their de-
scriptors. In practice, full-contrast invariance is not desired (in the end, we see
high-contrasted objects better than low-contrasted ones) and morphological op-
erations are often complemented by a weighting of the results by a measure of
local contrast, such as the norm of the image gradient.

Global domain deformations come mainly from defects of the lens curva-
ture (differences with respect to the pinhole camera model). These deformations
can be corrected by camera calibration and re-interpolation, if needed. More in-
teresting are the local domain deformations, due to the position of flat objects

151

in three-dimensional space. These deformations are, strictly speaking, plane ho-
mographies (projective transformations). However, since we are interested only in
local features, these transformations are locally approximated by plane affinities.
This happens as well for any smooth transformation of the domain; indeed, the
definition of a smooth map is precisely that which can be locally approximated
by affinities. This is the reason for the interest in affine invariant features and
descriptors, the subject of this part of the thesis. Affine invariants were intro-
duced early in image processing, and have been thoroughly used and compared
since then [LW88], [BBG96], [MS04].

Once the need for affine invariants has been clarified, the next question is:
how to obtain affine invariants from images? This is a very general question,
and has been answered by very different techniques, operating at different levels.
For example, affine invariance can be achieved by computing affine invariant
descriptors on arbitrary points [Low99], or by computing arbitrary descriptors
on features selected in an affine invariant way [MCUP04]. These are two possible
ways of achieving an invariance. But there are other ways: even starting with
non-invariant points and non invariant descriptors, we can still build an affine
invariant detector by means of an affine orbit of images [OFL07], [MY09].

Most techniques of computing affine invariant descriptors on an arbitrary
point boil down to the same idea: taking histograms of gradient orientations
around the given point. The precise way in which these histograms are com-
puted and stored gives a plethora of different methods: such as SIFT descrip-
tors [Low99], SURF [BTVG06], HOG [DT05], GLOG [MS05], LESH [SH08] and
spin images [JH02]. On the other hand, finding affine invariant features seems a
more elusive task, and only MSER [MCUP04], based on the selection of certain
level lines, is commonly used.

11 Finsler total variation and Cheeger sets

The goal of this Chapter is to study the computation of Cheeger sets with respect
to anisotropic perimeters and develop some of its applications to image processing,
in particular to the problem of edge linking. For that, we first study solution of
the anisotropic total variation denoising problem that will permit us to compute
anisotropic Cheeger sets.

Let us briefly describe the structure and contents of this Chapter.
On Sections 11.1.1-11.1.6 we lay out the preliminary definitions needed to

work with Finsler-Cheeger sets: First we recall the definition of Cheeger sets
(11.1.1) and functions of bounded variation (11.1.2) on Euclidean spaces. Then,
we transport many of these constructions to the case of Finslerian spaces. Namely,
we recall the definition of Finsler total variation (11.1.4), Finsler coarea formula
(Equation 11.10), the total variation relaxed functional (11.1.4), the pairing of a
Finsler BV-function and a bounded field (Equation 11.18), Finsler traces (Propo-
sitions 63 and 64), the subdifferential of Finsler total variation (11.1.6) and finally
a Finsler version of Green Formula (Theorem 65).

Once we have all the necessary tools, we proceed to introduce a variatonal
problem on functions and its associated PDE (Equations 11.30 and 11.31). Then,
we give the proof of existence and unicity of this variational problem (Theorem 68)
and state several inequalities satisfied by the solutions (proposition 69). Then we
introduce a new variational problem defined on sets, which has Finsler-Cheeger
sets as a particular case (Lemma 72). Finally, using the previous inequalities
we state the relationship between the variational problem on functions and the
variational problem on sets (Proposition 75). As it turns out, Finsler-Cheeger
sets are found among the level sets of the solution of the PDE. At the end, we
introduce a notion of local Finsler-Cheeger sets (11.3).

11.1 Mathematical preliminaries

11.1.1 Definition of Cheeger sets in the Euclidean case

Given an nonempty open bounded subset Ω of RN , we call Cheeger constant of
Ω the quantity

CΩ := min
F⊆Ω

P (F)

|F | . (11.1)

Here |F | denotes de N -dimensional volume of F and P (F) denotes the perimeter
of F . The minimum in (11.1) is taken over all nonempty sets of finite perimeter
contained in Ω. A Cheeger set of Ω is any set G ⊆ Ω which minimizes (11.1).
Observe that G is a Cheeger set of Ω if and only if |G| > 0 and G minimizes

min
F⊆Ω

P (F)− CΩ|F |. (11.2)

Existence of Cheeger sets follows directly from the direct methods of calculus
of variations. Uniqueness of Cheeger sets is a more delicate issue and is not true
in general (a counterexample is given in [KLR06] when Ω is not convex), though

153

154 Chapter 11. Finsler total variation and Cheeger sets

it has recently been proved that it is generically true [CCN09] (that is, true
modulo a small perturbation of the domain Ω). However, uniqueness of Cheeger
sets inside convex bodies of RN was proved in [CCN07] when the convex body is
uniformly convex and of class C2 and in [AC09] in the general case. The case of
convex bodies of R2 was studied in [ACC05b, KLR06].

11.1.2 BV functions and sets of finite perimeter

Let Ω be an open subset of RN . A function u ∈ L1(Ω) whose gradient Du in the
sense of distributions is a (vector valued) Radon measure with finite total varia-
tion in Ω is called a function of bounded variation. The class of such functions
will be denoted by BV (Ω). The total variation of Du on Ω turns out to be

sup

{
∫

Ω

u divz dx : z ∈ C∞
0 (Ω; RN), ‖z‖L∞(Ω;RN) := ess sup

x∈Ω
|z(x)| ≤ 1

}

,

(11.3)

(where for a vector v = (v1, . . . , vN) ∈ RN we set |v|2 :=
∑N

i=1 v
2
i) and will be

denoted by |Du|(Ω) or by
∫

Ω
|Du|. It turns out that the map u → |Du|(Ω) is

L1
loc(Ω)-lower semicontinuous. The total variation of u on a Borel set B ⊆ Ω is

defined as inf{|Du|(A) : A open , B ⊆ A ⊆ Ω}. For more results and information
on functions of bounded variation we refer to [AFP00, EG92b].

A measurable set E ⊆ RN is said to be of finite perimeter in Ω if (11.3) is finite
when u is substituted with the characteristic function χE of E. The perimeter
of E in Ω is defined as P (E,Ω) := |DχE |(Ω), and P (E,Ω) = P (RN \ E,Ω). We
shall use the notation P (E) := P (E,RN). For sets of finite perimeter E one can
define the essential boundary ∂∗E, which is countably (N − 1)-rectifiable with
finite HN−1 measure, and compute the outer unit normal νE(x) at HN−1 almost
all points x of ∂∗E, where HN−1 is the (N − 1)-dimensional Hausdorff measure.
Moreover, |DχE | coincides with the restriction of HN−1 to ∂∗E [AFP00, EG92b].

Throughout the text we will use the notation {u ≥ s} to denote {x ∈ Ω :
u(x) ≥ s}, s ∈ R. Also, when we write a.e. without specifying the measure we
refer to the Lebesgue measure.

11.1.3 A generalized Green’s formula

Let Ω be an open subset of RN . Following [Anz83], let

Xp(Ω) := {z ∈ L∞(Ω; RN) : div z ∈ Lp(Ω)}.
If z ∈ Xp(Ω) and w ∈ Lq(Ω) ∩ BV (Ω), p−1 + q−1 = 1, we define the functional
z ·Dw : C∞

0 (Ω)→ R by the formula

〈z ·Dw,ϕ〉 := −
∫

Ω

wϕdiv z dx−
∫

Ω

w z · ∇ϕdx. (11.4)

Then z · Dw is a Radon measure in Ω,
∫

Ω
z · Dwϕ =

∫

Ω
z · ∇wϕdx for all

ϕ ∈ C∞
c (Ω), w ∈ Lq(Ω) ∩W 1,1(Ω), and

∣

∣

∣

∣

∫

B

z ·Dw
∣

∣

∣

∣

≤
∫

B

|z ·Dw| ≤ ‖z‖L∞(Ω;RN)

∫

B

|Dw| ∀B Borel set ⊆ Ω.

11.1. Mathematical preliminaries 155

We recall the following result proved in [Anz83].

Theorem 55. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary and
z ∈ Xp(Ω). Then there exists a function [z · νΩ] ∈ L∞(∂Ω) such that ‖[z ·
νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN), and, for any u ∈ BV (Ω) ∩ Lq(Ω) we have

∫

Ω

u divz dx+

∫

Ω

(z ·Du) =

∫

∂Ω

[z · νΩ]u dHN−1.

Remark 5. Let Ω1,Ω ⊂ RN be two bounded Lipschitz open sets with Ω1 ⊂⊂ Ω,
Ω2 = Ω \ Ω1, and z1 ∈ Xp(Ω1), z2 ∈ Xp(Ω2). Assume that

[z1 · νΩ1](x) = −[z2 · νΩ2](x) for HN−1-a.e x ∈ ∂Ω1.

Then if we define z := z1 on Ω1 and z := z2 on Ω2, we have z ∈ Xp(Ω).

11.1.4 Finsler total variation

Let us define the general notion of total variation with respect to an arbitrary
metric integrand. Following [BBF99] we say that a function φ : Ω×RN → [0,∞)
is a metric integrand, or a Finsler metric, if φ is a Borel function satisfying the
conditions:

for a.e. x ∈ Ω, the map ξ ∈ RN → φ(x, ξ) is convex, (11.5)

φ(x, tξ) = |t|φ(x, ξ) ∀x ∈ Ω, ∀ξ ∈ RN , ∀t ∈ R, (11.6)

and there exists a constant Λ > 0 such that

0 ≤ φ(x, ξ) ≤ Λ‖ξ‖ ∀x ∈ Ω, ∀ξ ∈ RN . (11.7)

We could be more precise and use the term symmetric metric integrand, but
for simplicity we use the term metric integrand. Recall that the polar function
φ0 : Ω× RN → R of φ is defined by

φ0(x, ξ∗) = sup{〈ξ∗, ξ〉 : ξ ∈ RN , φ(x, ξ) ≤ 1}. (11.8)

The function φ0(x, ·) is convex and lower semicontinuous.

For any p ∈ [1,∞], let

Kp
φ(Ω) := {σ ∈ Xp(Ω) : φ0(x, σ(x)) ≤ 1 for a.e.x ∈ Ω, [σ · νΩ] = 0}.

This is the space of bounded vector fields σ, which vanish on the boundary of Ω,
whose divergence is in Lp, and whose length (as measured by φ0) is pointwise
bounded by 1.

Definition 56. Let u ∈ L1(Ω). We define the φ-total variation of u in Ω as
∫

Ω

|Du|φ := sup

{
∫

Ω

u div σ dx : σ ∈ K∞
φ (Ω)

}

, (11.9)

We set BVφ(Ω) := {u ∈ L1(Ω) :
∫

Ω
|Du|φ < ∞} which is a Banach space when

endowed with the norm |u|BVφ(Ω) :=
∫

Ω
|u|dx+

∫

Ω
|Du|φ.

156 Chapter 11. Finsler total variation and Cheeger sets

We say that E ⊆ RN has finite φ-perimeter in Ω if χE ∈ BVφ(Ω). We set

Pφ(E,Ω) :=

∫

Ω

|DχE |φ.

If Ω = RN , we denote Pφ(E) := Pφ(E,RN). By assumption (11.7), if E ⊆ RN

has finite perimeter in Ω it has also finite φ-perimeter in Ω.

The coarea formula for the φ-total variation was proved in [BBF99] (see also
[AB94] in a slightly different formulation):

∫

Ω

|Du|φ =

∫

R

Pφ({u > s},Ω) ds ∀u ∈ BVφ(Ω). (11.10)

Moreover, if T is a Lipschitz function and u ∈ BVφ(Ω), then T (u) ∈ BVφ(Ω)
[BBF99].

If u ∈ BVφ(Ω), then u determines a Radon measure in Ω. Indeed, for each
open set U ⊆ Ω we define

|Du|φ(U) := sup

{
∫

U

u div σ dx : σ ∈ K∞,c
φ (U)

}

. (11.11)

Notice that |Du|φ(U) ≤
∫

U
|Du|φ for any open set U ⊆ Ω with Lipschitz bound-

ary. We have that |Du|φ(U) is an inner content (see [Hal74] for the definition
and the appendix of [CFM09] for the proof). Let

µ∗(E) := inf{|Du|φ(U) : U is an open set in Ω, E ⊆ U}

be the outer measure induced by |Du|φ. Then for any Borel set F we define
µ(F) = µ∗(F). Then µ is a regular Borel measure [Hal74], p. 235. We shall write
|Du|φ(E) instead of µ(E).

Definition 57. Let φ : Ω×RN → R be a metric integrand, B ⊆ Ω. We say that
φ is coercive in B if there exist β ≥ α > 0 such that

α‖ξ‖ ≤ φ(x, ξ) ≤ β‖ξ‖ ∀x ∈ B, ∀ξ ∈ RN . (11.12)

We say that φ is continuous in B if φ restricted to B × RN is a continuous
function of (x, ξ). If B = Ω we just say that φ is coercive (resp. continuous). We
say that φ is coercive (resp. continuous) near ∂Ω if there exists Ω1 ⊂⊂ Ω an open
bounded set with Lipschitz boundary such that φ is coercive (resp. continuous) in
a neighborhood of Ω \ Ω1.

Example. An interesting case occurs when g : Ω → [0,∞) is a bounded Borel
function. Let φ(x, ξ) = g(x)|ξ|. Then [AB94]

φ0(x, ξ∗) :=

0 if g(x) = 0, ξ∗ = 0

+∞ if g(x) = 0, ξ∗ 6= 0

|ξ∗|
g(x) if ξ∗ ∈ RN , g(x) > 0.

(11.13)

11.1. Mathematical preliminaries 157

If σ ∈ X∞(Ω) and φ0(x, σ(x)) ≤ 1, then we may write σ(x) = g(x)z(x) where
z ∈ L∞(Ω; RN) is such that |z(x)| ≤ 1 for a.e. x ∈ Ω, and

∫

Ω

g|Du| := sup

{
∫

Ω

u div (gz) dx : gz ∈ X∞(Ω), |z(x)| ≤ 1 for a.e. x ∈ Ω

}

.

Finsler TV relaxed functional. From the definition, it follows that u ∈
L1(Ω) →

∫

Ω
|Du|φ and E → Pφ(E,Ω) are lower-semicontinuous with respect to

the L1 convergence. The following result was proved in [BBF99] when Ω = RN .
The proof adapts easily.

Proposition 58. Assume that φ : Ω× RN → [0,∞) is a metric integrand. Let

J(u) :=

∫

Ω

φ(x,∇u) dx if u ∈W 1,1(Ω)

+∞ if u ∈ L1(Ω) \W 1,1(Ω).

Let J be the relaxed functional, that is,

J(u) := inf{lim inf
n

J(un) : un → u in L1(Ω), un ∈W 1,1(Ω)}.

Then for every u ∈ BVφ(Ω), we have J(u) =
∫

Ω
|Du|φ. Hence, for any

u ∈ BVφ(Ω), there exists a sequence un ∈ W 1,1(Ω) such that
∫

Ω
φ(x,∇un) →

∫

Ω
|Du|φ. In particular, BVφ(Ω) is the finiteness domain of J .

The following result was proved on [CFM09]:

Theorem 59. Let Ω, Q be open bounded sets in RN with Lipschitz boundary
such that Ω ⊂⊂ Q. Let φ : Ω × RN → R be a metric integrand which admits an
extension to Q×RN such that φ is continuous and coercive in a neighborhood of
Q \ Ω. Let u ∈ BVφ(Ω), ϕ ∈ L1(∂Ω). Let ϕ ∈ L1(∂Ω),

Jφ,ϕ(u) :=

∫

Ω

φ(x,∇u) if u ∈W 1,1(Ω) andu = ϕ on ∂Ω

+∞ otherwise.

(11.14)

and

Jφ,ϕ(u) :=

∫

Ω

|Du|φ +

∫

∂Ω

φ(x, νΩ)|u− ϕ| dHN−1 if u ∈ BVφ(Ω)

+∞ otherwise.

(11.15)

Then the functional Jφ,ϕ(u) equals the relaxed functional of Jφ,ϕ(u).

The following technical lemma was also proved in [CFM09]. It allows to
extend functions of φ-bounded variation out of the boundary of their domain.

158 Chapter 11. Finsler total variation and Cheeger sets

Lemma 60. Assume that φ : Ω×RN → R is a metric integrand which admits an
extension as a metric integrand to an open bounded set Q with Lispchitz boundary
such that Ω ⊂⊂ Q. Assume that the extension is continuous and coercive in a
neighborhood of Q \ Ω. Let u ∈ BVφ(Ω), ϕ̃ ∈ W 1,1(Q \ Ω) be such that ϕ̃|∂Ω =
ϕ ∈ L1(∂Ω). Let

ũ(x) :=

u(x) if x ∈ Ω

ϕ̃ if x ∈ Q \ Ω.
(11.16)

Then u ∈ BVφ(Q) and

∫

Q

|Dũ|φ =

∫

Ω

|Du|φ +

∫

Q\Ω
|∇ϕ̃|φ +

∫

∂Ω

φ(x, νΩ)|u− ϕ| dHN−1. (11.17)

11.1.5 An extension of Green formulas

In all this Section we assume that Ω is a bounded open set with Lipschitz bound-
ary. We assume also that φ : Ω × RN → R is a metric integrand. We just give
an overview of the main results and refer to the appendixes of [CFM09] for the
technical proofs.

The Measure z ·Du. Recall the definition of z ·Du in Section 11.1.3, for q = 1.
Let u ∈ BVφ(Ω) ∩ Lp(Ω) and z ∈ Xq(Ω), p, q ∈ [1,∞], p−1 + q−1 = 1. We

define the functional z ·Du : D(Ω)→ R as

〈z ·Dw,ϕ〉 := −
∫

Ω

wϕdiv z dx−
∫

Ω

w z · ∇ϕdx. (11.18)

Although this Section could be developed in this general functional setting, we
shall restrict to the case p = 1. we shall restrict to this case.

Let us write

A∞(Ω) := {z ∈ X∞(Ω) : ‖φ0(x, z(x))‖L∞(Ω) <∞}. (11.19)

To develop the theory we shall assume from now on that z ∈ A∞(Ω).

Proposition 61. For any open set U ⊂ Ω and for any function ϕ ∈ D(U), one
has

|〈z ·Du,ϕ〉| ≤ ‖ϕ‖∞‖φ0(x, z)‖L∞(U)|Du|φ(U). (11.20)

In particular, z ·Du is a Radon measure in Ω.

Lemma 62. Let u ∈ BVφ(Ω), σ ∈ A∞(Ω) with ‖φ0(x, z(x))‖L∞(Ω) ≤ 1. Assume
that

∫

Ω
σ ·Du =

∫

Ω
|Du|φ. Then for any b ∈ R we have

∫

Ω

σ ·D(u− b)+ =

∫

Ω

|D(u− b)+|φ and

∫

Ω

σ ·D(u ∧ b) =

∫

Ω

|D(u ∧ b)|φ

where (u− b)+ = max(u− b, 0) and u ∧ b = inf(u, b).

11.1. Mathematical preliminaries 159

Proof. By the observation following (11.10) we know that (u−b)+, u∧b ∈ BVφ(Ω).
Then we have

∫

Ω

|Du|φ =

∫

Ω

σ ·Du =

∫

Ω

σ ·D(u− b)+ +

∫

Ω

σ ·D(u ∧ b)

≤
∫

Ω

|D(u− b)+|φ +

∫

Ω

|D(u ∧ b)|φ =

∫

Ω

|Du|φ.

where the inequality follows from Proposition 61 and the last equality follows
from the coarea formula (11.10). The Lemma follows.

Traces. The following result can be proved as in [Anz83] (see also [AVCM04]).

Proposition 63. Assume that φ is continuous and coercive at ∂Ω. There exists
a bilinear map 〈z, u〉∂Ω : A∞(Ω)×BVφ(Ω)→ R such that

〈z, u〉∂Ω =

∫

∂Ω

u(x)z(x) ·ν(x) dHN−1 if z ∈ C1(Ω,RN)∩C(Ω,RN) (11.21)

|〈z, u〉∂Ω| ≤ ‖z‖L∞(Ω;RN)

∫

∂Ω

|u(x)| dHN−1 forall z, u. (11.22)

Proposition 64. Assume that φ is continuous and coercive at ∂Ω. Then there
exists a linear operator γ : A∞(Ω)→ L∞(∂Ω) such that

‖γ(z)‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN) (11.23)

〈z, u〉∂Ω =

∫

∂Ω

γ(z)(x)u(x) dHN−1 forall u ∈ BVφ(Ω), (11.24)

γ(z)(x) = z(x) · ν(x) forall x ∈ ∂Ω if z ∈ C1(Ω,RN). (11.25)

The function γ(z) is a weakly defined trace on ∂Ω of the normal component
of z. We shall denote γ(z) by [z · ν].
Proof. Fix z ∈ A∞(Ω), u ∈ BVφ(Ω). Consider the functional F : L∞(∂Ω) → R

defined by F (u) := 〈z, w〉∂Ω, where w ∈ BVφ(Ω) is such that w|∂Ω = u|∂Ω. By
estimate (11.22), we have |F (u)| ≤ ‖z‖L∞(Ω;RN)

∫

∂Ω
|u|. Hence there exists a

function γ(z) ∈ L∞(∂Ω) such that

F (u) =

∫

∂Ω

γ(z)(x)u(x) dHN−1

and the result follows.

Green’s formula. We give now the expected anisotropic Green’s formula relat-
ing the function [z ·ν] and the measure z ·Du. Its proof was given in [CFM09], and
is an immediate consequence of having introduced the appropriate definitions.

Theorem 65. Assume that φ is continuous and coercive at ∂Ω. Let z ∈ A∞(Ω),
u ∈ BVφ(Ω). Then

∫

Ω

u div(z) dx+

∫

Ω

z ·Du =

∫

∂Ω

[z · ν]u dHN−1. (11.26)

160 Chapter 11. Finsler total variation and Cheeger sets

11.1.6 Subdifferential of Finsler total variation

In this Subsection we assume that φ : Ω × RN → [0,∞) is a continuous and
coercive metric integrand in Ω. Notice that in this case BVφ(Ω) = BV (Ω). Let
us define the functional

ψφ(u) :=

∫

Ω

φ(x,∇u) if u ∈ L2(Ω) ∩W 1,1(Ω) andu = 0 on ∂Ω

+∞ otherwise.

(11.27)

According to [Mol05, AB94], the functional Ψφ : L2(Ω)→ (−∞,+∞] defined by

Ψφ(u) :=

∫

Ω

|Du|φ +

∫

∂Ω

φ(x, νΩ)|u| dHN−1 if u ∈ L2(Ω) ∩BV (Ω)

+∞ otherwise,

(11.28)
is the lower-semicontinuous relaxation of ψφ. Moreover Ψφ(u) is lower-
semicontinuous with respect to convergence in L1(Ω) [Mol05]. Since Ψφ is convex
and lower semicontinuous in L2(Ω), we have that ∂Ψφ is a maximal monotone
operator in L2(Ω) (see [Bré73]). Next lemma gives the characterization of ∂Ψφ

(see [Mol05] for a proof).

Theorem 66. The following conditions are equivalent

(i) v ∈ ∂Ψφ(u).

(ii) u, v ∈ L2(Ω), u ∈ BV (Ω) and there exists σ ∈ X2(Ω) with φ0(x, σ(x)) ≤ 1
a.e. in Ω, v = −div(σ) in D′(Ω) such that σ(x) ∈ ∂ξφ(x,∇u(x)) a.e. in Ω,
σ ·Du = |Du|φ and [σ · νΩ] ∈ sign(−u)φ(x, νΩ(x)) HN−1 a.e. on ∂Ω.

(iii) u, v ∈ L2(Ω), u ∈ BV (Ω) and there exists σ ∈ X2(Ω) with φ0(x, σ(x)) ≤ 1
a.e. in Ω, v = −div(σ) in D′(Ω) such that
∫

Ω

(w − u)v ≤
∫

Ω

σ ·Dw −
∫

Ω

|Du|φ −
∫

∂Ω

[σ · νΩ]w −
∫

∂Ω

φ(x, νΩ(x))|u|,

∀w ∈ BV (Ω) ∩ L2(Ω).

(iv) u, v ∈ L2(Ω), u ∈ BV (Ω) and there exists σ ∈ X2(Ω) with φ0(x, σ(x)) ≤ 1
a.e. in Ω, v = −div(σ) in D′(Ω) such that
∫

Ω

(w−u)v ≤
∫

Ω

σ ·Dw−
∫

Ω

|Du|φ+

∫

∂Ω

φ(x, νΩ(x))|w|−
∫

∂Ω

φ(x, νΩ(x))|u|,

∀w ∈ BV (Ω) ∩ L2(Ω).

When we used in the previous statement the expression a.e. in Ω we mean
a.e. with respect to the Lebesgue measure in Ω. The identity σ · Du = |Du|φ
means that both Radon measures coincide.

From now on we shall write v = −div ∂ξφ(x,∇u) instead of v ∈ ∂Ψφ(u).

11.2. A PDE that produces Finsler-Cheeger sets 161

11.2 A PDE that produces Finsler-Cheeger sets

The maximal φ-Cheeger set inside Ω Let Ω, Q be open bounded sets in RN

with Lipschitz boundary such that Ω ⊂⊂ Q. Let φ : Ω × RN → R be a metric
integrand with an extension to Q×RN such that φ is continuous and coercive in
a neighborhood of Q \Ω. For the rest of the chapter we assume that this property
holds. Let h ∈ L∞(Ω), h(x) > 0 a.e. in Ω, such that

∫

Ω

1

h(x)
dx <∞. (11.29)

We denote by L2(Ω, hdx) the set of measurable functions u : Ω → R such that
∫

Ω
u2 h dx < ∞. From (11.29) we have that L2(Ω) ⊆ L2(Ω, hdx). For f ∈

L2(Ω, hdx), λ > 0, let us consider the energy functional

Eφ,h,λ(u) :=

∫

Ω

|Du|φ +
λ

2

∫

Ω

(u− f)2h dx+

∫

∂Ω

φ(x, νΩ)|u| dHN−1. (11.30)

Although for φ-Cheeger sets we need only the case f = 1, the general case where
f 6= 1 is of interest in Section 13.3, where we discuss the application to anisotropic
diffusion.

Let us consider the partial differential equation formally related to (11.30):

hu− λ−1div (∂ξφ(x,Du)) = hf (11.31)

with Dirichlet boundary conditions. Notice that this is a symbolic notation.
There is also a slight abuse of notation in writing (11.31) as an equality. Since
the subdifferential of the φ-total variation is multivalued, (11.31) should be better
written as hf ∈ hu − λ−1div (∂ξφ(x,∇u)). In spite of this we will write the
equation as (11.31), understanding that the equality holds for an element of the
subdifferential.

Definition 67 (Solution of the PDE). Let f ∈ L∞(Ω). We say that u ∈
L2(Ω, h dx) is a solution of (11.31) if u ∈ BVφ(Ω) ∩ L∞(Ω), and there is a
vector field σ ∈ A∞(Ω) such that

(i) hu− λ−1div (σ) = hf in D′(Ω),

(ii) φ0(x, σ(x)) ≤ 1 a.e.,

(iii)

∫

Ω

σ ·Du =

∫

Ω

|Du|φ,

(iv) [σ · νΩ] ∈ sign(−u)φ(x, νΩ(x)), HN−1-a.e. x ∈ ∂Ω.

We could have given a more general definition but the present case is sufficient
for our purposes.

162 Chapter 11. Finsler total variation and Cheeger sets

Theorem 68 (Existence and uniqueness for the variational problem). (i) Let
f ∈ L2(Ω, hdx). Then there is a unique solution of the problem

(Q)λ : min
u∈BVφ(Ω)∩L2(Ω,h dx)

Eφ,h,λ(u). (11.32)

(ii) Assume that f ∈ L∞(Ω). Then there is a unique solution u ∈ L2(Ω, h dx) of
(11.31). Moreover the solution u ∈ L∞(Ω) and it minimizes (11.32).

Proof. (i) Let un be a minimizing sequence for (11.32). Then un is bounded in
L2(Ω, h dx). Assume that un → u weakly in L2(Ω, h dx). Observe that u ∈ L1(Ω)
since

∫

Ω

|u| dx ≤
(

∫

Ω

u2 h dx

)1/2 (
∫

Ω

1

h
dx

)1/2

, (11.33)

and un → u weakly in L1(Ω). Indeed if ϕ ∈ L∞(Ω), then ϕ
h ∈ L2(Ω, h dx) and

∫

Ω

(un − u)ϕdx =

∫

Ω

(un − u)
ϕ

h
hdx→ 0.

For any given function v ∈ L1(Ω), let ṽ denote its extension by 0 in RN . Since v →
∫

Ω
|Dṽ|φ is convex and lower semicontinuous with respect to the convergence in

L1(Ω), then it is also lower-semicontinuous with respect to the weak convergence
in L1(Ω). Hence by Lemma 60 we have

∫

Ω

|Du|φ +

∫

∂Ω

φ(x, νΩ)|u| =

∫

RN

|Dũ|φ ≤ lim inf
n

∫

RN

|Dũn|φ

= lim inf
n

∫

Ω

|Dun|φ +

∫

∂Ω

φ(x, νΩ)|un|.

Then also
Eφ,h,λ(u) ≤ lim inf

n
Eφ,h,λ(un),

and u ∈ BVφ(Ω) ∩ L2(Ω, h dx) is a minimum of Eφ,h,λ(u). Since the functional is
strictly convex, the solution is unique.

(ii) We divide the proof in three steps.

Step 1. Existence and uniqueness of solutions of an approximating problem. Let
hn = h+ 1

n , φn(x, ξ) = φ(x, ξ)+ 1
nΞ(ξ) where Ξ(ξ) = |ξ|, x ∈ Ω, ξ ∈ RN . As in (i)

there is a unique minimizer un of Eφn,hn,λ(u) which is in BVφn
(Ω)∩L2(Ω, hn dx).

Since φn is coercive and hn ≥ 1
n , then un ∈ BV (Ω) ∩ L2(Ω). As a consequence

we have that
λ(f − un)hn ∈ ∂Ψφn

(un), (11.34)

the subdifferential ∂Ψφn
(un) being taken in L2(Ω). Now, since φn is continuous

and coercive, by the characterization of the subdifferential ∂Ψφn
(un) given in

Theorem 66, un is satisfies the equation

hnun − λ−1div (∂φn(x,∇un)) = hnf (11.35)

11.2. A PDE that produces Finsler-Cheeger sets 163

in the sense of Definition 67. That is, there exists zn ∈ ∂φn(x,∇un), zn ∈ X2(Ω),
such that

hnun − λ−1div zn = hnf in D′(Ω), (11.36)
∫

Ω

zn ·Dun =

∫

Ω

|Dun|φn
, (11.37)

[zn · νΩ] ∈ sign(−un)φn(x, νΩ(x)), HN−1-a.e. x ∈ ∂Ω. (11.38)

Conversely, using again Theorem 66, if un ∈ L2(Ω) is a solution of (11.35), then
it is also a solution (11.34). Now, since Ψφn

is a maximal monotone operator
in L2(Ω), the uniqueness of solutions of (11.35) follows immediately by standard
results [Bré73].

Since ∂φn = ∂φ + 1
n∂Ξ, then we may write zn = σn + 1

nηn where σn ∈
∂φ(x,∇un) and ηn ∈ ∂Ξ(∇un).

Step 2. Basic estimates and passage to the limit. Assume that a ≤ f ≤ b. Let us
prove that a ≤ un ≤ b, a, b ∈ R. First we observe that multiplying (11.35) by un

and integrating by parts, we obtain
∫

Ω

u2
n hn dx+ λ−1

∫

Ω

|Dun|φn
+ λ−1

∫

∂Ω

φn(x, νΩ)|un| =
∫

Ω

f hn un dx, (11.39)

which implies that un is uniformly bounded in BVφ(Ω). To prove that un ≤ b,
we multiply hn(un − b)− λ−1div zn = hn(f − b) by (un − b)+ and integrating by
parts we obtain
∫

Ω

((un − b)+)2 hn dx + λ−1

∫

Ω

zn ·D(un − b)+ + λ−1

∫

∂Ω

φn(x, νΩ)(un − b)+ dHN−1

=

∫

Ω

(f − b)(un − b)+hn dx ≤ 0.

Using Lemma 62 we have that
∫

Ω
zn ·D(un − b)+ ≥ 0. Since the third term on

the left hand side is also ≥ 0, we have that (un − b)+ = 0, i.e. un ≤ b a.e.. In a
similar way we prove that un ≥ a a.e.. Modulo a subsequence, we may assume
that un → u weakly in L2(Ω) for some u ∈ BVφ(Ω) ∩ L∞(Ω). Since hn → h
uniformly in Ω also

unhn → uh weakly in L2(Ω) as n→∞. (11.40)

Finally, since zn, ηn are bounded in L∞(Ω), by extracting a further sub-
sequence, we may assume that zn, σn → σ weakly∗ in L∞(Ω). Now, since
φ0(x, σn(x)) ≤ 1 a.e., and this condition is stable under weak∗ convergence in
L∞(Ω), we have φ0(x, σ(x)) ≤ 1 a.e.. Now, since div zn is bounded in L∞(Ω) we
have that, by Banach-Alaouglu’s Theorem,

div zn → div σ weakly in L2(Ω),

and σ ∈ A∞(Ω). Letting n→∞ in (11.36) we obtain that

hu− λ−1div σ = hf in D′(Ω). (11.41)

164 Chapter 11. Finsler total variation and Cheeger sets

Step 3. Final step. Let us prove that
∫

Ω

σ ·Du =

∫

Ω

|Du|φ, (11.42)

[σ · νΩ] ∈ sign(−u)φ(x, νΩ) a.e. on ∂Ω. (11.43)

Let ϕ ∈ C1(Ω)∩C(Ω). Since |[zn ·νΩ]| ≤ φn(x, νΩ(x)) a.e. in ∂Ω, we may assume
that [zn · νΩ]→ β(x) weakly∗ in L∞(∂Ω), and letting n→∞ in

∫

Ω

zn · ∇ϕdx+

∫

∂Ω

[zn · νΩ]ϕdHN−1 = −
∫

Ω

divzn ϕdx,

we obtain
∫

Ω

σ·∇ϕdx+
∫

∂Ω

βϕdHN−1 = −
∫

Ω

divσ ϕdx =

∫

Ω

σ·∇ϕdx+
∫

∂Ω

[σ·νΩ]ϕdHN−1.

Hence
∫

∂Ω

βϕdHN−1 =

∫

∂Ω

[σ · νΩ]ϕdHN−1

holds for any ϕ ∈ C1(Ω) ∩ C(Ω) and we obtain that β = [σ · νΩ]. In particular

|[σ · νΩ]| ≤ φ(x, νΩ(x)) a.e. in ∂Ω. (11.44)

Now, using (11.40) in the fifth line of the following computations, and using
Corollary A.1 of Appendix 2 of [CFM09] (which says that the measure z · Du
is absolutely continuous with respect to the measure |Du|φ) together with
‖φ0(x, σ(x))‖∞ ≤ 1 and (11.44) in the last inequality below, we have

∫

Ω

u2 h dx+ λ−1

∫

Ω

|Du|φ + λ−1

∫

∂Ω

φ(x, νΩ)|u| dHN−1

≤ lim inf
n

∫

Ω

u2
n hn dx+ lim inf

n

{

λ−1

∫

Ω

|Dun|φ + λ−1

∫

∂Ω

φ(x, νΩ)|un| dHN−1

}

≤ lim inf
n

∫

Ω

u2
n hn dx+ lim inf

n

{

λ−1

∫

Ω

|Dun|φn
+ λ−1

∫

∂Ω

φn(x, νΩ)|un| dHN−1

}

≤ lim inf
n

{
∫

Ω

u2
n hn dx+ λ−1

∫

Ω

|Dun|φn
+ λ−1

∫

∂Ω

φn(x, νΩ)|un| dHN−1

}

= lim inf
n

∫

Ω

fun hn dx =

∫

Ω

fu h dx =

∫

Ω

u2 h dx− λ−1

∫

Ω

udiv σ dx

=

∫

Ω

u2 h dx+ λ−1

∫

Ω

σ ·Du− λ−1

∫

∂Ω

[σ · νΩ]u dHN−1

≤
∫

Ω

u2 h dx+ λ−1

∫

Ω

|Du|φ + λ−1

∫

∂Ω

φ(x, νΩ)|u| dHN−1.

In particular, we obtain (11.42) and

−
∫

∂Ω

[σ · νΩ]u dHN−1 =

∫

∂Ω

φ(x, νΩ)|u| dHN−1.

11.2. A PDE that produces Finsler-Cheeger sets 165

The last identity implies that −[σ · νΩ]u = φ(x, νΩ)|u|, hence (11.43) follows.
Thus, conditions (i) − (ii) − (iii) − (iv) of Definition 67 are satisfied and u is a
solution (11.31).

The proof of uniqueness follows in a standard way (see [AVCM04], Chapter
2). Finally, since the energy is convex, the solution of (11.31) is a minimizer of
(11.32).

Proposition 69 (Inequalities satisfied by solutions of the PDE). Let u ∈
BVφ(Ω)∩L2(Ω, h dx) be the solution of the variational problem (11.32) with f = 1.
Then 0 ≤ u ≤ 1. Let Es := {u ≥ s}, s ∈ (0, 1]. Then for any s ∈ (0, 1] we have

Pφ(Es)− λ(1− s)|Es|h ≤ Pφ(F)− λ(1− s)|F |h (11.45)

for any F ⊆ Ω.

We denote |F |h =
∫

F
h(x) dx for any measurable subset F ⊆ Ω.

Proof. Recall that u satisfies the following partial differential equation

hu− λ−1div σ = h in Ω, (11.46)

where σ(x) ∈ ∂ξφ(x,∇u(x)) a.e.. As in Step 2 of the proof of Theorem 68.(ii) we
deduce that 0 ≤ u ≤ 1.

Let us prove that for almost any s ∈ (0,∞) we have

Pφ(Es) =

∫

Ω

σ ·DχEs
+

∫

∂Ω

φ(x, νΩ(x))χEs
(x) dHN−1.

Indeed, multiplying (11.46) by u and integrating by parts we obtain

∫

Ω

σ ·Du+

∫

∂Ω

φ(x, νΩ)|u| dHN−1 = λ

∫

Ω

(1− u)uh dx. (11.47)

Now, multiplying (11.46) by χEs
and integrating by parts we obtain

∫

Ω

σ ·DχEs
−

∫

∂Ω

[σ · νΩ]χEs
dHN−1 = λ

∫

Ω

(1− u)hχEs
dx. (11.48)

Notice that this relation proves that
∫

Ω
σ · DχEs

−
∫

∂Ω
[σ · νΩ]χEs

dHN−1 is a
measurable function of s. Integrating (11.48) with respect to s we obtain

∫ ∞

0

∫

Ω

σ ·DχEs
ds −

∫ ∞

0

∫

∂Ω

[σ · νΩ]χEs
dHN−1 ds = λ

∫ ∞

0

∫

Ω

(1− u)hχEs
dx ds

= λ

∫

Ω

(1− u)h
∫ ∞

0

χEs
dsdx = λ

∫

Ω

(1− u)uh dx

=

∫

Ω

σ ·Du+

∫

∂Ω

φ(x, νΩ)|u| dHN−1

=

∫

Ω

|Du|φ +

∫

∂Ω

φ(x, νΩ)|u| dHN−1.

166 Chapter 11. Finsler total variation and Cheeger sets

Now, using Lemma 60 and the coarea formula (11.10), we have

∫

Ω

|Du|φ +

∫

∂Ω

φ(x, νΩ)|u| dHN−1 =

∫

RN

|Dũ|φ =

∫ ∞

0

Pφ({ũ > s}) ds

=

∫ ∞

0

Pφ({u > s}) ds,

where ũ denotes the extension of u by zero outside Ω. Hence

∫ ∞

0

∫

Ω

σ ·DχEs
ds−

∫ ∞

0

∫

∂Ω

[σ · νΩ]χEs
dHN−1 ds =

∫ ∞

0

Pφ({u > s}) ds.
(11.49)

Let s > 0. Now, using Proposition 61 and the fact that [σ · νΩ] ∈
sign(−u)φ(x, νΩ(x)), we have

∣

∣

∣

∣

∫

Ω

σ ·DχEs
−

∫

∂Ω

[σ · νΩ]χEs
dHN−1

∣

∣

∣

∣

≤
∫

Ω

|DχEs
|φ +

∫

∂Ω

φ(x, νΩ(x))χEs
dHN−1,

and using again Lemma 60 and the coarea formula, we may continue the equalities
and obtain
∫

Ω

|DχEs
|φ +

∫

∂Ω

φ(x, νΩ(x))χEs
dHN−1 =

∫

Ω

|Dχ̃Es
|φ =

∫

Ω

|DχEs
|φ = Pφ(Es),

where χ̃Es
is the extension of χEs

by zero outside Ω. Combining this inequality
with (11.49), we obtain

∫

Ω

σ ·DχEs
−

∫

∂Ω

[σ · νΩ]χEs
dHN−1 = Pφ(Es) a.e. s > 0. (11.50)

Let F ⊆ Ω be a set of φ-finite perimeter. For s ∈ (0, 1], we have

−
∫

Ω

div σ (χF − χEs
) dx =

∫

Ω

(σ,DχF)−
∫

Ω

σ ·DχEs
−

∫

∂Ω

[σ · νΩ](χF − χEs
) dHN−1

=

∫

Ω

(σ,DχF)−
∫

∂Ω

[σ · νΩ]χF − Pφ(Es) ≤ Pφ(F)− Pφ(Es),

and we deduce

Pφ(F)−Pφ(Es) ≥ λ
∫

Ω

(1−u)h(χF −χEs
) = λ

∫

Ω

((1− s)+ (s−u))h(χF −χEs
).

Since (s− u)(χF − χEs
) ≥ 0, we have

Pφ(F)− Pφ(Es) ≥ λ
∫

Ω

(1− s)h(χF − χEs
) = λ(1− s)(|F |h − |Es|h).

Since all sets Es are contained in Ω, the perimeter is lower semicontinuous, and
the area is continuous for increasing or decreasing families of sets contained in Ω,
we deduce that (11.45) holds for any s ∈ (0, 1].

11.2. A PDE that produces Finsler-Cheeger sets 167

Remark 6. Let us observe that (11.50) holds for any s > 0. Indeed, by lower
semicontinuity we have that Pφ(Es) < ∞ for all s > 0. If s > 0, we may
approximate it by sn such that (11.50) holds for sn. Since

Pφ(Esn
) =

∫

Ω

σ ·DχEsn
−

∫

∂Ω

[σ · νΩ]χEsn
dHN−1 = −

∫

Ω

div σ χEsn
,

we have Pφ(Es) ≤ lim infn Pφ(Esn
) = −

∫

Ω
div σ χEs

=
∫

Ω
σ · DχEs

−
∫

∂Ω
[σ ·

νΩ]χEs
dHN−1 ≤ Pφ(Es). The identity (11.50) holds for any s > 0.

Lemma 70 (Nonvanishing solutions of the variational problem). Let uλ be the
solution of (Q)λ. If

1

λ
< ‖hχΩ‖∗ := sup

{ ∣

∣

∣

∣

∫

Ω

hu dx

∣

∣

∣

∣

: u ∈ L2(Ω) ∩BVφ(Ω),
∫

Ω

|Du|φ +

∫

∂Ω

φ(x, νΩ)|u| dHN−1 ≤ 1

}

,

then uλ 6= 0.

Proof. Notice that uλ is characterized as the solution of (11.31). If uλ = 0, then
there exists a vector field σ ∈ X∞(Ω) with φ0(x, σ(x)) ≤ 1 a.e., |[σ · νΩ]| ≤
φ(x, νΩ(x)) HN−1-a.e. x ∈ ∂Ω, and −λ−1div σ = hχΩ in D′(Ω). Multiplying by
u ∈ BVφ(Ω) and integrating by parts, we obtain that ‖hχΩ‖∗ ≤ 1

λ .

If φ : Ω × RN → R is a metric integrand and φ1, φ2 are two extensions of φ
to open sets Ω′,Ω′′, respectively, such that Ω ⊂⊂ Ω′,Ω′′, and they coincide in
Ω′ ∩ Ω′′, then

Pφ1
(E,Ω′) = Pφ2

(E,Ω′′) = Pφi
(E,Ω′ ∩ Ω′′) i = 1, 2, E ⊆ Ω.

In particular, if φ has an extension to RN , denoted again by φ, then the above
perimeters are also equal to Pφ(E). Thus, if φ has an extension to an open set Q
containing Ω we shall denote Pφ(E) instead of Pφ(E,Q) for any set E ⊆ Ω with
finite φ-perimeter. Notice that if φ is continuous and coercive in a neighborhood
of Q \ Ω, then

Pφ(E) = Pφ(E,Ω) +

∫

∂Ω

φ(x, νΩ)χE(x) dHN−1 E ⊆ Ω.

Notice that in this case, Pφ(E) depends only on φ : Ω× RN → R.

Lemma 71 (Perimeter of intersecting sets). Let Ω, Q be open bounded sets Lip-
schitz boundary such that Ω ⊂⊂ Q. Let φ : Q × RN → R be a metric integrand
which is continuous and coercive in a neighborhood of Q \Ω. If E,F are two sets
of finite φ-perimeter, then

Pφ(E ∪ F) + Pφ(E ∩ F) ≤ Pφ(E) + Pφ(F). (11.51)

168 Chapter 11. Finsler total variation and Cheeger sets

Using the results of Subsection 11.1.4, the proof is exactly the same as in
[Giu84] for the case of the Euclidean perimeter and we omit the details.

The following Lemma can be proved as in [ACC05a] and we also omit the
details.

Lemma 72 (The variational problem on subsets). For any λ > 0, let us consider
the problem

(P)λ : min
F⊆Ω

Pφ(F)− λ|F |h. (11.52)

Then

(i) Let Cλ, Cµ be minimizers of (P)λ, and (P)µ respectively. If λ < µ, then
Cλ ⊆ Cµ.

(ii) Let µ > λ. Assume that Ω is a solution of (P)λ. Then Ω is a solution of
(P)µ.

(iii) Let λn ↑ λ. Then C+
λ := ∪nCλn

is a minimizer of (P)λ. Moreover
Pφ(Cλn

) → Pφ(C+
λ). Similarly, if λn ↓ λ, then C−

λ := ∩nCλn
is a mini-

mizer of (P)λ, and Pφ(Cλn
)→ Pφ(C−

λ).

(iv) If λ→∞ and Cλ is a minimizer of (P)λ, then Cλ → Ω.

Remark 7. In Proposition 69 we have proved that for any s ∈ (0, 1], the level
set {uλ ≥ s} is a minimizer of (P)λ(1−s). Moreover, by Lemma 72, the sets
{uλ ≥ s}+ := ∪ǫ>0{uλ ≥ s+ ǫ}, s ∈ [0, 1), and {uλ ≥ s}− := ∩ǫ>0{uλ ≥ s− ǫ},
s ∈ (0, 1], are also minimizers of (P)λ(1−s) (obviously {uλ ≥ 1}+ = ∅ is also
a minimizer of (P)0). Notice that, except on countably many values of s, they
coincide with [uλ ≥ s].

As a consequence of Lemma 72.(ii), we obtain:

Corollary 73. Then for almost any λ, (P)λ has a unique solution.

From Proposition 73 and Lemma 72.(iii) we deduce the following consequence.

Proposition 74 (Equivalence of solutions of the variational problem). Let α, β >
1

‖hχΩ‖∗
. Then α(1− ‖uα‖∞) = β(1− ‖uβ‖∞).

Proof. Assume that these two numbers are not equal. Without loss of generality,
we may assume that

α(1− ‖uα‖∞) < β(1− ‖uβ‖∞).

Let us take λ such that such that the solution of (P)λ is unique and α(1 −
‖uα‖∞) < λ < β(1 − ‖uβ‖∞). Let us write λ = α(1 − s) = β(1 − t) for some
values s < ‖uα‖∞, and t > ‖uβ‖∞. Since {uβ ≥ t} = ∅, and the solution of (P)λ

is unique, being {uα ≥ s} a solution of (P)λ, we deduce that {uα ≥ s} = ∅, a
contradiction. This proves our proposition.

11.3. Local Finsler-Cheeger sets 169

Let λ∗ be the unique value of α(1− ‖uα‖∞) determined by the above propo-
sition.

Proposition 75 (Cheeger sets are level sets of the solution of the PDE). Let
α, β > 1

‖hχΩ‖∗
. Then {uα ≥ ‖uα‖∞} = {uβ ≥ ‖uβ‖∞}, and

λ∗ =
P ({uα ≥ ‖uα‖∞})
|{uα ≥ ‖uα‖∞}|h

. (11.53)

The set {uα ≥ ‖uα‖∞} is the maximal φ-Cheeger set of Ω.

Proof. Let δn → 0+ be such that (P)λ∗+δn
has a unique solution for each n.

Since {uα ≥ ‖uα‖∞ − δn

α }, {uβ ≥ ‖uβ‖∞ − δn

β } are both solutions of (P)λ∗+δn
,

we have that

{uα ≥ ‖uα‖∞ −
δn
α
} = {uβ ≥ ‖uβ‖∞ −

δn
β
}.

Since {uα ≥ ‖uα‖∞} = ∩n{uα ≥ ‖uα‖∞ − δn

α }, and {uβ ≥ ‖uβ‖∞} = ∩n{uβ ≥
‖uβ‖∞ − δn

β } we deduce that {uα ≥ ‖uα‖∞} = {uβ ≥ ‖uβ‖∞}, and this set

minimizes (P)λ∗ .

Now, since {uα ≥ ‖uα‖∞ + ǫ} = ∅ is a solution of (P)λ∗−λǫ, for all ǫ > 0, by
Lemma 72.(iii), we have that ∅ is also a solution of (P)λ∗ . Then

Pφ({uα ≥ ‖uα‖∞})− λ∗|{uα ≥ ‖uα‖∞}|h = Pφ(∅)− λ∗|∅|h = 0,

and (11.53) follows. Since {uα ≥ ‖uα‖∞} is a minimizer of (P)λ∗ we deduce that

0 = Pφ({uα ≥ ‖uα‖∞})− λ∗|{uα ≥ ‖uα‖∞}|h ≤ Pφ(F)− λ∗|F |h

for any set F ⊆ Ω of finite perimeter. Then

Pφ({uα ≥ ‖uα‖∞})
|{uα ≥ ‖uα‖∞}|h

≤ Pφ(F)

|F |h
for any set F ⊆ Ω of finite perimeter. Thus, the set {uα ≥ ‖uα‖∞} is a φ-Cheeger
set of Ω. Now, if C is any other φ-Cheeger set in Ω, then C is a solution of (P)λ∗ .
Then C ⊆ {uα ≥ ‖uα‖∞− δn

α } for all n. Then C ⊆ {uα ≥ ‖uα‖∞}. We conclude
that {uα ≥ ‖uα‖∞} is the maximal φ-Cheeger set of Ω.

11.3 Local Finsler-Cheeger sets

In this Section we assume that φ is continuous and coercive in Ω. Let E ⊆ RN

be a set of finite perimeter. We say that E is decomposable if there exists a
partition (A,B) of E such that Pφ(E) = Pφ(A) + Pφ(B) and both |A| and |B|
are strictly positive. We say that E is indecomposable if it is not decomposable;
notice that the properties of being decomposable or indecomposable are invariant
modulo Lebesgue null sets and that, according to our definition, any Lebesgue
negligible set is indecomposable.

170 Chapter 11. Finsler total variation and Cheeger sets

The following result was proved in [ACMM01] for the Euclidean perimeter.
The proof easily extends to cover the case where φ is continuous and coercive in
Ω, but it also follows from the Euclidean case since the assumptions on φ imply
that

Pφ(E) =

∫

∂∗E

φ(x, νE(x)) dHN−1

for any set E ⊆ RN with finite perimeter.

Theorem 76 (Decomposition of sets). Let E be a set with finite perimeter in
RN . Then there exists a unique finite or countable family of pairwise disjoint
indecomposable sets {Ei}i∈I such that |Ei| > 0 and Pφ(E) =

∑

i Pφ(Ei). More-
over the sets Ei’s are maximal indecomposable sets, i.e. any indecomposable set
F ⊆ E is contained modulo a Lebesgue null set in some set Ei.

In view of the previous Theorem, we call the sets Ei the φ-connected compo-
nents of E.

Proposition 77 (Local Cheeger sets). Assume that φ is continuous and coercive
in Ω. Let u ∈ BVφ(Ω) ∩ L2(Ω, h dx) be the solution of (11.32). Let t ∈ (0, 1] and
Et := {u ≥ t}. Let E′

t be a φ-connected component of Et and Fs = {u ≥ s} ∩E′
t,

s ≥ t. Then for any s ∈ (0, 1] we have

Pφ(Fs)− λ(1− s)|Fs|h ≤ Pφ(F)− λ(1− s)|F |h (11.54)

for any F ⊆ E′
t. If s = maxx∈E′

t
u(x), then Fs is a maximal φ-Cheeger set in E′

t.

The sets Fs will be called local φ-Cheeger sets.

Proof. Let {Ei
s}i∈I be the φ-connected components of Es. Since χEs

=
∑

i χEi
s
,

|χEs
| = ∑

i |χEi
s
|, σ ·DχEs

=
∑

i σ ·DχEi
s
, and

∫

Ω

σ·DχEi
s
−

∫

∂Ω

[σ·νΩ]χEi
s
dHN−1 ≤ Pφ(Ei

s,Ω)+

∫

∂Ω

φ(x, νΩ)χEi
s
dHN−1 = Pφ(Ei

s),

from the extension of (11.50) given in Remark 6 we have that

∫

Ω

σ ·DχEi
s
−

∫

∂Ω

[σ · νΩ]χEi
s
dHN−1 = Pφ(Ei

s),

for any i ∈ I. Now, we can proceed as in the proof of Proposition 69 to get that
(11.54) holds. The last assertion follows as in Propositions 74 and 75.

Recall that, when φ is coercive, by the isoperimetric inequality there is a
constant α > 0 (depending on the domain) such that any φ-Cheeger set has
measure ≥ α. Moreover, the union and intersection of φ-Cheeger sets are φ-
Cheeger [CCN09]. In particular, there are minimal φ-Cheeger sets and there are
finitely many of them [CCN09].

12 Numerical computation of Finsler-Cheeger sets

In this chapter we explain some numerical methods for computing Finsler-
Cheeger sets. On Section 12.1 we describe a finite difference scheme to solve
the PDE (11.31). On Section 12.2 we explain how to compute the level-sets
of (11.53) and their perimeters to the required sub-pixel precision.

12.1 Minimization of the dual problem by finite

differences

In this Section we present an adaptation of Chambolle’s algorithm [Cha04] that
permits to solve a discrete version of (11.31) for some particular instances of
φ(x, ξ). For simplicity, the formulas with discrete indices are restricted to the 2D
case, but they are immediately generalizable to higher dimensions. Let us give
some notations that we use in the sequel, keeping in mind that, for simplicity, we
will denote the discrete functions we use like their continuous counterparts.

Let us consider the discrete domain Ω̂ = {0, 1, . . . , N − 1}2 (more generally,
we could assume that Ω̂ ⊆ {0, 1, . . . , N − 1}2). For convenience, let us denote
Ω̂e the extended domain {−1, 0, . . . , N}2. We denote by U the Euclidean space
R(N+2)×(N+2). Let us give the definition of the discrete gradient which is adapted
to problem (11.31) (which considers Dirichlet boundary conditions). In Section
12.1.2 we shall use Neumann boundary conditions with the definition of the gra-
dient and divergence taken as in [Cha04]. Given u ∈ U its discrete gradient ∇u
will be a vector in V := U × U given by (∇u)i,j =

(

(∇u)1i,j , (∇u)2i,j
)

, (i, j) ∈ Ω̂e,
where

(∇u)1i,j =

ui+1,j − ui,j if (i+1,j),(i,j) ∈ Ω̂

−ui,j if (i+1,j) /∈ Ω̂, (i,j) ∈ Ω̂

ui+1,j if (i+1,j) ∈ Ω̂, (i,j) /∈ Ω̂

0 if (i+1,j),(i,j) /∈ Ω̂,

(12.1)

(∇u)2i,j =

ui,j+1 − ui,j if (i,j+1),(i,j) ∈ Ω̂

−ui,j if (i,j+1) /∈ Ω̂, (i,j) ∈ Ω̂

ui,j+1 if (i,j+1) ∈ Ω̂, (i,j) /∈ Ω̂

0 if (i,j+1),(i,j) /∈ Ω̂.

(12.2)

The above case amounts to say that ui,j = 0 when the indexes are in Ω̂e \ Ω̂.
These definitions of gradient embody the Dirichlet boundary conditions. The
extension of the anisotropy φ to Ω̂e will be made precise in the examples below.
The scalar product and the norm in U are defined as usual and denoted by 〈·, ·〉U
and ‖ · ‖U , but in absence of ambiguities the subindex will be omitted. In V the
scalar product is denoted 〈p, q〉V =

∑

i,j∈Ω̂ p
T
i,j qi,j and the norm ‖p‖V = 〈p, p〉V .

Finally, the divergence is defined so that it verifies 〈p,∇u〉V = −〈div p, u〉U

(div p)i,j =

{

p1
i,j − p1

i−1,j if (i,j) ∈ Ω̂

0 if (i,j) /∈ Ω̂,
+

{

p2
i,j − p2

i,j−1 if (i,j) ∈ Ω̂

0 if (i,j) /∈ Ω̂.
(12.3)

171

172 Chapter 12. Numerical computation of Finsler-Cheeger sets

12.1.1 Example 1: geodesic active contour type models

Let us consider the following generalization of the problem studied by Chambolle
in [Cha04]

min
u∈U,u=0 in Ω̂e\Ω̂

‖(u− f)h1/2‖2U
2

+λ−1Jg(u), where Jg(u) =
∑

(i,j)∈Ω̂e

gi,j |(∇u)i,j |,

(12.4)
f, g, h ∈ U and hi,j > 0 for all (i, j) ∈ Ω̂e. We consider these functions defined

originally in Ω̂ and extended to Ω̂e by specular symmetry. Observe that the
Euler equation of (12.4) is a discretization of (11.31) where φ(x,∇u) = g(x)|∇u|
(discrete case), and where we write ∂ξφ(x,∇u) = g ∇u

|∇u| ,

hu− λ−1div

(

g
∇u
|∇u|

)

∋ hf. (12.5)

As in [Cha04] let us derive the dual formulation for (12.4) by re-writing (12.5) as
hλ(f − u) ∈ ∂Jg(u) which is equivalent to u ∈ ∂J∗

g (hλ(f − u)) where J∗
g is the

Legendre-Fenchel transform of Jg. Writing w = λ(f − u) we have

0 ∈ (w − λf)h+ hλ∂J∗
g (hw) (12.6)

which is the minimizer of the dual problem

min
w∈U

‖h1/2w − b‖2U
2

+ λJ∗
g (hw) with b = h1/2λf. (12.7)

Since Jg is homogeneous, then J∗
g is the indicator function of a convex set Kg

given by

J∗
g (w) =

{

0 if w ∈ Kg

+∞ otherwise
with Kg =

{

−div ξ : ξ ∈ V, |ξi,j | ≤ gi,j ∀(i, j) ∈ Ω̂e
}

.

(12.8)
Therefore we may write (12.7) as

min
hw∈Kg

‖h−1/2hw − b‖2U . (12.9)

Note that any solution hw ∈ Kg, must satisfy hi,jwi,j = −div (gi,jpi,j) with
|pi,j | ≤ 1. Hence we may write (12.9) as

min
p∈V
‖h−1/2div (gp) + b‖2U

s.t. |pi,j |2 − 1 ≤ 0 ∀(i, j) ∈ Ω̂e
(12.10)

and introducing the Lagrange multipliers αi,j for the constraint we obtain the
functional

F(p, α) =
∑

(i,j)∈Ω̂e

|h−1/2
i,j div (gp)i,j+bi,j |2+

∑

(i,j)∈Ω̂e

αi,j(|pi,j |2−1), α ∈ U, p ∈ V.

12.1. Minimization of the dual problem by finite differences 173

Proceeding as in [Cha04] the solution of (12.10) satisfies:

− [g∇(h−1div (gp) + λf)]i,j + αi,jpi,j = 0 ∀(i, j) ∈ Ω̂e. (12.11)

The Karush-Khun-Tucker’s Theorem yields the existence of the Lagrange mul-
tipliers α∗

i,j ≥ 0 for the constraints in (12.11), which are either α∗
i,j > 0 if |pi,j | = 1

or α∗
i,j = 0 if |pi,j | < 1 but in this case also [g∇(h−1div (gp) +λf)]i,j = 0. In any

case α∗
i,j = |[g∇(h−1div (gp) + λf)]i,j |, and substituting it into (12.11) and using

a gradient descent we arrive to the following fixed-point algorithm

pn+1 =
pn + τ

{

g∇[h−1div (gpn) + λf]
}

1 + τ |g∇[h−1div (gpn) + λf]| , (12.12)

where the maximum τ > 0 will depend on the chosen discretization. For the
present scheme, with a straightforward computation [Cha04, ACHR06], one can
show that the method converges if τ < 1

8
1

max |g|2
1

max |h−1/2|2 . At convergence, the

solution is obtained using the formula u = f + λ−1h−1div (gp).
Let us summarize the steps of the algorithm:

Chambolle’s algorithm with Dirichlet boundary conditions:

1. Initialize p0 = 0 ∈ V , q0 = 0 ∈ U and t = 0

2. Iterate until convergence:

a) Compute: pt+1 ← pt+τg∇qt

1+τ |g∇qt|

b) Compute: qt+1 ← h−1div (gpt+1) + λf

3. Recover the solution u = λ−1qt+1

In Step 2(a) pt is updated for (i, j) ∈ Ω̂e, while in Step 2(b) qt may be updated
only for (i, j) ∈ Ω̂ and qt

i,j = 0 ∀(i, j) ∈ Ω̂e \ Ω̂.

Remark 8. Let us check that the solution u obtained from the fixed point
of (12.12) verifies a discrete version of the boundary conditions of Defini-
tion 67. That is, the field σ satisfies (a discrete version of) [σ, νΩ] ∈
sign(−u(x))φ(x, νΩ(x)) where νΩ denotes the outer unit normal to the bound-
ary, and φ(x, νΩ(x)) = g(x). The outer unit normals at the points of the discrete

boundaries take only four possible values νΩ̂ ∈
{

(

1
0

)

,
(−1

0

)

,
(

0
1

)

,
(

0
−1

)

}

, we describe

here just one direction (i.e. the left boundary of the domain).
Thus, let us assume that i = −1 so that we are at the left boundary side.

We check that [gp, νΩ̂](−1, j) ∈ sign(−u0,j)φ((0, j), (−1, 0)t) = sign(−u0,j)g0,j,
which is a discrete way of imposing the boundary condition. Notice that the
fixed point solution p of (12.12) satisfies g−1,jp−1,j∇q−1,j = g−1,j |∇q−1,j | where
q = h−1div (gp) + λf (note as well that σ = gp). At the left side of the boundary
we have ∇q−1,j =

(

q0,j

q−1,j+1−q−1,j

)

(with q−1,j+1−q−1,j = 0 since both pixels are in

Ω̂e\Ω̂). If u0,j > 0, then q0,j > 0. Therefore [gp, νΩ̂](−1, j) = −g−1,j q0,j/|q0,j | =

174 Chapter 12. Numerical computation of Finsler-Cheeger sets

g0,j sign(−u0,j). If u0,j = 0, then [gp, νΩ̂](−1, j) ∈ g0,j sign(−u0,j), since

|[gp, νΩ̂](−1, j)| ≤ g0,j. The computation for the other tree sides of the boundary
can be done in a similar way.

12.1.2 Example 2: An anisotropic diffusion type problem

In this example we consider an anisotropic diffusion problem with Neumann
boundary conditions. The discretization of the gradient and divergence are
the same as in [Cha04]. Let us consider the anisotropic total variation with
φ(x, ξ) = |Axξ|, ∀x ∈ Ω, where Ax is a symmetric and positive definite (hence,
invertible) matrix. As before, the solution of the minimization problem

min
u∈U

‖h1/2(u− f)‖2U
2

+ λ−1Jφ(u) with Jφ(u) =
∑

0≤i,j≤N−1

φ((i, j),∇u(i, j))

is obtained via its dual formulation

min
w∈U

‖h1/2w − h1/2λf‖2U
2

+ λJ∗
φ(hw) with w = (f − u)λ. (12.13)

Since Jφ is homogeneous, then J∗
φ is the characteristic function of a set Kφ which

we will characterize next. Following [AB94] we have Kφ = {−div ξ∗ : φ0(x, ξ∗) ≤
1}, where

φ0(x, ξ∗) =

0, if ξ∗ = 0
+∞, if ξ∗ /∈ Z⊥

x

sup
ξ:φ(x,ξ)≤1

〈ξ, ξ∗〉, if ξ∗ ∈ Z⊥
x \ {0},

with Zx = {ξ : φ(x, ξ) = 0} = {ξ : |Axξ| = 0}. Since Ax is symmetric and
invertible, then Zx = {0} and Z⊥

x = Rn. Since the second condition is empty, and
supξ:|Axξ|≤1〈A−1

x Axξ, ξ
∗〉 = |A−1

x ξ∗|, then φ0(x, ξ∗) ≤ 1 if and only if ξ∗ = Axp
with |p| ≤ 1. We get that

Kφ = {−div ξ∗(x) : ξ∗(x) = Axp(x), |p(x)| ≤ 1,∀x ∈ Ω}.

This allows to write the problem (12.13) as

min
p(x):|p(x)|≤1

‖h−1/2div (Axp(x)) + h1/2λf‖2U (12.14)

and derive the following fixed point algorithm

pn+1 =
pn + τ

{

Ax∇[h−1div (Axp
n) + λf]

}

1 + τ |Ax∇[h−1div (Axpn) + λf]| . (12.15)

At convergence, the solution is obtained using the formula u = f +
λ−1h−1div (Axp). For applications to image diffusion it is more adequate the
use of Neumann boundary conditions, which are imposed by adapting the defini-
tions of the gradient and divergence as in [Cha04].

12.2. Numerical computation of Finsler-Cheeger sets 175

12.2 Numerical computation of Finsler-Cheeger sets

The numerical scheme described above produces a function u which is a solution
of the PDE (11.31). By Proposition 69, the level sets of u are global minima of
the anisotropic φ-perimeter with an inflating force. And the regional maxima of
u are local φ-Cheeger sets in a suitable domain containing them.

In this Section we describe a method for finding these local φ-Cheeger sets.
We want to define local extrema of a function Pφ(·)/|·| which is defined on the
set of all connected components of upper level sets of an image u. To fix ideas,
let us assume that N = 2. Then we have to examine the connected components
of the upper level sets {u > t}, t ∈ (0, 1], of the solution u of (11.31). The
φ-Cheeger set is defined by {u = ‖u‖∞} but due to the floating point operations
we cannot proceed to a direct computation of this set. Instead we take the
φ-Cheeger set as the minimum of t → Pφ({u > t})/|{u > t}| with a suitable
discretization of the variable t. Similarly, to compute the local φ-Cheeger sets
we use the tree of connected components of upper level sets of the image (see
[MG00, CM10] and the first part of this thesis) and look for the local minima
of Pφ(cc{u > t})/|cc{u > t}| where cc{u > t} denotes a connected component of
{u > t}. Thanks to the topological structure of the tree of connected components
of upper level sets, we can speak of local extrema of functions defined on that
set. Intuitively, a neighborhood of Γt = cc{u > t} consists in those connected
components of upper level sets whose levels are slightly above or below the level
of Γt.

Let us explain how to compute the weigthed perimeter and volume of a given
level set. Then we will show how to use this computation to obtain an efficient
algorithm to find the connected components of the upper level sets which are
local minimizers of the φ-Cheeger ratio. When φ is of the form φ(x, ξ) = g(x)|ξ|,
we will use the expression g-Cheeger set.

12.2.1 Sub-pixel computation of weigthed perimeters and
areas

Notice that it is not trivial to compute the perimeter of a set which is defined
by pixels or voxels. The naive approach of counting the voxels which touch
the boundary of the region does not work, mainly because this quantity is not
invariant by rotations. There are two common solutions to this problem: ap-
proximate the perimeter using integral geometric measure techniques as in graph
cuts [BK03] or approximate the ragged boundary of the set by a smoother sur-
face and compute its perimeter. We found the second option best suited to our
needs because, as the goal is to compute perimeters of level sets, we can produce
high-resolution approximations of their boundaries by methods such as Marching
Cubes or Marching Squares [LC87]. Once we have a triangulated surface, we
can compute its weighted perimeter by adding the areas of all triangles, each one
multiplied by the weight φ interpolated at the barycenter of each triangle.

To test the consistency and precision of this scheme, let us consider a spherical
image u(x) = f(|x− x0|) whose profile f is an increasing function from [0,+∞)

176 Chapter 12. Numerical computation of Finsler-Cheeger sets

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

F(
t)

t

approximated F(t)
analytic F(t)

Figure 12.1: Numerical evaluation of 1
|∇I| -Cheeger ratios for a synthetic image

where they can also be computed analytically. The image is given by the model
in (12.16) with κ = 8 and s = 1. Left: graphs of the exact and computed F (t)
for that image. Right: interpolated level curve at which the minimum of F (t)
is attained, overlaid on the original image. This example has a very low reso-
lution (the original image has dimensions 31 × 31. For higher resolutions the
approximation is nearly perfect and the two curves F (t) are visually identical.

to [0, 1). For each t in (0, 1), the level set of value t is a sphere of radius r(t) =
f−1(t) centered at x0, and this surface is weighted by 1

|∇u| = 1
f ′(r(t)) = r′(t). The

1
|∇u| -Cheeger ratio is then

F (t) =
NVNr

N−1r′

VNrN
= N

r′(t)

r(t)
,

where VN is the volume of the unit ball of RN . This function F (t) is a real-valued
function whose minimum can be evaluated numerically, or even analytically in
some easy cases.

We can set, for example,

f(x) =
1

1 + exp κ−x
s

, (12.16)

where κ and s are parameters, such as κ = 8 and s = 0.1. Intuitively, the desired
segmentation of this image is a circle of radius κ ± s, or equivalently some level
set of value near t = 1

2 . On Figure 12.1, we compare the graphs of the 1
|∇u| -

Cheeger ratio over t as computed analytically and with the numerical methods
described above. The minima is in both cases attained very near t = 1

2 which
agrees with our intuition and suggests that the numerical approximations we use
are consistent.

As another numerical test, we computed the Euclidean Cheeger set of a square
and a cube (using the Euclidean metric). See Figures 12.2 and 12.3 for the
plausible result obtained.

The discrete images u are obtained by an iterative numerical method, and they
have floating point values. Most of the values are concentrated around 1, with

bulk_tex/sections_cheegers/images/fcocanaly_comp.eps
bulk_tex/sections_cheegers/images/fcocanaly_che.eps

12.2. Numerical computation of Finsler-Cheeger sets 177

12.858 12.960 12.949 12.961

Figure 12.2: Computation of the Euclidean Cheeger sets (black regions) for a
square of 50 pixels. For the square the analytical Cheeger set is known (dashed
line) and its constant is 1/13.253 (for readability we display the inverse of the
Cheeger constant). The first column shows the results obtained with the Cham-
bolle’s numerical scheme [Cha04], observe that it is asymmetric. The second
solution is obtained by increasing the sampling (as proposed by Chambolle), this
improves considerably the solution, but the asymmetry persists. The third col-
umn shows a symmetric solution obtained by averaging all the numerical schemes
(4 in 2D). The fourth solution is obtained using the consensus algorithm. All the
results where obtained after 20000 iterations of (12.12).

 0

 0.05

 0.1

 0.15

 0.2

 0.7 0.75 0.8 0.85 0.9 0.95 1

F(
t)

t

Cheeger ratio F(t)

Figure 12.3: Cheeger set of a cube. This was computed by Euclidean total
variation minimization of the characteristic function of the cube, followed by the
selection of the level surface that minimized the Cheeger ratio. On the left, graph
of F (t). Notice that for large values of t, the level sets collapses to a central point
of the domain, so that its Cheeger ratio is much larger than the optimum.

bulk_tex/sections_cheegers/images/symmetrycheeger0.eps
bulk_tex/sections_cheegers/images/symmetrycheeger02xs.eps
bulk_tex/sections_cheegers/images/symmetrycheegerSum.eps
bulk_tex/sections_cheegers/images/symmetrycheegerSym.eps
bulk_tex/sections_cheegers/images/fcocs_cheegercube.eps
bulk_tex/sections_cheegers/images/fcocchecubeF.eps

178 Chapter 12. Numerical computation of Finsler-Cheeger sets

the interesting part of the range being often contained in the interval [0.99, 1].
Thus, it is important to conserve their floating-point values. This implies that
there are as many different level surfaces as pixels, one for each different floating-
point value. But it is not necessary to compute the φ-Cheeger ratio of all of these
surfaces: via dichotomic search we can efficiently locate the minimum.

Remark 9. On the symmetry of the numerical scheme. In Figure 12.2 we show
an example of Cheeger set determined with the method described above. Observe
that the first solutions are asymmetric, this effect is particularly clear (and an-
noying) for small images (the first square is 50 pixels high) and it is due to the
forward/backward scheme adopted to discretize the gradient (12.1). In [Cha04]
the author remarks that the finite difference scheme converges to the continuous
formulation as the number of samples N → ∞, but when applied to volumet-
ric images increasing the sampling is not an affordable option. To maintain the
symmetry of the solutions, we propose the consensus algorithm, which computes
the mean solution of all the finite difference schemes (4 schemes in 2D, and 8
in 3D) at each iteration. The consensus algorithm outperforms the considered
schemes while keeping the symmetry but it is 4 times slower than the standard
finite differences scheme (or 8 times slower for 3D images).

12.2.2 Computing the minimum of the geodesic active
contour model with an inflating force

Given an image I : Ω → R, let us consider the following formulation of geodesic
active contour (GAC) with an inflating force

min
E⊆Ω

Pg(E)− µ|E|h µ > 0, (12.17)

where Pg(E) is a weighted perimeter with weights g(x) = (
√

1 + |∇(G ∗ I)|2)−1,
|E|h =

∫

E
h(x) dx is the weighted area, and µ is a parameter that controls the

balloon force. In Proposition 69 we have shown that if u is the solution of the
problem (11.32), then Es := {u ≥ s}, s ∈ (0, 1], is a global minimum of (12.17)
with µ = λ(1 − s). In particular, if λ > CΩ (the g-Cheeger constant) then the
set {u = ‖u‖∞} is the g-Cheeger set of Ω. Therefore to compute the solutions of
(12.17) it suffices to solve the problem (11.32) for some λ > µ, or, equivalently,
to find u by solving

hu− λ−1div

(

g
Du

|Du|

)

= h. (12.18)

The solution of (12.18) is computed using the scheme proposed by Chambolle
[Cha04] and described in Section 12.1.2 (with f = χΩ). For λ big enough, for all
values of µ > 0, the solutions of (12.17) can be found as the level sets of u. In
practice we select the g-Cheeger set as the upper level set of u that minimizes

min
Γ⊆Ω

Pg(Γ)

|Γ|h
,

where the minimum is taken over the upper level sets of u.

12.2. Numerical computation of Finsler-Cheeger sets 179

12.2.3 Three ways to approximate the Cheeger ratio.

Given an image of pixels (or voxels), there are three natural ways to compute the
1

|∇I| -perimeters of its level sets. In increasing order of precision, they are:

1. Substract the discrete areas of two nearby level sets, and divide by the
gray-level increment (according to equation 14.3 of next chapter).

2. Substract the sub-pixelic areas as found by a triangulation of the level sets.

3. Compute perimeter of the triangulated boundary, pointwise weighted
by 1

|∇I| .

The first method is straightforward to implement, and does not even need com-
puting gradients: simply counting pixels of bi-level sets. However, it is very
imprecise due to the heavy discretization (Figure 12.4). This method is useful
when local minimizers of the Cheeger ratio are used as affine invariants for object
detection, as described on the next chapter. The third method is the most precise
(Figure 12.5) and is useful when an exact smooth Cheeger set is required. It is
also useful to increase the precision and robustness of the affine invariants, at the
cost of a slight increase of computation time.

See Figures 12.4 and 14.2 for a comparison of these methods and their results.

Figure 12.4: A synthetic image, and the pixels belonging to a central bi-level set.
The count of these pixels is a rough estimate of the area between two level lines.

bulk_tex/sections_chepart/f/smalldisk_orig.eps
bulk_tex/sections_chepart/f/smalldisk_pixels.eps

180 Chapter 12. Numerical computation of Finsler-Cheeger sets

Figure 12.5: Comparison of Cheeger vs Matas approximations for the synthetic
image on figure 14.2.

bulk_tex/sections_chepart/f/oupiee.eps

13 Applications of Finsler-Cheeger sets

On this chapter we expose several experiments that make use of the numerical
methods for computing Finsler-Cheeger sets.

13.1 Framework for the applications

We have used the theory above in two different ways, corresponding to different
choices of a metric integrand g. The first choice is g(x) = (

√

ǫ+ |∇(G ∗ I)|2)−1,
where ǫ is a scale parameter and G is a small convolution kernel. The second
choice is the distance function to the set of edge points detected by a preprocessing
of the image, that is g = dS , where S is the set of edges of u. We label these
two cases respectively 1

|∇I| -Cheeger sets and dS-Cheeger sets. We observe that

the convergence of the iterative scheme to solve the PDE is much faster for
dS-Cheeger sets, and the result is less likely to miss parts of the image. On the
other hand, the computation of 1

|∇I| -Cheeger sets gives smooth results after a

long time, and sometimes misses parts of the desired objects, or fails to break
at holes. The choice of a subdomain B ⊆ Ω allows for some flexibility: we can
enforce hard restrictions on the result by removing from the domain some points
that we do not want to be enclosed by the output surfaces.

Notice that, for a given choice of g, we actually find many local g-Cheeger sets,
disjoint from the global minimum, that appear as local minima of the g-Cheeger
ratio on the tree of connected components of upper level sets. The computation
of those sets is partially justified by Proposition 77. Notice that the assumptions
in it do not cover the case where g vanishes. These are the sets which we show
on the following experiments.

13.2 Segmentation and edge linking

2D images On Figure 13.1, we display some local g-Cheeger sets of 2D images
for different choices of metric g. These experiments are equivalent to applying the
model (12.17) to edge linking problems. As in [Coh91] the inflating force allows
to link the pieces of the boundaries of the objects. We display in Figure 13.1
some 2D linking experiments, that show how the dS-Cheeger set indeed links the
edges. Let us remark here a limitation of this approach, that can be observed in
the last subfigure. Even if this linking is produced, the presence of a bottleneck
(bottom right subfigure) makes the dS-Cheeger set to be a set with large volume.
This limitation can be circumvented by adding barriers in the domain Ω.

Synthetic 3D image The first 3D example is a synthetic image built in the
following way. We have taken the characteristic function of a slanted torus plus
a linear function and then added some blurring and gaussian noise to the result.
Some slices and a level surface of this image are shown on the left subfigure of
Figure 13.2. The first experiment with this synthetic image has been to segment

181

182 Chapter 13. Applications of Finsler-Cheeger sets

it using the 1
|∇I| -Cheeger set of the image domain. This gives a reasonable seg-

mentation of the object, as shown on Figure 13.2. The second experiment with
this synthetic image has been to perform edge linking. We have taken the output
of an edge detector [DMM01, MZFC09] to it, and used the distance function to
the set of edges as a metric. The dS-Cheeger set of the image domain is a surface
that correctly interpolates the given patches. We can observe that the result of
the edge linking has a ragged appearance. On Figure 13.3 we display the input
edges, the corresponding metric and the final result.

Real 3D CT image The first real 3D example is based on a Computed Tomog-
raphy of cerebral arteria containing an aneurysm. We have tried both 1

|∇I| and dS

metrics (where S is computed, as before, by an edge detector). The results are
visually similar. Noticing that both methods give an incorrect segmentation on
a small part of the image (at the neck of the aneurysm), we have forced a correct
segmentation by manually marking some voxels, as in the rightmost column on
Figure 13.1. Thus, instead of computing the φ-Cheeger set of the image domain,
we have computed the φ-Cheeger set of the image domain minus some manually
selected voxels. On Figure 13.5 we display the results.

Real 3D MR image The second real 3D example is an edge linking experiment
coming from a Magnetic Resonance image. This is a very low-resolution image,
where the thin vessels have a width of one voxel. An edge detector correctly finds
most of the vessels (in several different connected components). We show the
best six local dS-Cheeger sets of this image on Figure 13.7.

We have used the theory above in two different ways to segment some images,
they amount to different choices of a metric integrand g. The first choice is the
inverse of the gradient of the original image g = 1

|∇I| and the second choice is

the distance function to the set of edge points deteced by a preprocessing of the
image, that is g = dS , where S is the set of edges of u. We label these two
cases respectively gradient Cheegers and distance Cheegers. We observe that the
evolution of PDE is much faster for distance Cheegers, and the result is less
likely to miss parts of the image. On the other hand, gradient Cheegers are give
smooth results after a long time of computation, and sometimes miss parts of the
desired objects, or fail to break at holes.

13.3 Diffusion and colorization

Consider the anisotropic diffusion problem formulated as

min
u∈X

‖πZu− f‖2
2

+ λ−1Jφ(u), (13.1)

where πZ is the orthogonal projection onto a set Z ⊂ X, and f ∈ Z. The
regularizer Jφ(u) =

∫

Ω
φ(x,∇u(x)) is defined so that the diffusion is constrained

to the geometry (given by the level lines) extracted from a reference image I. We

13.3. Diffusion and colorization 183

Figure 13.1: Geodesic active contours as g-Cheeger minimizers. The first
row shows the images I to be processed. The second row shows the weights
g used for each experiment (white is 1, black is 0), in the first two cases
g = (

√

1 + |∇(G ∗ I)|2)−1, for the third g = 0.37(
√

0.1 + |∇(G ∗ I)|2)−1 and
for the linking experiments g = dS , the scaled distance function to the given
edges. The third row shows the disjoint minimum g-Cheeger sets extracted from
u (shown in the background), there are 1,7,2,1,1 and 1 sets respectively. The
last linking experiment illustrates the effect of introducing a barrier in the initial
domain (black square).

Figure 13.2: Pipeline for computing 1
|∇I| -Cheeger sets, applied to a synthetic 3D

image. From left to right: slices of the original image I, slices of the metric g =
1

|∇I| , and 1
|∇I| -Cheeger set of the image domain.

bulk_tex/sections_cheegers/images/sgb2_1sgb.eps
bulk_tex/sections_cheegers/images/tac5_1simpleEx_init.eps
bulk_tex/sections_cheegers/images/isc4_1isc_small.eps
bulk_tex/sections_cheegers/images/linking5gap3.eps
bulk_tex/sections_cheegers/images/linking3gap1.eps
bulk_tex/sections_cheegers/images/linking4-hardgap4b.eps
bulk_tex/sections_cheegers/images/sgb2_1g.eps
bulk_tex/sections_cheegers/images/tac5_1g.eps
bulk_tex/sections_cheegers/images/isc4_1g.eps
bulk_tex/sections_cheegers/images/linking5wdist.eps
bulk_tex/sections_cheegers/images/linking3wdist.eps
bulk_tex/sections_cheegers/images/linking4-hardwdist21.eps
bulk_tex/sections_cheegers/images/sgb2_1tv_solG.eps
bulk_tex/sections_cheegers/images/tac5_1tv_solG.eps
bulk_tex/sections_cheegers/images/isc4_1tv_solG.eps
bulk_tex/sections_cheegers/images/linking5sol.eps
bulk_tex/sections_cheegers/images/linking3sol.eps
bulk_tex/sections_cheegers/images/linking4-hardout4_cheG.eps
bulk_tex/sections_cheegers/images/linking4-hardout3_cheG.eps
bulk_tex/sections_cheegers/images/fcocpipe3d_orig_slice.eps
bulk_tex/sections_cheegers/images/fcocpipe3d_gradient_slice.eps
bulk_tex/sections_cheegers/images/fcocs_torito_gradient_opt.eps

184 Chapter 13. Applications of Finsler-Cheeger sets

Figure 13.3: Pipeline for computing dS-Cheeger sets, applied to the same syn-
thetic image as in Figure 13.2. From left to right: detected 3D edges S, slices of
the metric g = dS , and dS-Cheeger set of the image domain.

 0.01

 0.015

 0.02

 0.025

 0.03

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

cheeger ratio

Figure 13.4: Left: Graph of the 1
|∇I| -Cheeger ratio F (t) for the input image

“torus”. See Right: Superposition of the three level sets shown, corresponding to
the interesting points of F (t) (the two minima and the cusp). To see the inner
surfaces, the display is clipped near the central singularity. Notice that these
level surfaces are all local minima of the classical geodesic snakes functional with
an inflating force, for different weights of the inflating force.

bulk_tex/sections_cheegers/images/fcocpipe3d_edges.eps
bulk_tex/sections_cheegers/images/fcocpipe3d_edges_distance_slice.eps
bulk_tex/sections_cheegers/images/fcocs_torito_distance_opt.eps
bulk_tex/sections_cheegers/images/fcoccheeger_ratio_of_gradient_torito.eps
bulk_tex/sections_cheegers/images/fcoctorito_gradient_sup.eps

13.3. Diffusion and colorization 185

Figure 13.5: Computation of 1
|∇I| -Cheeger sets of the CT image. From left to

right: 1. dS-Cheeger set of the whole image domain. 2. dS-Cheeger set of the
image domain minus some manually selected voxels at the neck of the aneurysm.
3. 1

|∇I| -Cheeger set of the whole image domain. 4. 1
|∇I| -Cheeger set of the image

domain minus some manually selected voxels at the neck of the aneurysm.

Figure 13.6: Three level surfaces of the solution u of 1
|∇I| -total variation minimiza-

tion. The central surface is the 1
|∇I| -Cheeger set of the image domain according

to this active-contours-like metric. The other two surfaces have a higher 1
|∇I| -

Cheeger ratio and appear as local extrema of an active contour with appropriate
inflating force. In this figure, the image domain is split so that the innermost
surfaces can be seen. Notice that the inner surface, having a higher level t, is
farther than the others. This indicates the concentration of values around the
maximum 1.

bulk_tex/sections_cheegers/images/fcocs_cta_distance_opt.eps
bulk_tex/sections_cheegers/images/fcocs_cta_distance_opt_h.eps
bulk_tex/sections_cheegers/images/fcocs_cta_gradient_opt.eps
bulk_tex/sections_cheegers/images/fcocs_cta_gradient_opt_h.eps
bulk_tex/sections_cheegers/images/fcoccta_u_threelevels.eps

186 Chapter 13. Applications of Finsler-Cheeger sets

Figure 13.7: These two Figures display the best six local dS-Cheeger sets of the
MR image, labelled, and from different points of view.

define for example φ(x, ξ) = |Axξ| where Ax is a matrix that embodies knowledge
about the boundaries of the objects in I. A common example in 2D corresponds

to Ax = V (x)⊥ ⊗ V (x)⊥ with V (x) = ∇I(x)√
1+|∇I(x)|2

. This example favors the

diffusion along to the level lines of I. In low gradient (flat) zones the previous
definition can be relaxed to allow diffusion across the level lines (as depicted in
Figure 13.8) in a way inversely proportional to the modulus of the gradient. In
that case, we may take Ax = V (x)⊥ ⊗ V (x)⊥ + 1√

1+|∇I(x)|2
V (x) ⊗ V (x), where

V (x)⊥ denotes the counterclockwise rotation of V (x) of angle π
2 . Notice that by

the structure of Ax we could also take the clockwise rotation.
We will solve (13.1) by adapting the zoom algorithm proposed in [Cha04]. Ob-

serving that ‖πZu−f‖ = minw∈Z⊥ ‖u−(f+w)‖, then (13.1) can be reformulated
as

min
u∈X,w∈Z⊥

‖u− f − w‖2
2

+ λ−1Jφ(u), (13.2)

which is solved by alternate minimization with respect to u and w. The first
minimization is done by the algorithm described in Section 12.1.2: un = (f −
wn)−πKφ

(f−wn), and the second one consists in a projection over Z⊥ : wn+1 =
πZ⊥(un − f).

13.3.1 Experiments (diffusion)

The scheme presented earlier for solving (13.2) can be applied in a variety of diffu-
sion problems like: image colorization [LLW04], or to the interpolation of sparse
height data in a digital elevation model [FLA+06]. In any of those cases, there
are better algorithms to perform the task. For us they serve as an illustration of
the proposed methods.

In the case of colorization and interpolation, Z is defined as Z = {χΓ f : f ∈
X} where Γ ⊆ Ω is a subdomain of the image where the values are known, the
reference image I : Ω→ R is used to compute the field V (x) to guide the diffusion
of these values. For the colorization experiment shown in Figure 13.9 the result
is computed in Y UV color space, where Y is the input luminance channel, and

bulk_tex/sections_cheegers/images/fcocs_mri_linking_local_all_labels.eps
bulk_tex/sections_cheegers/images/fcocs_mri_linking_local_all_rotated_labels.eps

13.3. Diffusion and colorization 187

Figure 13.8: Anisotropic diffusion directions for a synthetic image (background).
The plotted ellipses correspond to the tensor field Ax = V (x)⊥ ⊗ V (x)⊥ +

1√
1+|∇I(x)|2

V (x) ⊗ V (x) with V (x) = ∇I(x)√
1+|∇I(x)|2

, the orientation and widths

of the ellipses reflect the preferred direction of the diffusion.

Figure 13.9: Colorization. From left to right, scribbled image, the known values
of the U channel (20% of the image), diffusion in the U channel, and colorized
result using the reference Y channel (not shown).

the chromatic channels U and V are interpolated with (13.1), where the field

V (x) = ∇I(x)√
1+|∇I(x)|2

restricts the diffusion to the geometry of I.

The last example concerns the interpolation of urban digital elevation models
(see Figure 13.10). In this case the datum f is known only at sparse locations,
and it is provided by a stereo sub-pixel correlation algorithm [SAM08] (which
also provides an estimation of the measure’s variance Err). The reference image
of the stereo pair is used as geometric constraint for the interpolation, and the
variability Err is used to normalize the data fitting by adapting the spatial met-
ric h(i, j)1/2 = 1/Err(i, j). In Figure 13.10 we compare this method with the
anisotropic minimal surface interpolation described in [FLA+06].

bulk_tex/sections_cheegers/images/diffusionTensordiffusionTensor2.eps
bulk_tex/sections_cheegers/images/colorizekidexample_marked.eps
bulk_tex/sections_cheegers/images/colorizekidU.eps
bulk_tex/sections_cheegers/images/colorizekidk1.eps
bulk_tex/sections_cheegers/images/colorizekidcc.eps

188 Chapter 13. Applications of Finsler-Cheeger sets

Figure 13.10: Disparity interpolation in an urban digital elevation model. From
left to right, the reference image of the stereo pair, and the incomplete data
set computed with [SAM08] (30% of the image) where each point’s graylevel
represents the height (darker is higher, mid gray is unknown). The interpolation
obtained with the minimal surface interpolation [FLA+06] (RMSE 0.239 when
compared with the ground truth) and with the proposed algorithm (RMSE 0.190).
The minimal surface model [FLA+06] recovers the slanted surfaces better than
total variation, however the latter is better at approximating the geometry near
jumps.

bulk_tex/sections_cheegers/images/colorizedem3ref_crop.eps
bulk_tex/sections_cheegers/images/colorizedem3initial_crop.eps
bulk_tex/sections_cheegers/images/colorizedem3result_anisotropic2_crop.eps
bulk_tex/sections_cheegers/images/colorizedem3res_TV_crop.eps

14 Appropriate setting for Maximally Stable Extremal

Regions

This Chapter contains an interpretation of MSER in terms of Finsler-Cheeger
sets, when the Cheeger ratio is minimized restricted to the sets contained in the
tree of shapes of the image. The metric is taken from the image contents. In
the end, we prove affine invariance of the MSER features using elementary linear
algebra.

14.1 Overview

Maximally Stable Extremal Regions of images were introduced in [MCUP04] in
a graph-theoretic context. They are defined for discrete and quantized gray-scale
images. If Q1 ⊆ · · · ⊆ Qn is a sequence of consecutive1 upper or lower level sets of
the image, thenQi is called an stable region when F (i) < min (F (i− 1), F (i+ 1)),
where

F (i) :=
|Qi+δ| − |Qi−δ|

|Qi|
(14.1)

and δ is a fixed, arbitrary, small positive integer. This original definition was
proposed on the grounds that it gives curves which are both meaningful and ro-
bust, but without further mathematical explanation. Here we give an alternative
interpretation of these curves in a continuous setting, where they turn out to be
the Cheeger sets of the image domain with an appropriate metric, restricted to
the tree of shapes of the image. Then we recover the original definition of Matas
et al. as a discrete approximation of the continuous version.

This approach overcomes three theoretical shortcomings of the original def-
inition of stable regions. The first problem is an ambiguity in the definition,
because the set of Qi need not be a chain (that is, it may happen that Q1 ⊆ Q3

and Q2 ⊆ Q3 while Q1 ∪ Q2 = ∅). The second problem is that the distance be-
tween the gray levels of the Qi is not taken into account2, so that the method is
strictly contrast-invariant, even under highly non-linear contrast changes which
create or remove visually obvious edges. The third problem is the seemingly arbi-
trary choice between upper or lower level sets. We will explain why each of these
three issues does not arise as practical problems of the original implementation,
which is quite robust.

14.2 Definition of MSER over an arbitrary tree

14.2.1 Trees of regions and shapes.

We want to define local extrema of a function which is defined on the set of
level curves. Thus, we have to turn this set into a topological space. There

1that is, whose levels are contiguous in the quantized set of values
2this problem arises as a confusion on whether the i inside Qi indexes gray levels or level

sets within an inclusion chain

189

190 Chapter 14. Appropriate setting for Maximally Stable Extremal Regions

are three ways to do that, depending on the precise definition we use of “level
curves”: as boundaries of upper level sets, as boundaries of lower level sets or
as outer boundaries of upper and lower level sets, where the orientation is taken
with respect to an arbitrary fixed point p∞ ∈ Ω. We will not give the precise
definition of these topological spaces, but we will describe its points and explain
their main properties.

Definition 78. If A ⊆ RN and x ∈ RN , let us denote by cc(A, x) the connected
component of A that contains x, if any, or the empty set otherwise. Let Ω be
an N -dimensional rectangle and let u : Ω→ R. The upper tree of u is the set of
connected components of upper level sets of u:

ULT(u) := {cc([u ≥ λ] , x) : x ∈ Ω, λ ∈ R}

The lower tree of u is the set of connected components of lower level sets of u:

LLT(u) := {cc([u < λ] , x) : x ∈ Ω, λ ∈ R}

The tree of shapes of u is the set of saturations of the upper and lower trees:

TOS(u) := {Sat(S, p∞) : S ∈ ULT(u) ∪ LLT(u)}

where Sat(A, x) := Ω \ cc(Ω \A, x) and p∞ is an arbitrary fixed point of Ω.

Each one of these three trees can be naturally endowed with a topological
structure that turns it into a cell complex of dimension 1 without cycles, that
is, a tree. This means two things: First, that the neighborhoods of these topo-
logical spaces are homeomorphic either to an open interval of R or to a disjoint
union of n 6= 2 intervals of the form [0, ǫ) with the zeros glued. Second, that
they have no sub-space homeomorphic to S1. See Figures 14.1 and 14.2. The
topologies of ULT(u) and LLT(u) are defined from that of Ω by taking the quo-
tient by an equivalence relation. The topology of TOS(u) is defined by projection
from ULT(u) and LLT(u) through Sat. In the smooth case when u is a Morse
function, the (unrooted) Tree of Shapes is also called the Reeb Graph of Ω,
and its topology can be defined as the quotient of Ω bye the equivalence rela-
tion x ≡ y ⇐⇒ u(x) = u(y). The full details of these constructions are described
elsewhere [Ree46, BCM03], or on Part I of this thesis, Chapter 3.

The advantage of using TOS over either ULT or LLT is that the elements
of TOS have no holes. This means that their boundaries can be represented by
connected curves or surfaces. On the contrary, the boundaries of elements of ULT
and LLT may have several connected components. For that, we believe that the
tree of shapes is the appropriate framework for generalizing Matas’ stable regions.

14.2.2 Continuous generalization of Stable Regions

Now we can define the continuous generalization of Stable Regions. We give three
versions of the definition, one for each of the trees defined above.

14.2. Definition of MSER over an arbitrary tree 191

Figure 14.1: Some possible neighborhoods of the tree of shapes as a topological
space. Each point of this space is a level set. The highlighted points represent,
from left to right, a local extremum, a level curve through a saddle point, and
the general case: a nonsingular level curve.

Figure 14.2: A synthetic image and its tree of shapes. The points on the large
branch correspond to the level curves that surround the disk on the image. The
two clusters of small branches correspond to the noise inside and outside the disk.

Definition 79. Let u : Ω→ R be an image and let T be any of the spaces ULT(u),
LLT(u), TOS(u). We define the Cheeger ratio associated to this data as the
following real-valued function on T :

F (E) =

∫

∂E
g dHN−1

∫

E
f dHn

where f and g are nonnegative real-valued functions on Ω. The local Cheeger
level sets of u are the local minimizers of F (E).

Remark 10. The definition above makes sense because T is a topological space
on which we can take neighborhoods of its points E. Furthermore, each E is a
subset of Ω which has well-defined boundary ∂E, so that the integrals above are
well-defined.

bulk_tex/sections_chepart/f/cellcomplex.eps
bulk_tex/sections_chepart/f/tos_image.eps
bulk_tex/sections_chepart/f/tos_image_tree_rasterg.eps

192 Chapter 14. Appropriate setting for Maximally Stable Extremal Regions

Remark 11. If E ∈ ULT(u) or E ∈ LLT(u) then ∂E may have several connected
components. This case was not discussed on [MCUP04] and its treatment is
ambiguous. On the other side, the construction of TOS(u) guarantees that the
boundaries of its elements are connected.

Figure 14.3: Comparison of local Cheeger sets restricted to ULT, LLT and TOS
for a real 2D image.

Figure 14.4: Comparison of local Cheeger sets restricted to ULT, LLT and TOS
for a synthetic 2D image.

14.3 MSER are Finsler-Cheeger sets

14.3.1 Recall of the co-area formula.

Subtracting the areas enclosed by two contiguous level curves gives an approx-
imation of their boundary length (see Figure 14.5). More precisely, it is an ap-
proximation of the length multiplied by the separation between the curves, which
is 1/|∇u|. This intuition is formalized by the following special case of the co-area
formula [EG92a], for smooth u ∈ C∞:

|u < b| − |u < a| =
∫ b

a

[

∫

{u=λ}

1

|∇u|dH
N−1

]

dλ (14.2)

which after the application of the mean-value Theorem becomes

|u < b| − |u < a| = (b− a)
∫

{u=λm}

1

|∇u|dH
N−1 (14.3)

bulk_tex/sections_chepart/f/lena_msup.eps
bulk_tex/sections_chepart/f/lena_minf.eps
bulk_tex/sections_chepart/f/lena_msha.eps
bulk_tex/sections_chepart/f/ptwoblobs_msup.eps
bulk_tex/sections_chepart/f/ptwoblobs_minf.eps
bulk_tex/sections_chepart/f/ptwoblobs_msha.eps

14.3. MSER are Finsler-Cheeger sets 193

Figure 14.5: The separation between two nearby level curves of u is approximated
to first order by 1

|∇u| . The co-area formula (14.3) states that the area enclosed

between them equals their length weighted by this separation.

for some λm ∈ [a, b]. The same relation holds for upper level sets, changing the
order of a and b.

Differentiating equation (14.2) with respect to b we get

∂

∂λ
|u < λ| =

∫

{u=λ}

1

|∇u|dH
N−1 (14.4)

which is an interesting relation. For instance, it allows to succinctly characterize

local minimizers of the 1
|∇I| -Cheeger ratio by the relation ∂2

∂λ2 |u < λ| = 0.

14.3.2 MSER are Cheegers

Equation (14.3) above bears a strong resemblance to the numerator on defi-
nition (14.1). Indeed, both expressions involve differences of areas enclosed
by nearby level lines. We can put them into exact correspondence, by noting
that the gray level λ is a monotone function λ(i) of the indices i on (14.1).
Thus, |Qi| = |u < λ(i)| and the Matas ratio can be written as

F (i) = (λ(i+ δ)− λ(i− δ))
∫

{u=λm}
1

|∇u|dHN−1

|u < λ(i)| (14.5)

for some λm ∈ [λ(i− δ), λ(i+ δ)].
This last expression could be used to approximate the Matas ratio F (i), but we

will not do that. Instead, we start from the 1
|∇u| -weigthed Cheeger ratio F (u;λ):

F (u;λ) =

∫

{u=λ}
1

|∇u|dHN−1

|u < λ| . (14.6)

and afterwards we observe that (14.5) can be understood as an approximation
of (14.6) (and not the other way round).

In what sense is F (i) an approximation of F (u;λ(i))? Well, notice that in
an ideal case, all the possible gray levels appear and then λ(i) = i, and λ(i +

bulk_tex/sections_chepart/f/diffareas.eps

194 Chapter 14. Appropriate setting for Maximally Stable Extremal Regions

δ)− λ(i− δ) = 2δ is a constant factor that does not matter in the minimization.
Then, taking te value of δ to be small enough, we can use the 14.4 to obtain the
desired approximation.

This approximation is affected by two different types of error: the quanti-
zation of the gray levels and the discretization of the areas. On the figures we
show how good (or bad) is this approximation, depending on these parameters.
On the other side, notice that gray-level quantization plays an essential role in
the approximation: in the common3 extreme case when all the gray levels are
different, we have that |Qi+δ| − |Qi−δ| = 2δ, so that

F (i) = 2δ
λ(i+ δ)− λ(i− δ)

|Qi|
.

This suggests that, from our point of view, a better definition of stable regions
would involve weighting the Matas ratio by the difference of gray levels. In
practice, it would make little difference for quantized images on the range {0, 255}.
But nevertheless it is easy to construct synthetic images where the two methods
would give different results.

14.4 Affine invariance

We will show that the Matas and Cheeger ratios given above are affine invariant.
This means that for any invertible affine map A, we have F (u◦A;λ) = F (u;λ) for
all λ. The denominators of these ratios are areas of level sets, which are always
affine covariant:

|u ◦A < λ| = |{x : u(Ax) < λ}|
=

∣

∣

{

A−1y : u(y) < λ
}∣

∣

=
∣

∣A−1 · {y : u(y) < λ}
∣

∣

= |A|−1 · |u < λ|

Now it remains to prove the covariance of the numerators.
The proof for the case of stable regions is immediate and was given by Matas

et al., thus motivating the use of these objects for stereo matching. Here we
give two proofs for the affine invariance of 1

|∇u| -weighted Cheeger ratios. The

first proof is a direct proof using parametrized curves, which is cumbersome to
extend to higher dimensions. The second proof is an informal argument using the
Dirac delta, which works for all dimensions. The different proofs provide different
insights to the property of affine invariance.

Proposition 80. MSER are affine invariant.

Proof. The numerator on equation (14.1) is a difference of areas of level sets,
which are affine covariant.

3for example, with floating-point images

14.4. Affine invariance 195

Proposition 81. Let us define

P (u, λ) =

∫

{u=λ}

1

|∇u|dH
N−1

for functions u : RN → R. Then, for any invertible N×N matrix A we have P (u◦
A, λ) = |A|−1

P (u, λ).

We will prove this proposition first for the case whenN = 2 and the curve {u =
λ} is smooth. Afterwards, we will give a sketch of the proof for the smooth
N -dimensional case, and an informal argument for the general case. The two-
dimensional case is immediate after some linear algebra computation developed
in the appendix.

Proof of proposition 81 (using parametrizations, 2D-only). With appropriate
smoothness, the integral

P (u, λ) =

∫

{u=λ}

1

|∇u|dH
1

is a line integral which can be evaluated using a parametrization γ : I → R2 of
the level curve {u = λ},

P (u, λ) =

∫

I

|γ′(t)|
|∇u(γ(t))|dt.

To evaluate P (u ◦ A, λ) we can use the parametrization η = A−1 ◦ γ of the level
curve {u ◦A = λ} and apply the chain rule:

P (u ◦A, λ) =

∫

I

|η′|
|∇u ◦A|dt =

∫

I

∣

∣A−1γ′
∣

∣

|AT∇u|dt.

Now, Lemma 83 can be used on this last expression to obtain the desired result.

Proof of proposition 81 (sketch, using parametrizations, ND). To compute the
weighted perimeter of the hypersurface {u = λ} we use a parametrization

γ : IN−1 → RN

such that u ◦ γ = λ. Then

P (u, λ) =

∫

IN−1

|K(γ1, . . . , γN−1)|
|∇u| dt1 · · · dtN−1

where the γi are the tangent vectors to the parametrization and the notation
K is explained in the appendix. Now, to evaluate P (u ◦ A, λ) we can use the
parametrization η = A−1 ◦ γ of the level surface {u ◦A = λ} and apply the chain
rule:

P (u ◦A, λ) =

∫

IN−1

∣

∣K(A−1γ1, . . . , A
−1γN−1)

∣

∣

|AT∇u| dt1 · · · dtN−1

Now, Lemma 84 can be used on this last expression to obtain the desired result.

196 Chapter 14. Appropriate setting for Maximally Stable Extremal Regions

The following proof offers additional insight.

Proof of proposition 81 (using deltas). It suffices to write the weighted perime-
ters as an integral over the whole space using the delta function

P (u;λ) =

∫

{u=λ}

1

|∇u|dl =

∫

RN

δ (u(x)− λ) dx (14.7)

and verify that P (u ◦ A;λ) = |A|−1P (u;λ) applying the change of variables
Ax = y =⇒ |A|dx = dy. Note that the choice of metric g = 1

|∇u| is special:

general metrics will not work. In particular, Euclidean Cheeger sets are not affine
invariant.

Remark 12. The representation given by equation (14.7) is the higher-
dimensional version of the usual formula for one-dimensional deltas:

δ(f(x)) =
∑

z∈f−1(0)

δ(x− z)
f ′(z)

.

14.4.1 Linear algebra computations

Lemma 82. Let J =
(

0 −1
1 0

)

. Then for any invertible 2× 2 matrix A

A−1 =
1

|A|J
TATJ

where the T denotes transposition.

Proof.
(

0 1
−1 0

)

(a c
b d)

(

0 −1
1 0

)

=
(

0 1
−1 0

) (

c −a
d −b

)

=
(

d −b
−c a

)

and this last matrix is the adjoint of A =
(

a b
c d

)

, which is the inverse times the
determinant.

Lemma 83. Let x and p 6= 0 be orthogonal vectors in the plane. Then for any
invertible 2× 2 matrix A

∣

∣A−1x
∣

∣

|ATp| =
1

|A|
|x|
|p| .

Proof. The map J is an isometry and the vectors Jx and p are parallel, thus

Jx = ±|x||p| p.

Now, using the previous Lemma

∣

∣A−1x
∣

∣ =
1

|A|
∣

∣JTATJx
∣

∣ =
1

|A|
∣

∣ATJx
∣

∣ =
1

|A|
|x|
|p|

∣

∣ATp
∣

∣

and the result follows.

14.4. Affine invariance 197

On the proof of affine invariance above we use a notation that generalizes the
90◦ rotation in R2 and the vector cross product in R3. If x1, . . . , xn−1 ∈ Rn,
let us denote by K(x1, . . . , xn−1) the vector uniquely defined by the following
three properties. Its modulus is the (n − 1)-dimensional volume of the paral-
lelepiped spanned by the vectors x1, . . . , xn−1; it is perpendicular to each of these
vectors; its sign is such that when the arguments are linearly independent, the
tuple (x1, . . . , xn−1,K(x1, . . . , xn−1)) is an oriented basis of Rn. The following
properties are readily checked:

1. 〈K(x1, . . . , xn−1), xn〉 = det(x1, . . . , xn)

2. det(Ax1, . . . , Axn) = |A|det(x1, . . . , xn), this says that |AX| = |A||X|

3.
〈

ATK(Ax1, . . . , Axn−1), v
〉

= |A| 〈K(x1, . . . , xn−1), v〉, combining proper-
ties 1 and 2.

4. ATK(Ax1, . . . , Axn−1) = |A|K(x1, . . . , xn−1), because the previous formula
holds for all values of v.

As a consequence of this last property, we obtain the n-dimensional general-
ization of Lemma 83:

Lemma 84. Let p ∈ Rn \ {0} be orthogonal to the vectors x1, . . . , xn−1. Then
for any invertible n× n matrix A

∣

∣K(A−1x1, . . . , A
−1xn−1)

∣

∣

|ATp| =
1

|A|
|K(x1, . . . , xn−1)|

|p| .

Proof. Writing relation 4 above for A−1 we get

K(A−1x1, . . . , A
−1xn−1) =

1

|A|A
TK(x1, . . . , xn−1)

and taking norms,
∣

∣K(A−1x1, . . . , A
−1xn−1)

∣

∣

|ATK(x1, . . . , xn−1)|
=

1

|A| . (14.8)

Now, since p is parallel to K(x1, . . . , xn−1), we have

K(x1, . . . , xn−1) = ±|K(x1, . . . , xn−1)|
|p| p

which, subtituted into equation 14.8, gives the desired result.

Part IV

Appendixes

199

15 Conclusion

15.1 Overview of proposed contributions

The contributions proposed in this thesis have been freely interleaved with pre-
vious work by others. Here we recall the original contributions of this thesis,
pointing to the place where each contribution is exposed.

• Joining upper and lower trees in general (Chapter 3)
• Algorithm for construction of discrete 3D tree of shapes (Chapter 4)
• Implementation of 3D grain filters (Section 5.1)
• Implementation of a 3D image visualization method (Section 5.2)
• A tool for RGB histogram analysis (Section 5.3)

• Semicontinuously and topologically consistent Marching Cubes (section 7.1)
• Mumford-Shah segmentation of functions defined on surfaces (Section 7.3)
• Robust 3D edge detector (Chapter 8)
• A generalization of edge detection by Helmholtz principle (Section 8.2)
• Tool for 3D image visualization and surface editing (Section 5.2)
• Exclusion principle for edge detection (Section 9.1)

• Relationship of Finsler-Cheeger sets with anisotropic TV (Chapter 11)
• Numerical computation of Finsler-Cheeger sets (Chapter 12)
• Application of Finsler-Cheeger sets to segmentation, surface joining and

colorization (Chapter 13)
• Maximal stable extremal regions are local Finsler-Cheeger sets (Section 14.3
• Algebraic proof of affine invariance (section 14.4)

15.2 Future work

Some themes of this thesis are open issues worth of further study. Some of this
research is already being developed in the form of submissions to conferences.

• tree of shapes of a video conditioned by optical flow
• quantitative comparison of edge detectors
• quantitative comparison of surface joiners
• definition and implementation of multi-scale tree of shapes
• study of topological persistence of structures
• further applications of the tree of shapes to color densities
• development of monocular depth estimation
• development of object detection based on the new invariants

201

16 Published Work

Most of the research reported above has been published in peer-reviewed journals
and conferences.

• Constructing the Tree of Shapes of an Image by Fusion of the
Trees of Connected Components of Upper and Lower Level Sets
V. Caselles, E. Meinhardt and P. Monasse
Positivity, Vol. 12, Num. 1, pp. 55–73, 2008

• Edge Detection by Selection of Pieces of Level Lines
E. Meinhardt
International Conference on Image Processing 2008, October 2008, San
Diego

• 3D Edge Detection By Selection of Level Surface Patches
E. Meinhardt, E. Zacur, A.F. Frangi and V. Caselles
Journal of Mathematical Imaging and Vision,
Vol. 32, Num. 1, pp. 1–16, 2009

• Anisotropic Cheeger Sets and Applications
V. Caselles, G. Facciolo and E. Meinhardt
SIAM Journal on Imaging Sciences,
Vol. 2, Num. 4, pp. 1211–1254, 2009

Other work has been already submitted and is under review:

• Relative Depth Estimation from Monocular Video
E. Meinhardt, V .Caselles
Submitted to International Conference on Image Processing 2011

• A Robust Pipeline for Logo Detection
E. Meinhardt, C. Constantinopoulos, V. Caselles
Submitted to International Conference on Multimedia and Expo 2011

• On Affine Invariant Descriptors Related to SIFT
R. Sadek, C. Constantinopoulos, E. Meinhardt, C. Ballester, V. Caselles
Submitted to SIAM Journal on Imaging Sciences on 2010

203

Bibliography

[AB94] M. Amar and G. Belletini. A notion of total variation depending
on a metric with discontinuous coefficients. In Annales de l’Institut
Henri Poincaré. Analyse non linéaire, volume 11, pages 91–133.
Elsevier, 1994.

[ABCM00] F. Andreu, C. Ballester, V. Caselles, and J. Mazon. Minimizing
total variation flow. Comptes Rendus de l’Academie des Sciences-
Serie I-Mathematique, 331(11):867–872, 2000.

[AC03] P. Arbeláez and L. Cohen. Path variation and image segmentation.
Proc. EMMCVPR-03, 2003.

[AC04] P. Arbeláez and L. Cohen. Energy partitions and image segmenta-
tion. J. Math. Imaging Vis., 2004.

[AC09] F. Alter and V. Caselles. Uniqueness of the Cheeger set of a con-
vex body. Nonlinear Analysis: Theory, Methods & Applications,
70(1):32–44, 2009.

[ACC05a] F. Alter, V. Caselles, and A. Chambolle. A characterization of
convex calibrable sets in. Mathematische Annalen, 332(2):329–366,
2005.

[ACC05b] F. Alter, V. Caselles, and A. Chambolle. Evolution of character-
istic functions of convex sets in the plane by the minimizing total
variation flow. Interfaces Free Bound, 7(1):29–53, 2005.

[ACHR06] A. Almansa, V. Caselles, G. Haro, and B. Rougé. Restoration and
zoom of irregularly sampled, blurred, and noisy images by accu-
rate total variation minimization with local constraints. Multiscale
Modeling & Simulation, 5(1):235–272, 2006.

[ACMM01] L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel. Connected
components of sets of finite perimeter and applications to image
processing. Journal of the European Mathematical Society, 3:39–
92, 2001. 10.1007/PL00011302.

[ADPS07] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sánchez. Sym-
metrical dense optical flow estimation with occlusions detection.
International Journal of Computer Vision, 75(3):371–385, 2007.

[AF87] N. Ayache and B. Faverjon. Efficient registration of stereo images
by matching graph descriptions of edge segments. Int. J. Comp.
Vis., 1(2):107–131, 1987.

[AFP00] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded vari-
ation and free discontinuity problems. Oxford University Press,
USA, 2000.

205

206 Bibliography

[AGLM93] L. Alvarez, F. Guichard, P. Lions, and J. Morel. Axioms and fun-
damental equations of image processing. Archive for Rational Me-
chanics and Analysis, 123(3):199–257, 1993.

[AGM99] L. Alvarez, Y. Gousseau, and J.-M. Morel. The size of objects
in natural and artificial images. Adv. Imaging Electron. Phys.,
111:167–242, 1999.

[Anz83] G. Anzellotti. Pairings between measures and bounded functions
and compensated compactness. Annali di Matematica Pura ed Ap-
plicata, 135(1):293–318, 1983.

[AS65] M. Abramowitz and I. Stegun. Handbook of Mathematical Func-
tions. Dover, 1965.

[AVCM04] F. Andreu-Vaillo, V. Caselles, and J. Mazón. Parabolic quasilinear
equations minimizing linear growth functionals. Birkhäuser, 2004.

[Ban67] T. Banchoff. Critical points and curvature for embedded polyhedra.
Journal of Differential Geometry, 1:245–256, 1967.

[Bar02] D. Barash. Fundamental relationship between bilateral filtering,
adaptive smoothing, and the nonlinear diffusion equation. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
24(6):844–847, 2002.

[BBF99] G. Bellettini, G. Bouchitté, and I. Fragalà. BV Functions with Re-
spect to a Measure and Relaxation of Metric Integral Functionals.
Journal of convex analysis, 6(2):349–366, 1999.

[BBG96] S. Bose, K. Biswas, and S. Gupta. Model based object recognition:
the role of affine invariants. Artificial intelligence in engineering,
10(3):227–234, 1996.

[BBM09] T. Brox, C. Bregler, and J. Malik. Large displacement optical flow.
In Computer Vision and Pattern Recognition, pages 41–48. IEEE,
2009.

[BBPW04] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy
optical flow estimation based on a theory for warping. Computer
Vision-ECCV 2004, pages 25–36, 2004.

[BCC07] G. Buttazzo, G. Carlier, and M. Comte. On the selection of max-
imal Cheeger sets. Differential and integral equations, 20(9):991–
1004, 2007.

[BCIG07] C. Ballester, V. Caselles, L. Igual, and L. Garrido. Level lines
selection with variational models for segmentation and encoding.
Journal of Mathematical Imaging and Vision, 27(1):5–27, 2007.

Bibliography 207

[BCM03] C. Ballester, V. Caselles, and P. Monasse. The tree of shapes of an
image. ESAIM: Control, Optim. Calc. Variations, 9:1–18, 2003.

[BK03] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal
surfaces via graph cuts. Proc. 9th Int. Conf. Comp. Vis., pages
26–33, 2003.

[BL79] S. Beucher and C. Lantuejoul. Use of watersheds in contour detec-
tion. Proc. Int. Workshop Image Process., 1979.

[Bol98] B. Bollobás. Modern graph theory. Springer Verlag, 1998.

[Bré73] H. Brézis. Opérateurs maximaux monotones. North-Holland Ams-
terdam, 1973.

[Bro92] L. Brown. A Survey of Image Registration Techniques. ACM Com-
puting Surveys, 24:325–376, 1992.

[Bro93] R. Brooks. Spectral Geometry and the Cheeger constant. In Ex-
panding graphs: proceedings of a DIMACS workshop, May 11-14,
1992, page 5. Amer Mathematical Society, 1993.

[Bru] J. Bruce. CMVision software library.

[BTVG06] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust
features. In Proc. of the European Conf. on Computer Vision, pages
404–417, 2006.

[Can86] J. Canny. A computational approach to edge detection. IEEE
Trans. Pattern Anal. Machine Intellicence, 8(6):679–698, 1986.

[Cay59] A. Cayley. On contour and slope lines. The Philosophical magazine,
1859.

[CCA92] I. Cohen, L. Cohen, and N. Ayache. Using deformable surfaces
to segment 3-D images and infer differential structures. CVGIP:
Image Understanding, 56(2):242–263, 1992.

[CCN07] V. Caselles, A. Chambolle, and M. Novaga. Uniqueness of the
Cheeger set of a convex body. Pacific J. Math., 232(1):77–90, 2007.

[CCN09] V. Caselles, A. Chambolle, and M. Novaga. Some remarks on
uniqueness and regularity of Cheeger sets. Rend. Sem. Mat. Univ.
Padova, 2009.

[CDD06] H. Carr, B. Duffy, and B. Denby. On Histograms and Isosurface
Statistics. IEEE Trans. Vis. Comp. Graph., 12(5):1259–1266, 2006.

[CE05] T. Chan and S. Esedoglu. Aspects of total variation regularized
L1 function approximation. Siam J. Appl. Math, 65(5):1817–1837,
2005.

208 Bibliography

[CFM09] V. Caselles, G. Facciolo, and E. Meinhardt. Anisotropic Cheeger
sets and applications. SIAM Journal on Imaging Sciences, 2:1211,
2009.

[CGI05] V. Caselles, L. Garrido, and L. Igual. A contrast invariant approach
to motion estimation. Scale Space and PDE Methods in Computer
Vision, pages 242–253, 2005.

[Cha04] A. Chambolle. An algorithm for total variation minimization
and applications. Journal of Mathematical Imaging and Vision,
20(1):89–97, 2004.

[Che70] J. Cheeger. A lower bound for the smallest eigenvalue of the Lapla-
cian. Problems in analysis, pages 195–199, 1970.

[Cho73] G. Choquet. Cours de Topologie. Dunod, 1973.

[Chu97] F. Chung. Spectral graph theory. American Mathematical Society,
1997.

[CKF03] J. Cox, D. B. Karron, and N. Ferdous. Topological zone organiza-
tion of scalar volume data. J. Math. Imaging Vis., 18(2):95–117,
2003.

[CKS97] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours.
Int. J. Comp. Vis., 22(1):61–79, 1997.

[CLLR05] Y. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and opti-
mal output-sensitive construction of contour trees using monotone
paths. Computational Geometry, 30(2):165–195, 2005.

[CLM+08] F. Cao, J. Lisani, J. Morel, P. Musé, and F. Sur. A theory of
shape identification, volume 1948 of Lecture Notes in Mathematics.
Springer, 2(4):7, 2008.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. MIT, 2nd edition, 2001.

[CM02] V. Caselles and P. Monasse. Grain Filters. Journal of Mathematical
Imaging and Vision, 17(3):249–270, 2002.

[CM07] H. Chang and J. Moura. Classification by cheeger constant regu-
larization. In ICIP 2007, volume 2. IEEE, 2007.

[CM10] V. Caselles and P. Monasse. Geometric Description of Images as
Topographic Maps. Lecture Notes in Mathematics. Springer, 2010.

[CMS05] F. Cao, P. Musé, and F. Sur. Extracting Meaningful Curves from
Images. J. Math. Imaging Vis., 22(2):159–181, 2005.

Bibliography 209

[Coh91] L. Cohen. On active contour models and balloons. CVGIP: Image
understanding, 53(2):211–218, 1991.

[CRBC07] J. Cardelino, G. Randall, M. Bertalmio, and V. Caselles. Region
based segmentation using the tree of shapes. In Image Processing,
2006 IEEE International Conference on, pages 2421–2424. IEEE,
2007.

[CSA03] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Comput. Geom.: Theory Appl., 24(2):75–94, 2003.

[CV01] T. Chan and L. Vese. Active contours without edges. IEEE Trans-
actions on image processing, 10(2):266–277, 2001.

[Dav75] L. Davis. A Survey of Edge Detection Techniques. Comp. Grah.
Image Process., 4:248–270, 1975.

[Der87] R. Deriche. Using Canny’s criteria to derive a recursively imple-
mented optimal edge detector. Int. J. Comp. Vis., 1(2):167–187,
1987.

[DMM00] A. Desolneux, L. Moisan, and J. Morel. Meaningful Alignments.
Int. J. Comp. Vis., 40(1):7–23, 2000.

[DMM01] A. Desolneux, L. Moisan, and J.-M. Morel. Edge Detection by
Helmholtz Principle. J. Math. Imaging Vis., 14(3):271–284, 2001.

[DMM03] A. Desolneux, L. Moisan, and J. Morel. Variational snake theory.
Geometric Level Set Methods in Imaging, Vision, and Graphics.
Springer Verlag, 2003.

[DMM04] A. Desolneux, L. Moisan, and J.-M. Morel. Seeing, Thinking and
Knowing, chapter Gestalt theory and computer vision, pages 71–
101. Springer, 2004.

[DT05] N. Dalal and B. Triggs. Histograms of oriented gradients for hu-
man detection. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1,
pages 886–893. IEEE, 2005.

[EG92a] L. Evans and R. Gariepy. Measure theory and fine properties of
functions. CRC, 1992.

[EG92b] L. Evans and R. Gariepy. Measure theory and fine properties of
functions. Studies in Advanced Mathematics, CRC Press, Boca
Raton, 1992.

[EM90] H. Edelsbrunner and E. Muecke. Simulation of simplicity: A tech-
nique to cope with degenerate cases in geometric algorithms. ACM
Transactions on Graphics, 1990.

210 Bibliography

[FLA+06] G. Facciolo, F. Lecumberry, A. Almansa, A. Pardo, V. Caselles, and
B. Rougé. Constrained anisotropic diffusion and some applications.
In British Machine Vision Conference, volume 3, pages 1049–1058,
Edinburgh, Scotland, September 2006.

[FP03] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach.
Prentice Hall, 2003.

[FtHRKV92] L. Florack, B. ter Haar Romeny, J. Koenderink, and M. Viergever.
Scale and the differential structure of images. Image and Vision
Computing, 10(6):376–388, 1992.

[G+02] M. Galassi et al. GNU scientific library. Network Theory Ltd.,
2002.

[GH91] W. Grimson and D. Huttenlocher. On the verification of hypoth-
esized matches in model-based recognition. IEEE Trans. Pattern
Anal. Machine Intellicence, 13(12):1201–1213, 1991.

[Giu84] E. Giusti. Minimal surfaces and functions of bounded variation.
Birkhauser, 1984.

[Gri06] D. Grieser. The first eigenvalue of the Laplacian, isoperimetric con-
stants, and the max flow min cut theorem. Archiv der Mathematik,
87(1):75–85, 2006.

[GU89] D. Gordon and J. Udupa. Fast surface tracking in three-dimensional
binary images. Comp. Vis., Graph, Image Process., 45:196–214,
1989.

[Hal74] P. Halmos. Measure theory. Springer, 1974.

[Har84] R. Haralick. Digital step edges from zero crossing of second direc-
tional derivatives. IEEE Trans. Pattern Anal. Machine Intellicence,
6(1):58–68, 1984.

[Her98] G. T. Herman. Geometry of Digital Spaces. Birkhauser, 1998.

[HLF+97] J. Hsieh, H. Liao, K. Fan, M. Ko, and Y. Hung. Image registration
using a new edge-based approach. Computer Vision and Image
Understanding, 67(2):112–130, 1997.

[HLO99] L. Hsu, M. Loew, and J. Ostuni. Automated registration of brain
images using edge and surfacefeatures. IEEE Eng. Med. Biol. Mag.,
18(6):40–47, 1999.

[HS85] R. Haralick and L. Shapiro. Image segmentation techniques. Comp.
Vis., Graph, Image Process., 29:100–132, 1985.

[HWL83] R. Haralick, L. Watson, and T. Laffey. The topographic primal
sketch. Int. J. Robot. Res., 2(1):50–72, 1983.

Bibliography 211

[Igu06] L. Igual. Image segmentation and compression using the tree of
shapes of an image. Motion estimation. PhD thesis, Ph. D. Thesis,
Universitat Pompeu Fabra, 2006.

[JH02] A. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3D scenes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 21(5):433–449, 2002.

[JJH06] B. Jeon, Y. Jung, and K. Hong. Image segmentation by unsuper-
vised sparse clustering. Pattern Recognition Letters, 27(14):1650–
1664, 2006.

[Jul59] B. Julesz. A method of coding TV signals based on edge detection.
Bell Sys. Technol., 38(4):1001–1020, 1959.

[Kan79] G. Kanizsa. Organization in vision: Essays on Gestalt perception.
Praeger Publishers, 1979.

[KGC10] M. Kalmoun, L. Garrido, and V. Caselles. Multilevel optimization
as computational methods for dense optical flow. preprint, 2010.

[Kir71] R. Kirsch. Computer determination of the constituent structure of
biological images. Comp. Biomed. Res., 4(3):315–28, 1971.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Information processing letters, 31(12):7–15, 1989.

[KKO+96] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and
A. Yezzi. Conformal curvature flows: From phase transitions to
active vision. Arch. Rat. Mech. Anal., 134(3):275–301, 1996.

[KLM94] G. Koepfler, C. Lopez, and J.-M. Morel. A Multiscale Algorithm
for Image Segmentation by Variational Method. SIAM J. Numer.
Anal., 31(1):282–299, 1994.

[KLR06] B. Kawohl and T. Lachand Robert. Characterization of Cheeger
sets for convex subsets of the plane. Pacific journal of mathematics,
225(1):103, 2006.

[KMS00] R. Kimmel, R. Malladi, and N. Sochen. Images as embedded maps
and minimal surfaces: movies, color, texture, and volumetric med-
ical images. International Journal of Computer Vision, 39(2):111–
129, 2000.

[Knu73] D. Knuth. Fundamental algorithms, volume 1. Addison-Wesley
Reading, MA, 1973.

[Kro50] A. Kronrod. On functions of two variables. Uspehi Mathematical
Sciences, 1950.

[Kur66] K. Kuratowski. Topology, I, II. New York, 1966.

212 Bibliography

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour
models. Int. J. Comp. Vis., 1(4):321–331, 1988.

[LC87] W. Lorensen and H. Cline. Marching cubes: A high resolution
3D surface construction algorithm. Proc. 14th Annu. Conf. Comp.
Graph. Interact. Tech., pages 163–169, 1987.

[LLW04] A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimiza-
tion. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages
689–694, New York, NY, USA, 2004. ACM.

[LMMM03] J. Lisani, L. Moisan, P. Monasse, and J.-M. Morel. On the Theory
of Planar Shape. Multiscale Model. Simul., 1:1, 2003.

[Low85] D. Lowe. Perceptual Organization and Visual Recognition. Kluwer
Academic Publishers, 1985.

[Low99] D. Lowe. Object recognition from local scale-invariant features. In
iccv, page 1150. Published by the IEEE Computer Society, 1999.

[LPR93] C.-N. Lee, T. Poston, and A. Rosenfeld. Holes and genus of 2d
and 3d digital images. CVGIP: Graph. Models Image Process.,
55(1):20–47, 1993.

[LW88] Y. Lamdan and H. Wolfson. Geometric Hashing: A General and
Efficient Model-Based Recognition Scheme. In Second International
Conference on Computer Vision, page 238. IEEE Computer Society
Press, 1988.

[LY02] E. Landis and I. Yaglom. Remembering a.s. kronrod. available
online, 2002.

[MAK96] F. Mokhtarian, S. Abbasi, and J. Kittler. Robust and efficient
shape indexing through curvature scale space. Proc. Br. Mach.
Vis. Conf., pages 53–62, 1996.

[Mar82] D. Marr. Vision. W. H. Freeman San Francisco, 1982.

[Max70] J. C. Maxwell. On hills and dales. The Philosophical magazine,
1870.

[MCUP04] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline
stereo from maximally stable extremal regions. Image and Vision
Computing, 22(10):761–767, 2004.

[MG00] P. Monasse and F. Guichard. Fast computation of a contrast-
invariant image representation. IEEE Trans. Image Process.,
9:860–872, 2000.

[MH80] D. Marr and E. Hildreth. Theory of Edge Detection. Proc. R. Soc.
Lond., 207(1167):187–217, 1980.

Bibliography 213

[Mol05] J. Moll. The anisotropic total variation flow. Mathematische An-
nalen, 332(1):177–218, 2005.

[Mon00] P. Monasse. Contrast Invariant Representation of Digital Images
and Application to Registration. PhD thesis, Université Paris IX-
Dauphine, jun 2000.

[MS88] D. Mumford and J. Shah. Optimal Approximations by Piecewise
Smooth Functions and Associated Variational Problems. Commun.
Pure App. Math., 42(5):577–685, 1988.

[MS95] J. Morel and S. Solimini. Variational methods in image segmenta-
tion. Birkhauser, 1995.

[MS04] K. Mikolajczyk and C. Schmid. Scale & affine invariant inter-
est point detectors. International Journal of Computer Vision,
60(1):63–86, 2004.

[MS05] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(10):1615–1630, 2005.

[MSV95] R. Malladi, J. Sethian, and B. Vemuri. Shape Modeling with Front
Propagation: A Level Set Approach. IEEE Trans. Pattern Anal.
Machine Intellicence, page 158175, 1995.

[Mum94] D. Mumford. Bayesian rationale for energy functionals. In In
Geometry-driven diffusion in Computer Vision. Citeseer, 1994.

[MY09] J. Morel and G. Yu. ASIFT: A new framework for fully affine
invariant image comparison. SIAM Journal on Imaging Sciences,
2(2):438–469, 2009.

[MZFC09] E. Meinhardt, E. Zacur, A. Frangi, and V. Caselles. 3d edge detec-
tion by selection of level surface patches. Journal of Mathematical
Imaging and Vision, 34(1):1–16, 2009.

[NA02] R. Nelson and J. Aloimonos. Obstacle Avoidance Using Flow Field
Divergence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11:1102–1106, 2002.

[NC06] L. Najman and M. Couprie. Building the component tree in quasi-
linear time. Image Processing, IEEE Transactions on, 15(11):3531–
3539, 2006.

[Nie03] G. Nielson. On marching cubes. Visualization and Computer
Graphics, IEEE Transactions on, 9(3):283–297, 2003.

[OFL07] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in
ten lines of code. In Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

214 Bibliography

[PB10] N. Papadakis and A. Bugeau. Tracking with occlusions via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2010.

[PCA99] X. Pennec, P. Cachier, and N. Ayache. Understanding the de-
mon’s algorithm: 3D non-rigid registration by gradient descent.
In Medical Image Computing and Computer-Assisted Intervention–
MICCAI’99, pages 597–605. Springer, 1999.

[PCM03] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the
Topology of Level Sets. Algorithmica, 38(2):249–268, 2003.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on pattern analysis and
machine intelligence, 12(7):629–639, 1990.

[PPAC10] B. Pelletier, P. Pudlo, and E. Arias-Castro. The Cheeger Constant:
from Discrete to Continuous. Arxiv preprint arXiv:1004.5485, 2010.

[Pre70] J. Prewitt. Picture Processing and Psychopictorics, chapter Object
enhancement and extraction, pages 75–149. Academic Press, 1970.

[PSO+01] R. Pielot, M. Scholz, K. Obermayer, E. Gundelfinger, and A. Hess.
3D edge detection to define landmarks for point-based warping in
brain imaging. Proc. Int. Workshop Image Process., 2, 2001.

[PT04] J. Paiva and A. Thompson. Volumes on normed and Finsler spaces.
A sampler of Riemann-Finsler geometry, page 1, 2004.

[Ree46] G. Reeb. Sur les points singuliers d’une forme de pfaff
complètement intégrable ou d’une fonction numérique. Comptes
Rendus Acad. Sciences, 222:847–849, 1946.

[Rie54] B. Riemann. On the hypotheses which lie at the foundations of
geometry. 1854.

[RK82] A. Rosenfeld and A. C. Kak. Digital Picture Processing. Computer
Science and Applied Mathematics. Academic Press, 2nd edition,
1982.

[Rob65] L. Roberts. Machine perception of 3D solids. Opt. Electro-Opt. Inf.
Process., pages 159–197, 1965.

[ROF92] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-
4):259–268, 1992.

[SAM08] N. Sabater, A. Almansa, and J.-M. Morel. Rejecting wrong matches
in stereovision. CMLA Preprint 2008-28, ENS Cachan, CNRS,
Cachan, France., 2008.

Bibliography 215

[San53] L. Santaló. Introduction to integral geometry. Hermann, 1953.

[Sap01] G. Sapiro. Geometric partial differential equations and image anal-
ysis. Cambridge University Press, 2001.

[SCSA04] A. Sole, V. Caselles, G. Sapiro, and F. Arandiga. Morse description
and geometric encoding of digital elevation maps. Image Process-
ing, IEEE Transactions on, 13(9):1245–1262, 2004.

[Sed01] R. Sedgewick. Algorithms in C. Addison-Wesley Professional, 2001.

[SG00] P. Salembier and L. Garrido. Binary partition tree as an efficient
representation for image processing, segmentation, and information
retrieval. IEEE Trans. Image Process., 2000.

[SH08] M. Sarfraz and O. Hellwich. Head pose estimation in face recog-
nition across pose scenarios. In International Conference on Com-
puter Vision Theory and Applications, pages 235–242, 2008.

[SKH06] D. Sarioz, T. Kong, and G. Herman. History Trees as Descriptors
of Macromolecular Structures. Lect. Notes Comp. Sci., 4291:263,
2006.

[SM02] J. Shi and J. Malik. Normalized cuts and image segmentation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
22(8):888–905, 2002.

[SMS02] A. Sarti, R. Malladi, and J. Sethian. Subjective surfaces: a geo-
metric model for boundary completion. International Journal of
Computer Vision, 46(3):201–221, 2002.

[SPK02] L. Shafarenko, H. Petrou, and J. Kittler. Histogram-based segmen-
tation in a perceptually uniform color space. Image Processing,
IEEE Transactions on, 7(9):1354–1358, 2002.

[SSV+97] J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden,
D. Van Dyck, and E. Raman. Watershed-Based Segmentation of 3D
MR Data for Volume Quantization. Magnetic Resonance Imaging,
15:679–688, 1997.

[SZ02] Y. Song and A. Zhang. Monotonic tree. Proc. 10th Int. Conf.
Discrete Geom. Comp. Imagery, 2002.

[SZ03] Y. Song and A. Zhang. Analyzing scenery images by monotonic
tree. Multimedia Systems, 8(6):495–511, 2003.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set union algo-
rithm. J. ACM, 22(2):215–225, 1975.

[Tay78] J. Taylor. Crystalline variational problems. Bulletin of the Ameri-
can Mathematical Society, 84(4):568–588, 1978.

216 Bibliography

[TT86] R. Tamassia and I. Tollis. A unified approach to visibility represen-
tations of planar graphs. Discrete and Computational Geometry,
1(1):321–341, 1986.

[TV98] S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in
3d in O(n log n) steps. In Proceedings of the fourteenth annual
symposium on Computational geometry, pages 68–75. ACM Press,
1998.

[USS00] C. Uhlenküken, B. Schmidt, and U. Streit. Visual exploration of
high-dimensional spatial data: requirements and deficits* 1. Com-
puters & Geosciences, 26(1):77–85, 2000.

[va] various authors. Vtk, the visualization toolkit.

[VBVV07] E. Vazquez, R. Baldrich, J. Vazquez, and M. Vanrell. Topological
histogram reduction towards colour segmentation. Pattern Recog-
nition and Image Analysis, pages 55–62, 2007.

[vGW94] A. van Gelder and J. Wilhelms. Topological considerations in
isosurface generation. ACM Transactions on Graphics (TOG),
13(4):337–375, 1994.

[VKM07] A. Vichik, R. Keshet, and D. Malah. Self-dual morphology on
tree semilattices and applications. Mathematical Morphology and
its Applications to Image and Signal Processing, Proc. of ISMM,
2007:49–60, 2007.

[VS91] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient
algorithm based onimmersion simulations. IEEE Trans. Pattern
Anal. Machine Intellicence, 13(6):583–598, 1991.

[vvB+97] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for isosurface traver-
sal. In Proceedings of the thirteenth annual symposium on Compu-
tational geometry, pages 212–220. ACM Press, 1997.

[Wei98] J. Weickert. Anisotropic diffusion in image processing, volume 256.
Citeseer, 1998.

[Wis69] D. Wishart. Mode analysis: A generalization of nearest neighbor
which reduces chaining effects. In Numerical taxonomy: proceedings
of the Colloquium in Numerical Taxonomy held in the University
of St. Andrews, September 1968, page 282. academic press, 1969.

[Wit83] A. Witkin. Scale-space filtering. In Proceedings of the Eighth inter-
national joint conference on Artificial intelligence, volume 2, pages
1019–1022. Morgan Kaufmann Publishers Inc., 1983.

Bibliography 217

[XDG09] G. Xia, J. Delon, and Y. Gousseau. Locally invariant texture analy-
sis from the topographic map. In Pattern Recognition, 2008. ICPR
2008. 19th International Conference on, pages 1–4. IEEE, 2009.

[YB96] A. Yuille and H. Bülthoff. Bayesian decision theory and psy-
chophysics. Perception as Bayesian inference, pages 123–161, 1996.

[ZOF01] H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using
the level set method. 1st IEEE Workshop Var. Lev. Set Methods,
80(3):194–202, 2001.

	Preface
	Contents
	Outline
	The Three Dimensional Tree of Shapes
	Historical context of trees to represent images
	Tree of Shapes: The Theory
	Mathematical Preliminaries
	Definitions of the Tree of Shapes
	Combinatorial properties of the continuous tree

	Tree of Shapes: The Implementation
	First Discrete Approach: Geometry of Digital Images
	Second Discrete Approach: Topographic Graphs
	Data structures for storing trees of subsets
	Algorithms

	Tree of Shapes: First applications
	Self-dual morphological filters
	Visualization of images
	Color histogram analysis
	Optical flow analysis

	A 3D Edge Detector
	Historical context of edge detectors
	Digression on triangulated surfaces
	Consistent Marching Cubes
	Graph cuts on surfaces
	Mumford-Shah segmentation of surfaces

	Complete description of the proposed edge detector
	Hypotheses of the method
	Selection of meaningful patches from a given collection
	Production of candidate patches
	3D Edge Detection Algorithm

	Further notes about the proposed edge detector
	Exclusion principle
	Size statistics and other heuristics
	Surface Joining
	Experimental results

	Cheeger sets and affine invariants
	Historical context of Finsler-Cheeger sets
	Finsler total variation and Cheeger sets
	Mathematical preliminaries
	A PDE that produces Finsler-Cheeger sets
	Local Finsler-Cheeger sets

	Numerical computation of Finsler-Cheeger sets
	Minimization of the dual problem by finite differences
	Numerical computation of Finsler-Cheeger sets

	Applications of Finsler-Cheeger sets
	Framework for the applications
	Segmentation and edge linking
	Diffusion and colorization

	Appropriate setting for Maximally Stable Extremal Regions
	Overview
	Definition of MSER over an arbitrary tree
	MSER are Finsler-Cheeger sets
	Affine invariance

	Appendixes
	Conclusion
	Overview of proposed contributions
	Future work

	Published Work
	Bibliography

