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Motivation: differences between 2D and 3D

A large part of this thesis is the extension of the tree of shapes to
3D images, and its applications.

Differences 2D/3D: semantics, visualization, topology, statistics, noise

photo (x, y) tomography (x, y, z) video (x, y, t)

X-ray (x, y) RGB histogram (r, g, b) scale-space (x, y, s)
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Different visualization of 2D and 3D images

The first difference is the need for visualization.

◮ 2D, trivial: simply look at them (array of pixels)

◮ 3D, tricky: slices, projections,isosurfaces, volume rendering
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Topological differences between 2D and 3D

The second difference is topological behaviour.

◮ 2D: cavities and handles are the same thing

◮ 3D: cavities and handles are different things

Due to this fact, for example, the number of cavities can be
computed locally in 2D but not in 3D.
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Statistical differences between 2D and 3D
Critical levels for bound percolation:

◮ 2D grid: 0.5
◮ 3D grid: 0.2488

This affects, for example, the behaviour of level sets of white noise
(at the mean value):

◮ in 2D: many connected components
◮ in 3D: a single connected component
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Different kinds of noise between 2D and 3D images

◮ 2D: noise from cameras is independent from pixel to pixel

◮ 3D: noise from CT has anisotropic artifacts

Slice of a tomography
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Data structures for images

There are many data structures for storing digital images:

◮ Array of pixel values

◮ Coefficients on a linear basis (e.g., Fourier representation)

◮ Tree-like data structures:
◮ Quadtrees/octtrees [Samet’79, Meagher’82]

◮ Region merging trees [Koepfler et al. ’94, Salembier et al. ’00]

◮ Tree of (upper or lower) level sets [Cox et al. ’03, Carr et al. ’03]

◮ Tree of shapes [Monasse et al. ’02]

Each representation favors some operations.
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Mathematical definition of the tree of shapes

Intuition: Shapes = connected components of level surfaces
= external boundaries of saturations

Notation:

◮ Image f : Ω → R

◮ [f ≥ λ] := {x ∈ Ω : f (x) ≥ λ}

◮ cc(A, x) := connected component of A containing x

◮ Sat(A, p∞) := Ω \ cc(Ω \ A, p∞)

A Sat(A)Trees of level sets:

◮ ULT (f ) := {cc([f (x) ≥ λ], x) : x ∈ Ω, λ ∈ R}

◮ LLT (f ) := {cc([f (x) < λ], x) : x ∈ Ω, λ ∈ R}

Tree of shapes:

◮ T OS(f ) := {Sat(r), r ∈ ULT (f ) ∪ LLT (f )}
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Tree of shapes as fusion of upper and lower trees

image LLT ULT
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Tree of shapes as fusion of upper and lower trees

break branches glue branches T OS
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Implementation

Discretization of the image domain, two choices:

semi-continuous interpolation graph-based

Algorithms:

◮ Building the upper tree: pixel merging

◮ Joining both trees: branch gluing

◮ Where to glue: find the smallest “outer adjacent” region
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Applications of the 3D tree of shapes

◮ Morphological operations (tree pruning)

◮ Image visualization (tree navigation)

◮ RGB histogram analysis

◮ Video analysis

◮ 3D edge detection
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Morphological filtering
Grain filtering: removal of small leafs

original image opening closing grain filter

original image t=2 t=10 t=1000
18351 shapes 11173 (61%) 4924 (27%) 715 (4%)
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Morphological filtering

Grain filtering: removal of small leafs

original image t=2 t=100 t=10000
295937 shapes 141005 (47%) 2414 (0.8%) 124 (0.04%)

Observation: it does not seem to affect the texture.
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Morphological filtering

Adaptive quantization: removal of nodes inside long branches

original grain filter quantization both
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Image visualization

Navigating the tree (with keyboard or mouse):

½ » ·
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RGB histogram analysis
gray image its 1D histogram
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RGB histogram analysis
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RGB histogram analysis
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Video analysis

1. Build the structure

◮ Input: video & optical flow

◮ Pre-processing: graph of optical flow connectivity

◮ Structure: level sets of video data on the graph

2. Work with it:

◮ Grain filtering: remove spots, small objects

◮ Select a region: tracking

◮ Automatic segmentation from scribbles

◮ Monocular depth estimation
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Video processing using the tree of shapes
Grain filtering and branch simplification turn the video into a small set of “tubes”

input video simplified tree of shapes
2s ≈ 6.7 · 106 voxels 617 shapes
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Tracking using the tree of shapes
Tracking means querying the structure:

one shape of a video sequence
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Monocular depth estimation

The discontinuities of the flow along occlusions are a monocular
depth cue.

input
segmented flow
& occlusions

output

⇒ ⇒
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Monocular depth estimation

(monocular depth estimation video)
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Monocular depth estimation

1/14
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Monocular depth estimation

2/14
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Monocular depth estimation

3/14
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Monocular depth estimation

4/14
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Monocular depth estimation

5/14
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Monocular depth estimation
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Monocular depth estimation
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Monocular depth estimation
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Monocular depth estimation
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Monocular depth estimation

10/14
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Monocular depth estimation

11/14
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Monocular depth estimation

12/14
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Monocular depth estimation

13/14
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Monocular depth estimation

14/14
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3D Edge detection

Extend to 3D images the 2D detector based on Helmholtz
principle. [Desolneux et al. ’01]

◮ In 2D: select connected pieces of level curves which are
well-contrasted

◮ In 3D: select connected pieces of level surfaces which are
well-contrasted

X No priors

X No parameters

× Connected subsets of a given surface can be very complicated!
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Mumford-Shah segmentation on surfaces

Solution: restrict the selection to the Mumford-Shah hierarchy of
the “contrast” on each level surface.

contrast on best subset best subset
level surface among all on MS hierarchy
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3D edge detection by Helmholtz principle
Algorithm:

* For each level surface S of the image:
* Build a Mumford-Shah hierarchy of the contrast on S
* For each patch P in the hierarchy

* if P is well-contrasted, select P

input image selected patches
(slice)
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Hypothesis of the proposed edge detector

The desired boundaries are formed by large pieces of level surface
of the original image.

Observation: this hypothesis is more sound for 3D medical images
than for 2D photographs.
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Experimental results of edge detection

Synthetic best case:

input output Canny
(3 patches)

34 / 57



Experimental results of edge detection

Real CTA image:

input output Canny
(11 patches)

35 / 57



Experimental results of edge detection

Real MRI image:

input output isosurface
(17 patches)
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Pre and post-processing of the edge detector
The performance of the method can be improved in several ways
Pre-processing:

◮ Grain filter (reduces the number of small shapes)

◮ Median filtering (reduces the complexity of noisy shapes)

◮ Quantization (reduces the number of nested shapes)

◮ Canny instead of gradient norm (improves localization)

Post-processing:

◮ Exclusion principle (allow only one output patch per voxel)

◮ Surface joining (join overlapping patches into one)
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Surface joining (or 3D edge linking)

Some functionals for edge linking data S with model Γ:

◮ Osher-Zhao: E0(Γ) =
∫

Γ dS
◮ “reverse Osher-Zhao”: E1(Γ) =

∫

S
|dΓ|

◮ Adjustment of distance functions: E2(Γ) =
∫

R3 |dS − |dΓ||

◮ Combinations of the above (E0 + E1, etc.)
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Surface joining (Osher-Zhao)

input patches joined surface
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Surface joining (Osher-Zhao)

input patches joined surface
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Trivial global minima

Problem: all the functionals above have trivial global minima

Solution: adding an “inflating force” to the functional may
improve the situation.

E (Γ) = Ei (Γ)− λ · volume(Γ)
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A happy connection

Edge linking with an inflating force can be formulated in terms of
anisotropic Cheeger sets.

Let us forget about edge linking, and focus on Finsler-Cheeger sets.
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Finsler metrics in image processing
Finsler (or Riemannian) metrics are widely used in image
processing, and elsewhere.

geodesic active contours, anisotropic diffusion...
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Euclidean Cheeger sets

◮ Cheeger constant of Ω: CΩ := min
A⊆Ω

|∂A|

|A|
◮ Cheeger set of Ω: set A where the minimum is attained

◮ Equivalent definition: minimizer of |∂A| − CΩ|A|

Images from http://www.ceremade.dauphine.fr/˜peyre/cheeger/

let us move to Finsler spaces
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Finsler-Cheeger sets

Let us weigh perimeters by ϕ and volumes by h.

◮ Cheeger constant of Ω: CΩ := min
A⊆Ω

|∂A|ϕ
|A|h

◮ Cheeger set of Ω: set A where the minimum is attained

◮ Equivalent definition: minimizer of |∂A|ϕ − CΩ|A|h
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Finsler-Cheeger sets

Let us weigh perimeters by ϕ and volumes by h.

◮ Cheeger constant of Ω: CΩ := min
A⊆Ω

|∂A|ϕ
|A|h

◮ Cheeger set of Ω: set A where the minimum is attained

◮ Equivalent definition: minimizer of |∂A|ϕ − CΩ|A|h

How to compute these objects?
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Cheeger sets and total variation

Euclidean case:

◮ Variational problem:

Eλ(u) :=

∫

Ω
|Du|+

λ

2

∫

Ω
(u − 1)2 +

∫

∂Ω
|u|

◮ Cheeger sets arise as level sets of the solution: [u ≥ |u|∞]

Finslerian case:

◮ Variational problem:

Eϕ,h,λ(u) :=

∫

Ω
|Du|ϕ +

λ

2

∫

Ω
(u − 1)2h +

∫

∂Ω
ϕ(x , νΩ)|u|

◮ ϕ-Cheeger sets arise as level sets of the solution: [u ≥ |u|∞]
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Numerical solution of the variational problem

◮ Euclidean case: Chambolle algorithm

pt+1 =
pn + τ∇div(pn)

1 + τ |∇div(pn)|

◮ Finsler case: Chambolle algorithm with suitable weights

pt+1 =
pn + τAx · ∇

(

h−1
div(Ax · p

n)
)

1 + τ |Ax · ∇ (h−1div(Ax · pn))|

Once these iterations converge, the Cheeger set is found among
the level sets of the resulting image div(p).
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Numerical computation of the Cheeger set

We recover our old friend, the tree of shapes.

◮ The Cheeger ratio is defined for every shape

◮ Find a minimum of the Cheeger ratio defined on the tree of
shapes (which is a topological space)
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Computation of Finsler-Cheeger ratio
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Applications of Finsler-Cheeger sets

By fine-tuning the Finsler metric, we can make the Cheeger sets to
have any shape that we want.

(For example, by letting the metric vanish on a given curve)
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Application to edge linking
The ϕ-Cheeger is a global optimum of Osher-Zhao with an inflating force

“Distance Cheegers”: ϕ = distance to data

S slices of dS dS -Cheeger
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Application to edge linking

dS -Cheeger set of the whole image domain
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Application to active contours
The ϕ-Cheeger is a global optimum of active contours with inflating force

“Gradient Cheegers”: ϕ = 1
|∇I |

slices of I slices of 1
|∇I |

1
|∇I | -Cheeger set
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Application to active contours
The ϕ-Cheeger is a global optimum of active contours with inflating force

1
|∇u| -Cheeger set of the

1
|∇u| -Cheeger set of the

whole image domain image domain minus some
manually selected voxels
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Finsler-Cheeger sets and MSER
There is a connection between 1

|∇u|
-Cheegers and MSER.

MSER [Matas et al. ’04] are defined as minimizers of

F (λ) :=
|[u < λ+ δ]| − |[u < λ− δ]|

|[u < λ]|

By co-area formula,

F (λ) = 2δ

∫
{u=λ′}

1
|∇u|

dHN−1

|[u < λ]|

Which is almost exactly the 1
|∇u|

-Cheeger ratio!

MSER can be regarded as a crude approximation to (local) 1
|∇u|

-Cheegers
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Application to logo detection

Match MSER and other features between a logo database and a
video frame.
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Contributions of this thesis

◮ Algorithm for 3D tree of shapes

◮ Basic applications (grain filters, visualization, RGB
histograms, video analysis)

◮ 3D edge detection (exclusion principle, MS hierarchies,
consistent Marching Cubes)

◮ Numerical computation of Finsler-Cheeger sets

◮ Application of Finsler-Cheeger sets to edge linking

◮ MSER are local Finsler-Cheeger sets



Future work

◮ User interface for tree of shapes navigation and editing

◮ Joining the trees of level sets defined on a graph

◮ Quantitative comparison of edge detectors

◮ Quantitative comparison of surface joiners

◮ Development of object detection based on the new affine
invariants

◮ Faster schemes for Finsler-Cheeger sets
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