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Atomic Models of Video Turbulence

Enric Meinhardt-Llopis

Abstract

We describe some algorithms to simulate turbulent videos of static objects. The effects are
visually similar to those of taking a video of an object which is underwater or behind hot air.
The proposed algorithms are not based on any physical models of turbulence but on the visual
effect that the turbulence produces. The main application is to test methods for correcting the
turbulence in a controlled setting.

1 Introduction

Turbulence is a well-known and widely studied problem in image processing [14]. This problem
is treated by somewhat independent communities in astronomical imaging [13, 2], long-distance
surveillance over a hot terrain [9, 11] and underwater imaging [5, 1, 7]. Typically, these studies begin
by describing a model of image formation behind a physically realistic turbulent fluid, and then set
up the reconstruction of the base (non-turbulent) image as an inverse problem. In this article we
focus, not on the physical models, but on the visual effects produced by turbulence. Thus, we study
turbulence as an arbitrary operation that takes an image obtained in ideal conditions and produces
a distorted version of it.

On Section 2 we introduce five different models of turbulence in a continuous setting. On Section 3
we describe the algorithms needed to apply these models in discrete images. On Section 4 we show
some images from real-world turbulent videos which can be explained by each of the proposed models.

2 Models of turbulent images

Let us describe five models of the formation of turbulent images. We are not interested in the phys-
ical processes that produce these images, but on the transformation that maps an image without
turbulence to a sequence of images with turbulence. More specifically, we want to express these trans-
formation as a combination of common image-processing operations, even if they do not correspond
to any physical phenomenon.

In this section we consider gray-level images as functions I : R2 → R. Turbulence is modeled as
an operation that takes the image I and produces a sequence of “turbulent” images I1, I2, . . .. The
idea is that each Ii is a distorted version of I.
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2.1 Correlated additive noise

The simplest distortion that we can consider is additive noise:

Ii(x) = I(x) + ui(x)

where ui(x) is a sequence of random functions whose expected value is point-wise zero. The random
variables ui(x) are assumed to be identically distributed. In this setting, assuming that the variables
have finite variance, the clean image I can be recovered from the turbulent sequence Ii by taking
averages:

lim
n→∞

1

n

n∑
i=1

Ii(x) = I(x) ∀x ∈ Ω.

This model includes white noise, where the values of ui(x) are assumed to be independent random
variables when varying i or x. However, from the point of view of the simulation of turbulence, it is
much more interesting to consider the case where these random variables are highly dependent. For
example: ui(x) may be a smooth function that changes slowly as i advances. A real-world example
of this kind of turbulence can be the caustics projected on underwater objects when the light of the
sun traverses the turbulent surface of water.

2.2 Blur

A different model of turbulence is given by blur, i.e. the convolution with a positive kernel, which is
a good model of the effects of turbulence for long-exposure images:

Ii(x) = (k ∗ I)(x).

An appropriate kernel for atmospheric turbulence is the Fried kernel [4, 6]. A simpler kernel which
is numerically similar is given by the multi-variate Laplace distribution [8]:

kβ(x) =
1

2πβ2
exp
−|x|
β

The parameter β controls the strength of the turbulence.
When the exact form of the kernel is known, the clean image I can be recovered from k ∗ I by a

regularized deconvolution technique such as Wiener filtering. When there is an unknown parameter
in the kernel (e.g., β), the value of this parameter can be chosen as the one which maximizes the
total variation of the de-convolved images [10].

2.3 Geometric Deformation

Geometric deformation is modelled by the pull-back of the base image I by a sequence of random
vector fields ui. Formally:

Ii(x) = I(x + ui(x))

Here, as above, we suppose that the two components of ui(x) are identically distributed random
variables with zero mean. Notice that if we want these vector fields to be smooth, then these random
variables can not be independent, because their values at nearby points must be similar.

The visual effect of these deformations is governed by three things:

1. The probability distribution k(u) of the random variable ui(x), for a fixed i and x. A large
variance of this random variable corresponds to large motions of the pixels, thus a large spread
produced by the turbulence.
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2. The amount of dependence between ui(x) and ui(y) when x and y are close. The larger this
dependence, the smoother the vector fields, so that the grain of the turbulence is larger.

3. The amount of dependence between ui(x) and uj(x), when i and j are close. The smaller this
dependence, the faster the vector fields are allowed to change, so that this controls the speed
of the turbulence.

These three effects, spread, grain and speed, agree with visual features observed in videos of turbu-
lence (see section 4 below). Notice that this interpretation is a simplification, as there are many more
features that can be simulated. For example, some sequences show an apparent motion of fluid in a
certain direction. This can be simulated with this model by a field u(x, i) which is highly correlated
in one spatio-temporal direction, and relatively independent in the others.

The average of the video frames:

I∗(x) := lim
n→∞

1

n

n∑
i=1

I(x + ui(x))

gives an estimation of the expected value of I(x + ui(x)) at each pixel x. Notice that even
if E[ui(x)] = 0, this expected value need not be I(x). The identity E[I(x + ui(x))] = I(x) holds only
when I is an affine function. When I is convex, by Jensen’s inequality we have E[I(x + ui(x))] ≥ I(x).
When I is concave the reverse inequality holds. In general, the expected value I∗ is a smooth version
of the image I, where local minima get a higher value and local maxima get a lower value.

The expected value of Ii(x) can be effectively computed as

E[I(x + ui(x))] =

∫
R2

I(x + y)k(y)dy

which is precisely the convolution of the image I by the positive kernel k. This observation means
that blur can be simulated as the temporal average of geometrical deformation, and the blur kernel
is precisely the point-wise distribution of the deformation vector fields. This is indeed a realistic
model of the formation of blur due to turbulence, because the temporal averaging corresponds to the
integration performed by the camera captors during the exposure time.

2.4 Mass transportation

Mass transportation uses almost the same formula as geometric deformation, but enforcing local
mass conservation:

Īi(x) = det(Id +Dui)Ī(x + ui(x))

In this model, the color of a pixel changes after the deformation is applied. A possible physical
interpretation of this model is an object composed of discrete luminous microscopic dots, and the
turbulence changes the apparent position of these dots (but not their size or their brightness). Then,
the apparent brightness of the object varies according to the point-wise variation in dot density. We
do not know whether this effect can be described by a realistic model in terms of deformed paths of
light rays. The interpretation in terms of luminous dots is defective because the dots would change
in size if they were deformed. A possible toy model for the formation of this turbulence is given by
a pinhole camera where the turbulence acts after the discrete light rays have passed through the
pinhole.

In any case, this model can be used to simulate some observed effects of turbulence, where the
turbulent flow is visible over large objects of constant color as local intensity changes. Geometric
deformation alone can not explain this effect.

It is important take into account the units of intensity when applying the mass transportation
model, for they should be linear in the number of photons received at a point. Typically, the
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intensities encoded in images use a perceptually uniform scale which, by Weber’s law, corresponds
to the logarithm of the photon count. Thus, the correct mass transportation method shall use the
following contrast change (modulus an arbitrary affine rescaling of I and Ī):

I = logλ(Ī)

before applying the formula above. Here the base of the logarithm λ and the scaling factors are
parameters of the method. The mass transportation operation then becomes:

Ii(x) := logλ (det(Id +Dui)) + I(x + ui(x)).

Notice that as λ→∞, the first term is less relevant and the transformation approximates a simple
geometric deformation. That way, geometric deformation can be understood as a particular case of
mass transportation.

The discussion above is based on the interpretation that the vector field ui(x) represent the dis-
placement of the points x between two frames. A different but common interpretation is to a assume
a continuous video (e.g., use t as a continuous time index instead of a discrete index i). In that case,
the vector field can be interpreted as the velocity of the points, and the expression I(x + u)− I(x)
is a first order finite difference approximation to u · ∇I. Under this alternative interpretation, the
Jacobian det(Id +Dui) is replaced by its first-order approximation 1 + div(u).

2.5 Phase screens

The phase screen model acts in the frequency domain. Let ϑi(ξ) be a sequence of random functions
with values in the interval [0, 2π). Such a function is called a phase screen. The action of such a
phase screen on the positive-valued image I is given by the following formula:

Ii(x)=
∣∣∣F(F−1(√I)eiϑi(ξ))∣∣∣2

Here F denotes the Fourier transform in 2D. Notice that if ϑi(ξ) = 0 then Ii = I. The distribution
of ϑi(ξ) around 0 determines the visual effect of the phase screen.

This phase screen model is widely used in the astronomical community. It comes from a physical
model of image formation in a telescope after light rays traverse a turbulent atmosphere. Without
turbulence, the parallel light rays that reach the lens of the telescope arrive at a point of the captor in
the same phase. The function ϑi(ξ) says how the phase of the light rays is changed, due to atmospheric
turbulence, at each point in the lens. The resulting image in the captor is thus distorted.

Notice that, barring a quadratic contrast change, the phase screen is formally a time-varying
“blur” where k = F(eiϑ) is a linear kernel of flat frequency response. Typically the function k is
oscillating around a slightly off-zero center (thus, the images are visually translated by a constant,
time-varying small vector). The main point of interest of this model is that the statistics of the phase
screen distribution are well known according to models of atmospheric turbulence. Its weakest point
is that it is a shift-invariant operator, so that it applies the same distortion to all the points in the
image domain.

The particular form of the Fried kernel is derived by taking averages of phase screens with realistic
statistics [3].

3 Simulation of the models

On the previous Section we defined several turbulence operators for images with a continuous domain.
This simplifies the exposition, but in practice, we need to work with discrete-domain images I : Z2 →
R. On this Section we explain how to adapt the operations to the discrete setting. First we introduce
the basic building blocks of the algorithms, and afterwards we explain how to effectively simulate
the proposed models.
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3.1 Warp an image by a vector field

The pull-back, or warp, of a function I : R2 → R by a vector field x 7→ x + u(x) is defined as the
function

u∗I(x) := I(x + u(x)).

To adapt this operation to the discrete setting, we must take into account that the domain of the
functions I, u and u∗I is now Z2 instead of R2. If we denote by i = (i, j) an arbitrary point in Z2,
what we really want to compute is

u∗I(i) := I(i + u(i)).

However, this computation is impossible because the point i + u(i) need not belong to Z2, and the
function I is now defined only over Z2. This is the problem of irregular sampling, which is a difficult,
and well known, problem in image processing. As particular cases, it contains: zoom-in, which is
difficult because it relies on an interpolation method; zoom-out, which is difficult because it relies
on an smoothing method. Irregular sampling is more difficult because the same vector field may
produce zoom-in and zoom-out at different parts of the image, or even a combination of both at
different directions around the same point.

For our purposes, we forget momentarily about the difficulties of irregular sampling and use a
simple interpolation model for evaluating I(i + u(i)). Namely, we use bicubic interpolation, which is
a piecewise third-degree polynomial that interpolates the values of I on a 4× 4 neighborhood of the
point bi + u(i)c. This is not a good solution for the general problem of irregular sampling. However,
since in our simulations the vector fields u will tend to be very smooth, they are locally approximately
translations, with no zoom-in or out. Thus the artifacts of aliasing or blurring do not appear. In any
case, if a greater precision is desired, we can always work with higher resolution images, which are
then zoomed-out to the desired target resolution. This should eliminate any aliasing artifacts due to
the irregular sampling.

In the case of mass transportation we have to multiply the warped image by the Jacobian of the
transformation:

u?I(i) := |Id +Du| I(i + u(i)).

here the four partial derivatives in Du can be computed by centered finite differences around i.

3.2 Invert a vector field

Let us suppose that a vector field x 7→ x + u(x) maps the points of an image A to the corresponding
points of an image B. The warping operation described above reconstructs the image A from the
values of the image B, but not the other way round. If we want to map the values from A to B, a
possibility is to invert the flow. That is, find a vector field v such that for every x:

u(x) + v(x + u(x)) = 0

or
v(x) + u(x + v(x)) = 0

A reasonable approximation is v(x) := −u(x), which is good enough when u is very smooth. How-
ever, for higher precision we need to solve one of the equations above. Fixing x, the second equation
can be rewritten as a fixed point equation F(y) = y with

F(y) := −u(x + y)

And this function is Lipschitz of constant

L ≤ |div(u(x))| .
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Thus, the recursive iteration of F converges to the desired v(x) at the points x such that the absolute
value of the divergence of u is less than one. When the divergence is larger than one in absolute
value, there may be none or more than one solutions. This is consistent with the intuition: when the
divergence is too large, the vector field u leaves uncovered holes on the image B domain (in which
case the inverse does not exist). When the divergence is too small, the vector field is not injective
(in which case the inverse is multiple-valued).

3.3 Generate a random time-varying vector field

To generate a random function or vector field we need a random number generator. The random
number generator produces uniform samples, but those can be converted to samples of any proba-
bility distribution (e.g., normal, Laplacian, exponential) by applying an appropriate function to the
samples. The following list explains how to obtain samples of some common probability distributions,
starting from uniform samples.

• If X1 and X2 are independent uniform random variables on [0, 1], then the two variables

Y1 =
√
−2 log(X1) cos(2πX2)

Y2 =
√
−2 log(X1) sin(2πX2)

are independent normal variables of mean 0 and variance 1.

• If X1 and X2 are independent uniform on [0, 1], then Y = log(X1/X2) is Laplace

• If X1 and X2 are independent normal then Y = X1/X2 is Cauchy

• If X is Laplace then |X| is exponential

• If X1, X2, X3, X4 are independent normal then Y = X1X2 −X3X4 is Laplace [12].

The last relation is especially important for us since it will be used to produce smooth random
fields with a pointwise Laplace distribution. The random samples obtained by these formulas at
each point will be independent, and they are only by useful as white noise. To obtain interesting
smooth random fields we can convolve the white noise by a positive Gaussian kernel of spatiotemporal
correlation matrix Σ. The pseudocode below explains the method:

Algorithm: Generate a smooth random function

Input: desired dimensions (W,H,N) and a positive semidefinite matrix Σ

Output: an video I of correlated noise containing N frames of size W ×H

1. For each (i, j, t) in the image domain, set n(i, j, t) := X, where X is a random number generator

2. Compute the desired multivariate normal kernel:

k(i, j, t) :=
1

α
exp

(
−(i, j, t)Σ

(
i
j
t

))
3. Compute the convolution I = k ∗ n.
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This algorithm is crucial for most of the proposed simulators and it is important to understand
it well. The first important point is that, when Σ is wide enough, the distribution of the random
numbers X in step (1.) is irrelevant, as long as they have finite moments. Indeed, the convolution step
computes a weighted sum of several samples of this distribution, and by the central limit theorem,
the distribution of this sum is very close to a normal distribution. If the variables X were already
normal, then the pixels of I are also normal random variables. This observation does not depend
on the fact that the convolution kernel in step (2.) is normal distribution: it works for any positive
convolution kernel.

The second important point is that the convolution in step (2.) can be computed efficiently, even
for kernels with very large support, using the 3D FFT.

The third important observation is how the entries of the matrix Σ affect visually the result of
the output functions. Let us use this notation:

Σ =

a b p
b c q
p q r


The simplest case is when Σ is a multiple of the identity Σ = λId. When λ is close to 0, the kernel
is very narrow and the resulting variables are almost independent, almost like in white noise (which
corresponds to λ = 0). When λ grows to infinity, the kernel becomes almost a constant, and the
resulting variables take the same value (which corresponds to the maximal possible dependency).

When p = q = r = 0, this means that there is no temporal correlation: even if the functions are
smooth on a given frame, they are independent from frame to frame. If a = c and b = 0, this means
that the kernel is spatially isotropic so that the function has “isotropic” grain. If b = 0 and a is
much larger than c, this means that the kernel is elongated horizontally, and so is the grain of the
resulting random function. In general, the matrix Σ represents an ellipsoid (whose axes are given by
its eigenvectors and eigenvalues), which determines the grain of the function. If this function is used
to simulate a turbulence, this will be the grain of the turbulence.

A major problem with the method above is that it does not allow to control directly the distribu-
tion of the pixel values, which is always normal by the central limit theorem (or Cauchy, if the initial
samples were Cauchy, or any other stable distribution). A trick to obtain other distributions consists
in applying an appropriate transformation to the given normal samples so that the resulting samples
have the desired target distribution. For example, if the variables X1, X2, X3 and X4 are indepen-
dent normal variables, then the variable Y = X1X2 − X3X4 has the Laplace distribution. Thus,
the following modified algorithm produces a random smooth function whose pixels have pointwise a
Laplace distribution:

Algorithm: Generate a smooth random function with the Laplace distribution

Input: desired dimensions (W,H,N) and a positive semidefinite matrix Σ

Output: an video I of correlated noise containing N frames of size W ×H

1. For each (i, j, t) in the image domain and s = 1, 2, 3, 4, set ns(i, j, t) := X, where X is a normal
random number generator

2. Compute the desired multivariate normal kernel:

k(i, j, t) :=
1

α
exp

(
−(i, j, t)Σ

(
i
j
t

))
3. Compute the convolutions Is = k ∗ ns for s = 1, 2, 3, 4.
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4. Compute the output image I = n1n2 − n3n4.

This method is not very flexible because it requires an ad-hoc and difficult to find formula for
each target distribution.

3.4 Simulate deformation, transportation and caustics

We have explained above how to warp an image according to a vector field, with or without mass
conservation. We have also explained how to generate random vector fields with various tunable
statistical properties. In order to generate turbulent videos we only have to combine these operations.

The following pseudocode describes an algorithm to compute three turbulent videos of different
kinds using the same random vector fields.

Algorithm: Compute turbulent versions of a clean image

Input: An image I, the desired number of frames N , a positive semidefinite matrix Σ controlling the
“grain” and “speed” of the turbulence, a “strength” of the turbulence µ, and various internal
normalization parameters such as λ.

Output: three videos Igeomi , Imassi and Icausti of N frames with different turbulence effects.

1. For each (i, j, t) in the video domain, and s = 1, 2 set us(i, j, t) = X, where X is a normal
random number generator

2. Compute the desired multivariate normal kernel:

k(i, j, t) :=
1

α
exp

(
−(i, j, t)Σ

(
i
j
t

))
3. Compute the convolutions u = k ∗ n1 and v = k ∗ n2, and put u = (µu, µv).

4. Compute Igeomt (i) := I(i + u(i, t))

5. Compute Imasst (i) := logλ |Id +Du(i, t)| + Igeomt (i)

6. Compute Icaustt (i) := I(i) + µ log
∣∣∣u(i,t)v(i,t)

∣∣∣

I(x) Igeom1 (x) Imass1 (x) Icaust1 (x)

Figure 1: An image I and three distorted versions by the same vector field.
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4 Identification of the models in real-world turbulence

On Figures 2-6 we display some video frames taken with an underwater camera. These images show
similar distortions as the ones that we have simulated above. It is difficult to cleanly separate the
effects (e.g., a bright small spot that is deformed onto a dark larger spot can be explained both
by mass transportation and by blur). However, it is clear that there are a few essentially different
deformations, since some of the images are blurry (3), some of the images are sharp but deformed (4),
and some of the images have non-uniform lighting (2).

In the case of sharp images, we can estimate the spectral profile of the blur kernel by comparing
the spectrum of one sharp image (which is roughly invariant to geometric deformations), with the
spectrum of the average of all video frames.

Figure 2: A real-world example of correlated additive noise due to turbulence. Notice that the shape
of the objects does not change, but that there is a grainy irregular lighting, visible over the flat areas.

Figure 3: A real-world example of blur due to turbulence. The turbulence on this video is very fast,
and this results in blur because the acquisition integrates many different images.
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Figure 4: A real-world example of geometric deformation due to turbulence. Notice that the bound-
aries of objects are sharp and their color does not change.

Figure 5: A possible real-world example of mass transportation due to turbulence. Notice that some
light and thin objects become darker when they are enlarged. This may be also explained as an
effect of blur.

Figure 6: A possible real-world example of phase screen due to turbulence. A punctual object is
duplicated near the center of the image. This effect can not be explained by the other models, but
is a common occurrence in phase screen distortions.
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