el árbol de formas de una imagen y su aplicación a la segmentación

enric meinhardt llopis

departament de tecnologia universitat pompeu fabra

24-08-2005

Outline

Introducción

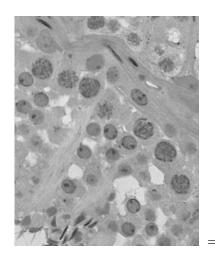
Definición del árbol

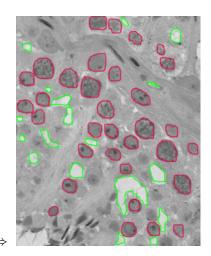
Aplicación: segmentación

Apéndice: observación "filosófica"

Outline

Introducción


Definición del árbol


Aplicación: segmentación

Apéndice: observación "filosófica"

El problema de la segmentación

Encontrar los diferentes tipos de células que aparecen en la imagen

Posibles soluciones para el problema de la segmentaión

Aproximaciones "variacionales"

- Contornos activos
- Regiones activas
- Ventaja: encuentran el mejor contorno según un criterio
- ► Inconveniente: requieren una buena inicialización

Aproximación "morfológica"

- Los bordes de los objetos son pedazos de curvas de nivel
- Inconveniente: eso no es siempre cierto
- Ventaja: muchas veces es una buena aproximación
- Ventaja: el conjunto de las curvas de nivel es manejable

Outline

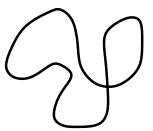
Introducción

Definición del árbol

Aplicación: segmentación

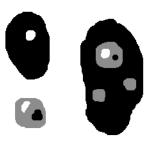
Apéndice: observación "filosófica"

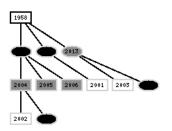
Una imagen se puede ver como un mapa topográfico


Los *conjuntos de nivel* de una imagen son las componentes connexas de las imágenes umbralizadas.

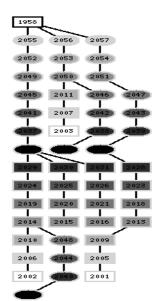
Las *curvas de nivel* son las fronteras de los conjuntos de nivel.

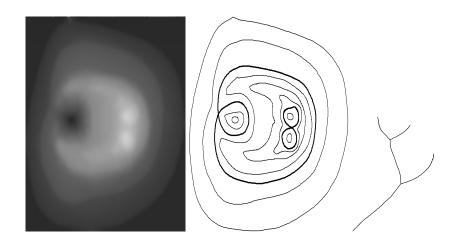
¿Cómo son las curvas de nivel de una imagen?


(vamos a suponer que la imagen es suave, sin trozos planos, y nos olvidamos de los lados de la imagen)

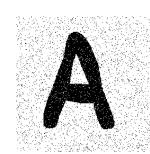


- la mayoría de las curvas son curvas de Jordan
- dos curvas de nivel, o bien son disjuntas o bien una está dentro de la otra
- por lo tanto, el conjunto de todas las curvas de nivel tiene una estructura de árbol
- este árbol ha sido llamado el "árbol de las formas" de la imagen


Árbol de una imagen sintética



Árbol de una imagen sintética con bordes suavizados



Árbol de una imagen sintética

El árbol de formas facilita algunas tareas de procesamiento

Aquí vemos el efecto de un filtro de grano

original (tiene 2717 regiones)

imagemegiones menores que 2 píxels (quedan 293 regiones)

las regiones menores que 4 píxels (quedan 10 regiones) po

Espacio de escala podando las formas pequeñas

original (tiene 18476 regiones)

mayores que 100 (3366)

mayores que 1000 (817)

Propiedades algoritmícas del árbol de formas

- El árbol de formas es una partición jerárquica de la imagen
- ▶ Para una imagen de n píxels, el coste de construir el árbol es O(n log n).
- Las operaciones siguientes tienen un coste proporcional a su output:
 - Ver si un píxel pertenece a una región o no
 - Recorrer el borde de una región
 - Recorrer todos los píxeles de una región
 - Dado un píxel, encontrar la región más pequeña que lo contiene
 - Dado un píxel, ver de qué regiones es fronterizo

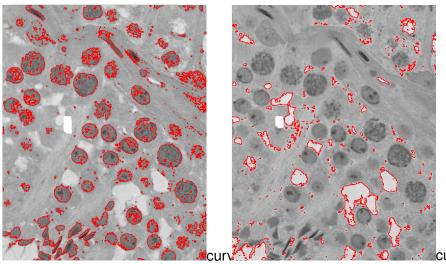
Bibliografía sobre el árbol de formas

- Artículo The tree of shapes of an image (Ballester, Caselles, Monasse, 2001). Definición formal del árbol para imágenes semicontínuas.
- Tesis doctoral de Pascal Monasse. Algoritmo eficiente de construcción del árbol.
- Software Megawave. Implementación del algoritmo de monasse.

Outline

Introducción

Definición del árbo

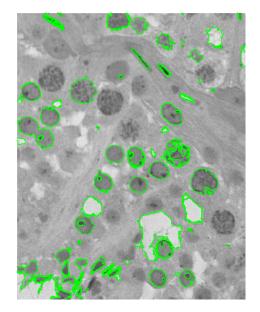

Aplicación: segmentación

Apéndice: observación "filosófica"

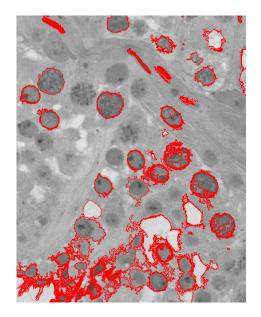
Segmentación como una selección de nodos del árbol

- Seleccionar unos cuantos nodos del árbol da lugar a una segmentación
- ► Se trata de decidir cuáles son los nodos *interesantes*

Selección de nodos mediante un umbral



del nivel 140 del nivel 200


Selección de nodos de Desolneux et al.

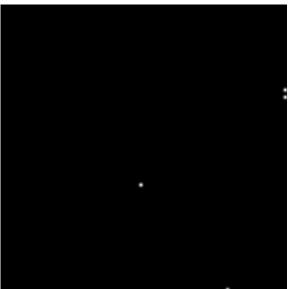
- Seleccionar aquellas curvas que sean suficientemente largas y suficientemente contrastadas
- ► El contraste de una curva se define como el mínimo módulo del gradiente de la imagen sobre la curva
- Para cada curva de longitud n y contraste μ se calcula la probabilidad que una curva de esas características aparezca en una imagen de ruido
- Si tal probabilidad es muy pequeña, se acepta la curva
- El umbral de aceptación se elige para que en imágenes de ruido aparezca como máximo una curva (principio de Helmholz)

Ejemplo de selección de nodos de Desolneux et al.

Selección de nodos con otra definición del contraste.

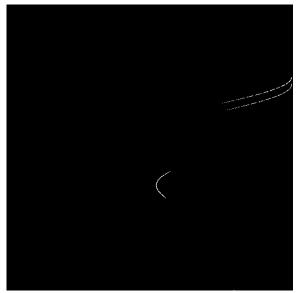
Otros criterios para la selección de nodos

- La selección por umbrales y áreas utiliza los descriptores nivel de gris y área
- La selección de Desolneux utiliza los descriptores perímetro y contraste mínimo
- En ambos casos, se selecciona una región (convexa) del espacio de descriptores
- Tal vez convendría utilizar espacios de descriptores más grandes

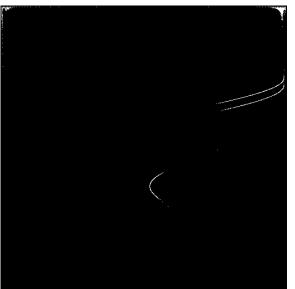

Espacios de descriptores

Algunos descriptores interesantes

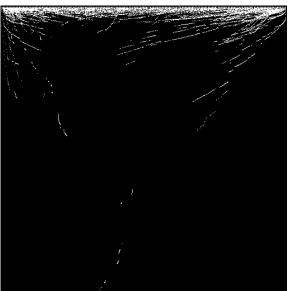
- área, perímetro
- nivel de gris
- nivel de gris medio del interior
- varianza del nivel de gris del interior
- contraste mínimo en el borde
- contraste medio en el borde


Proyección sobre el plano área / nivel medio de gris del interior

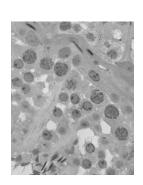
B

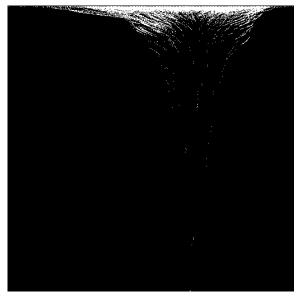

Proyección sobre el plano área / nivel medio de gris del interior

В


Proyección sobre el plano área / nivel medio de gris del interior

В




Proyección sobre el plano área / nivel medio de gris del interior

Proyección sobre el plano área / nivel medio de gris del interior

Conclusiones

- El árbol de formas es una descomposición jerárquica de la imagen en regiones
- La estructura de árbol facilita el cálculo de muchos descriptores de región
- La segmentación se puede ver como una selección de regiones en el espacio de descriptores

Trabajo actual y futuro

- Desarrollar buenos criterios para trabajar en el espacio de descriptores
- Interfaz de visualización del espacio de descriptores
- Construcción eficiente del árbol de formas en 3D

¿preguntas?

Outline

Introducción

Definición del árbol

Aplicación: segmentación

Apéndice: observación "filosófica"

Formación de sonidos versus formación de imágenes

Formación de sonido

- ▶ Un objeto, al vibrar, emite una onda de sonido
- Si hay varios objetos, el sonido resultante es la suma de todos ellos
- Por lo tanto, descomponer un sonido como suma de sonidos más simples es un buen análisis

Formación de imagenes

- Un objeto, al ser iluminado, produce una imagen
- ➤ Si hay varios objetos, la imagen resultante es la superposición de los más cercanos sobre los más lejanos
- Por lo tanto, descomponer una imagen como suma de imágenes más simples no tiene mucho sentido

