edge detection by selection of pieces of level sets

enric meinhardt llopis

departament de tecnologia universitat pompeu fabra

17-5-2008

Outline

Intro: the original DMM edge detector

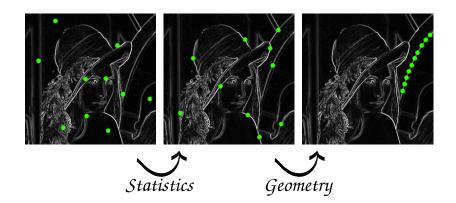
Exclusion principle

Coupling with Canny

Epilogue: ???

Outline

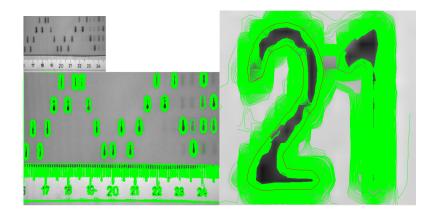
Intro: the original DMM edge detector


Exclusion principle

Coupling with Canny

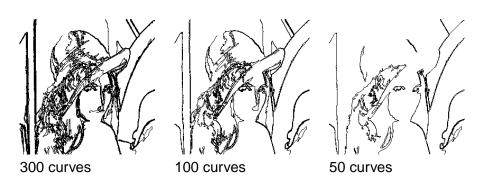
Epilogue: ???

The original DMM edge detector


- Edges are modelled as independent samples of points over the gradient image
- Pieces of level lines are fed to this model

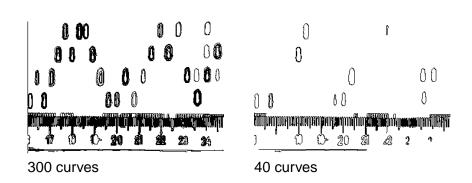
Results of the original DMM edge detector

Results of the original DMM edge detector



Problem with the original DMM edge detector

There are too many edges!


A naïve solution to reduce the number of edges

Random selection of some meaningful edges

A naïve solution to reduce the number of edges

Random selection of some meaningful edges

Outline

Intro: the original DMM edge detector

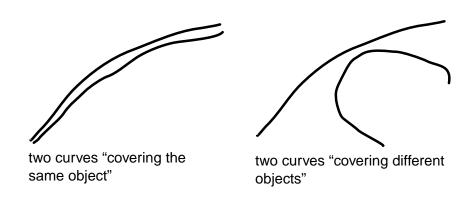
Exclusion principle

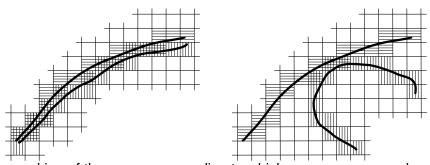
Coupling with Canny

Epilogue: ???

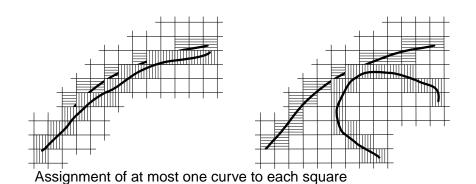
Smarter-than-random selection of meaningful edges

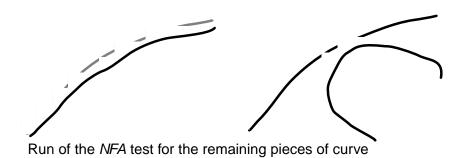
inspiration

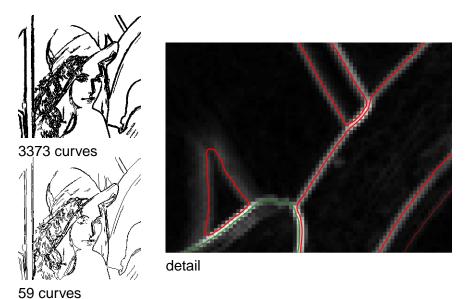

► What do they do for segment detection?: (they pick a representative for each bundle of parallel overlapping segments)


criterion

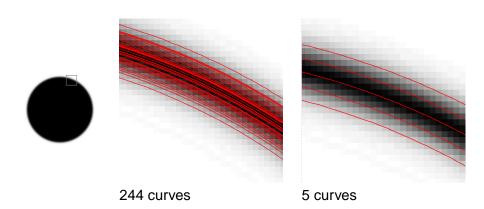
Impose that each pixel may only be crossed by one output curve


algorithm


 Greedily select meaningful edges while the criterion can be fulfilled



marking of the squares according to which curve crosses each one



Exclusion principle results

Exclusion principle results

Discussion about exclusion principle

- Redundancy removal: greatly reduces output size
- Faithfulness: no edges are lost
- Remaining redundancy: wide edges are still over-represented
- Scale dependency: edges which are W pixels wide are represented W times

How to remove the remaining redundancy?

two possibile approaches

- Look directly for wide edges
- Coupling with Canny

we settled on the second option

Outline

Intro: the original DMM edge detector

Exclusion principle

Coupling with Canny

Epilogue: ???

Recalling Canny's filter

- Select points where the norm of the gradient is maximal in the direction of the gradient
- Implemented using non-maximum suppression on the gradient image

Coupling Canny and DMM

Really simple idea: Take DMM and use Canny's filter in place of the norm of the gradient.

four resulting algorithms


- DMM Original algorithm
- DMM/X DMM with exclusion principle
- DMM/Canny DMM using Canny instead of gradient
- DMM/Canny/X DMM/Canny with exclusion principle

DMM/Canny results

DMM 244 curves

DMM/X 5 curves

DMM/Canny 101 curves

DMM/Canny/X 1 curve

DMM/Canny results

DMM 3373 curves

DMM/X 59 curves

DMM/Canny 3198 curves

DMM/Canny/X 88 curves

DMM/Canny results

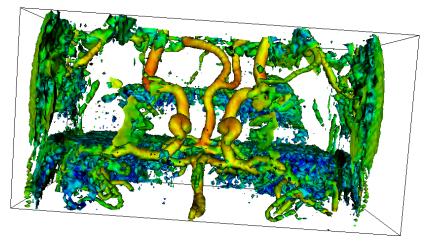
DMM/X: 85 curves

DMM/Canny/X 57 curves

Conclusion

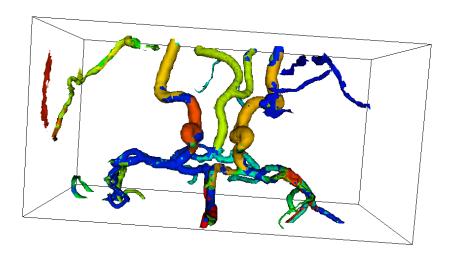
- Original DMM algorithm produces a bundle of curves for each edge
- Proposed exclusion principle picks best representatives of each bundle
- Proposed use of Canny's filter makes the bundles narrower

Outline

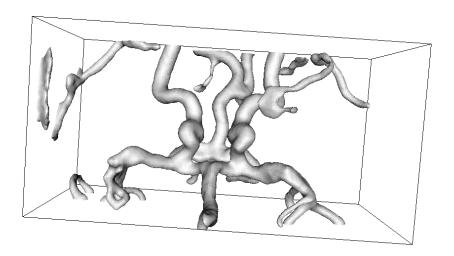

Intro: the original DMM edge detecto

Exclusion principle

Coupling with Canny

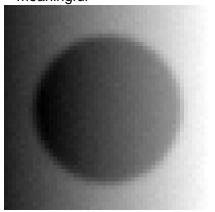

Epilogue: ???

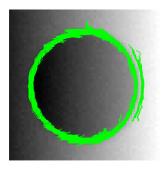
3D results


manually selected isosurface of a magnetic resonance image

3D results

result of our algorithm on a MRI


3D results



result of edge linking

Necessity of pieces of level lines

A well-contrasted image none of whose level curves is meaningful

