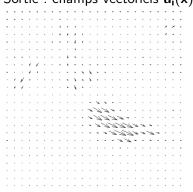
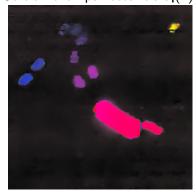
flot optique et images satellitales


9 - 5 - 2012

Le problème du flot optique

Sortie: champs vectoriels $\mathbf{u_i}(\mathbf{x})$

Critère: $I_{t+1}(\mathbf{x} + \mathbf{u}_t(\mathbf{x})) = I_t(\mathbf{x})$


Critère linearisé : $\nabla I \cdot \mathbf{u} + \frac{\partial}{\partial t}I = 0$

Le problème du flot optique

Entrée : vidéo $I_i(\mathbf{x})$

Sortie: champs vectoriels $\mathbf{u_i}(\mathbf{x})$

Critère : $I_{t+1}(\mathbf{x} + \mathbf{u}_t(\mathbf{x})) = I_t(\mathbf{x})$

Critère linearisé : $\nabla I \cdot \mathbf{u} + \frac{\partial}{\partial t}I = 0$

Applications aux images satellitales

- Calcul des disparités sans stéreorectification
- Interpolation/raffinement des données de block-matching
- Débruitage

Méthodes analysées

Seulement des méthodes variationnelles

Trouver le champ de vecteurs qui minimise les énergies suivantes :

Horn-Schunck :
$$E(u) = \int |\nabla I \cdot u + I_t|^2 + \alpha^2 \int |\nabla u|^2$$

TV-L1:
$$E(u) = \int |\nabla I \cdot u + I_t| + \frac{\lambda}{\lambda} \int |\nabla u|$$

Lucas-Kanade :
$$E(u(x)) = \int |\nabla I(x+y) \cdot u(x) + I_t(x+y)|^2 g_{\sigma}(y) dy$$

Chaque méthode a un paramètre de régularisation.

Nécessité de la multi-échelle

Ces méthodes ne sont adaptés qu'aux petits déplacements. Mais tout déplacement est sous-pixelien à une échelle sufisantment petite

taille: 1920×1080

déplacement : 100 pixels

taille : 15×8

déplacement : sous-pixelien

Nécessité de la multi-échelle

Ces méthodes ne sont adaptés qu'aux petits déplacements. Mais tout déplacement est sous-pixelien à une échelle sufisantment petite

taille : 1920×1080

déplacement : 100 pixels

taille: 15×8

déplacement : sous-pixelien

Méthode de Horn-Schunck

Fonctionnel :
$$E(u) = \int |\nabla I \cdot u + I_t|^2 + \alpha^2 \int |\nabla u|^2$$

Algorithme : système linéaire \implies Gauss-Seidel

Paramètres :	interpretation	min	défaut	max
α	régularisation	0	10	100
$\overline{\eta}$	facteur d'échelle	1.1	1.6	3
$N_{ m first}$	première échelle	1	6	$1 + \log_{\eta}(\mathrm{taille})$
$N_{ m last}$	dernière échelle	1	1	$N_{ m first}$
ϵ	condition d'arrêt	0	0.001	1
M	maximum d'itérations	1	500	∞

Références :

[B.K.P. Horn and B.G. Schunck, Determining Optical Flow, MIT AI MEMO 1980]

[E. Meinhardt and J. Sánchez, Horn-Schunck Optical Flow, IPOL 2012]

Méthode TV-L1

Attache aux données L1 avec régularisation par variation totale

Fonctionnel :
$$E(u) = \int |\nabla I \cdot u + I_t| + \frac{\lambda}{\lambda} \int |\nabla u|$$

Algorithme : séparation de variables, puis méthode de Chambolle

et seuillage :
$$E(u,v) = \int |\nabla I \cdot u + I_t| + \frac{1}{2\theta} |u - v|^2 + \frac{\lambda}{\lambda} \int |\nabla v|$$

Paramètres :	interpretation	min	défaut	max
λ	régularisation	0	6	100
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	facteur d'échelle	1.1	1.6	3
$N_{ m first}$	première échelle	1	6	$1 + \log_{\eta}(\mathrm{taille})$
$N_{ m last}$	dernière échelle	1	1	$N_{ m first}$
ϵ , τ , θ ,	paramètres internes			

Références :

[A.Chambolle, An algorithm for total variation minimization and applications, JMIV 2004]

[C.Zach, T.Pock and H.Bischof, A duality based approach for realtime TV-L1 Optical Flow, Pat.Rec. 2007]

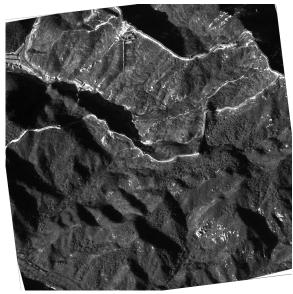
[J.Sánchez, E.Meinhardt and G.Facciolo, TV-L1 Optical Flow Estimation, IPOL 2012]

Méthode Lucas-Kanade

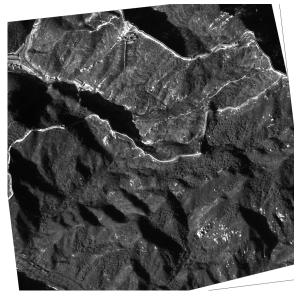
Estimation d'un modèle localement constant

Fonctionnel:
$$E(u(x)) = \int |\nabla I(x+y) \cdot u(x) + I_t(x+y)|^2 g_{\sigma}(y) dy$$

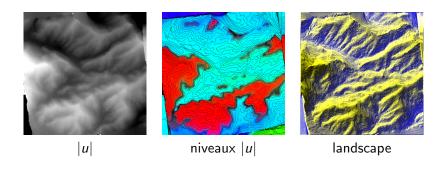
Algorithme : moindres carrées de dimension 2 pour chaque pixel.

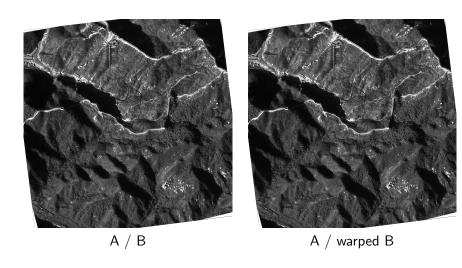

Paramètres :	interpretation	min	défaut	max
σ	amplitude de la fenêtre	1	3	∞
$\overline{\eta}$	facteur d'échelle	1.1	1.6	3
$N_{ m first}$	première échelle	1	6	$1 + \log_{\eta}(\text{taille})$
$N_{ m last}$	dernière échelle	1	1	$N_{ m first}$
k	taille de la fenêtre	3	5	taille de l'image

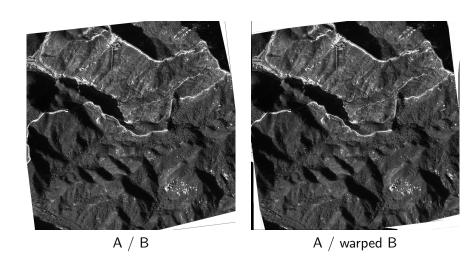
Références :


[B.D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, 1981]

[J.Y.Bouguet, Pyramidal implementation of the affine lucas kanade feature tracker, 2001]


Crop 1024x1024

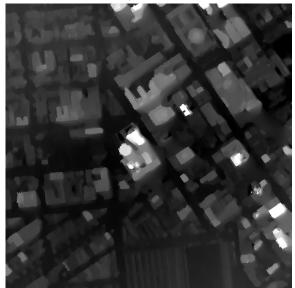

Crop 1024x1024


Crop 1024×1024, temps TVL1 = 18s

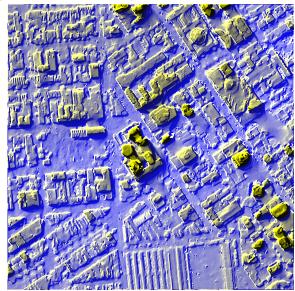
Crop 1024×1024, temps TVL1 = 18s

Crop 1024 \times 1024, temps TVL1 = 18s

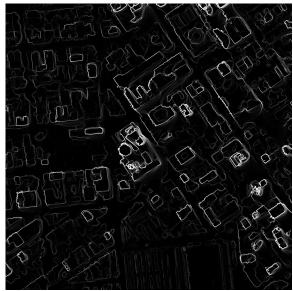
Crop rectifié 2048×2048


 $\mathsf{image}\;\mathsf{B}$

Crop rectifié 2048×2048


 $\mathsf{image}\ \mathsf{A}$

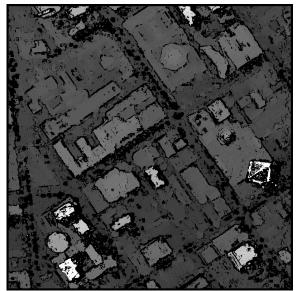
Crop rectifié 2048×2048, temps TVL1 = 149s


|u|

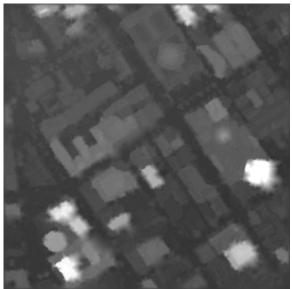
Crop rectifié 2048×2048, temps TVL1 = 149s

land scape

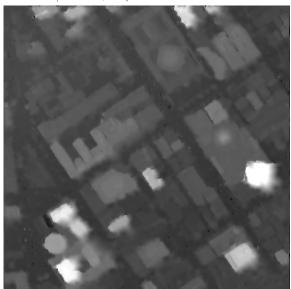
Crop rectifié 2048×2048, temps TVL1 = 149s



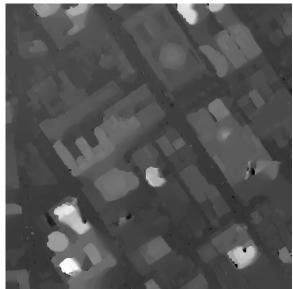
Crop rectifié 2048×2048, temps TVL1 = 149s


 $\operatorname{div}(u)$

Pair Melbourne/Victoria, crop rectifié 800x800


résultat BM

Pair Melbourne/Victoria, crop rectifié 800x800


interpolation AMLE

Pair Melbourne/Victoria, crop rectifié 800x800

raffinement par flot optique

Pair Melbourne/Victoria, crop rectifié 800x800

flot optique tout seul

Pair Melbourne/Victoria, crop rectifié 800x800

 $\mathsf{image}\ \mathsf{A}$

Pair Melbourne/Victoria, crop rectifié 800x800

 $\mathsf{image}\ \mathsf{B}$

image 01/17

image 02/17

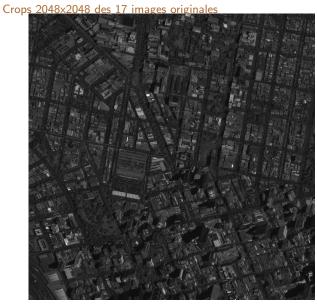


image 03/17

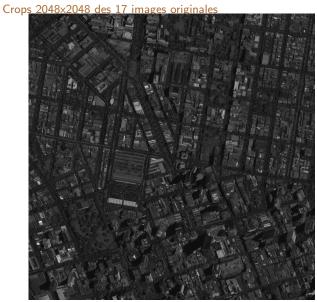


image 04/17

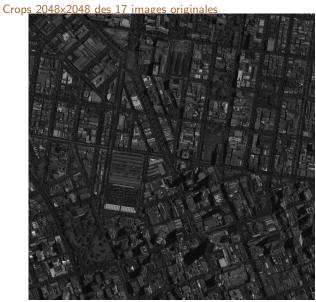


image 05/17

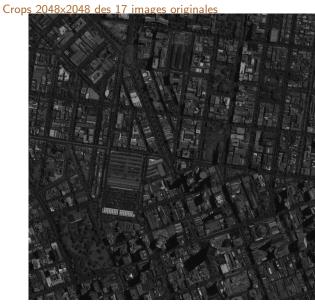


image 06/17

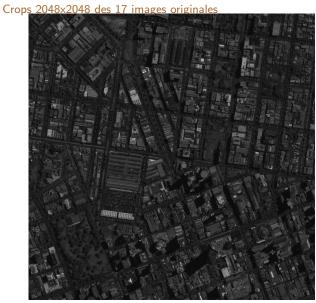


image 07/17

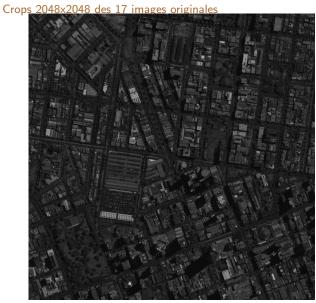


image 08/17

Crops 2048x2048 des 17 images originales

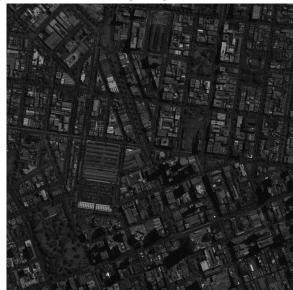


image 09/17

Crops 2048x2048 des 17 images originales

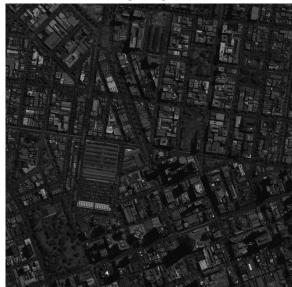
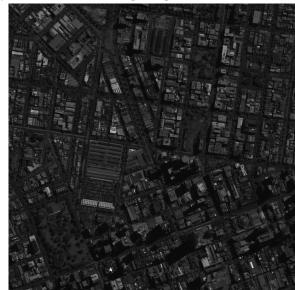



image 10/17

Crops 2048x2048 des 17 images originales

 $\mathsf{image}\ 11/17$

Crops 2048×2048 des 17 images originales

image 12/17

Crops 2048×2048 des 17 images originales

 $\mathsf{image}\ 13/17$

Crops 2048×2048 des 17 images originales

image 14/17

Crops 2048x2048 des 17 images originales

image 15/17

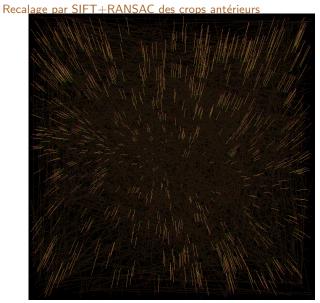
Crops 2048x2048 des 17 images originales

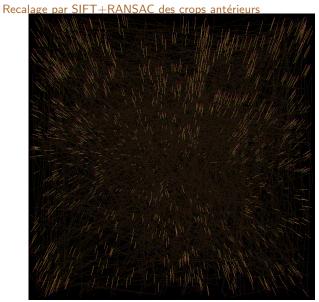
image 16/17

Crops 2048x2048 des 17 images originales

image 17/17

 $matches \ 09/01$


 $\mathsf{matches}\ \mathsf{09}/\mathsf{02}$


matches 09/03

matches 09/04

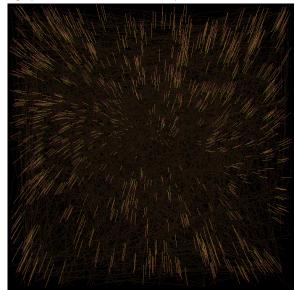
 $\mathsf{matches}\ \mathsf{09}/\mathsf{05}$

 $\mathsf{matches}\ \mathsf{09}/\mathsf{06}$

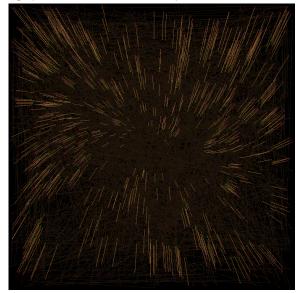

matches 09/07

 $matches \ 09/08$

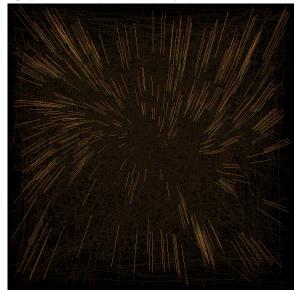
 $\mathsf{matches}\ \mathsf{09}/\mathsf{10}$


matches 09/11

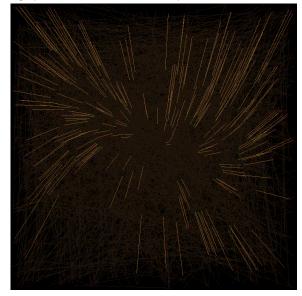
Recalage par SIFT+RANSAC des crops antérieurs


 $\mathsf{matches}\ \mathsf{09}/\mathsf{12}$

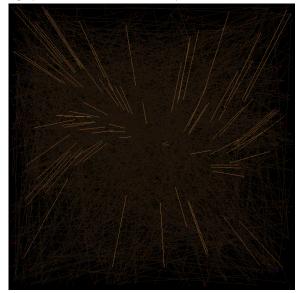
Recalage par SIFT+RANSAC des crops antérieurs


 $\mathsf{matches}\ \mathsf{09}/\mathsf{13}$

Recalage par SIFT+RANSAC des crops antérieurs


matches 09/14

Recalage par SIFT+RANSAC des crops antérieurs


matches 09/15

Recalage par SIFT+RANSAC des crops antérieurs

 $\mathsf{matches}\ \mathsf{09}/\mathsf{16}$

Recalage par SIFT+RANSAC des crops antérieurs

matches 09/17

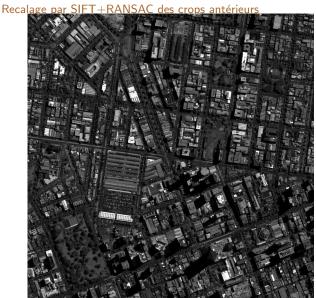


image centrale

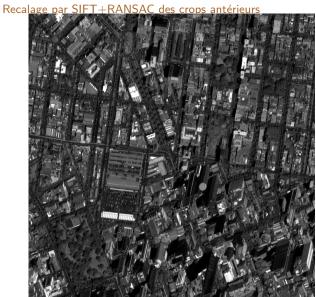


image 01/17

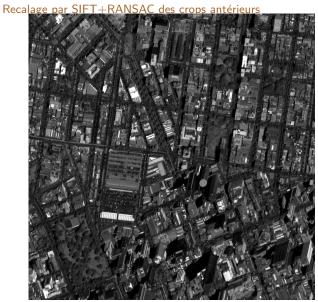


image 02/17

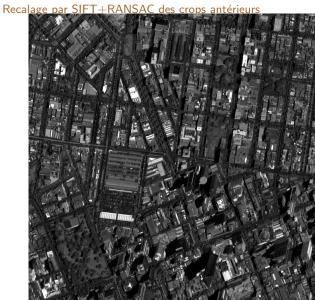


image 03/17

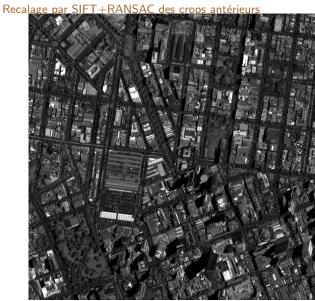


image 04/17

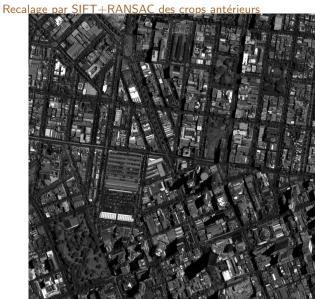


image 05/17

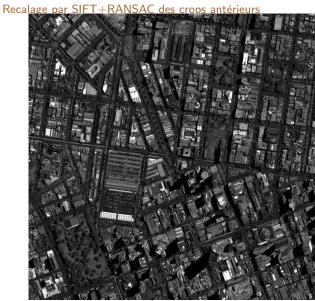


image 06/17

image 07/17

image 08/17

Recalage par SIFT+RANSAC des crops antérieurs

image 09/17

Recalage par SIFT+RANSAC des crops antérieurs

image 10/17

Recalage par SIFT+RANSAC des crops antérieurs

image 11/17

Recalage par SIFT+RANSAC des crops antérieurs

image 12/17

Recalage par SIFT+RANSAC des crops antérieurs

image 13/17

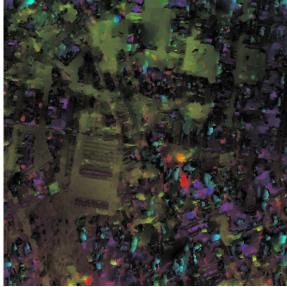
Recalage par SIFT+RANSAC des crops antérieurs

image 14/17

Recalage par SIFT+RANSAC des crops antérieurs

image 15/17

Recalage par SIFT+RANSAC des crops antérieurs


 $\mathsf{image}\ 16/17$

Recalage par SIFT+RANSAC des crops antérieurs

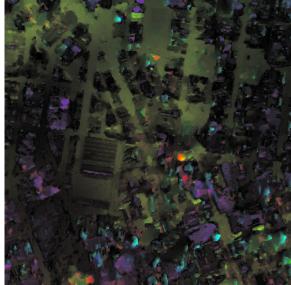
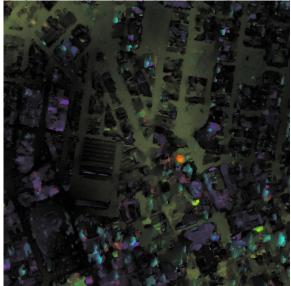
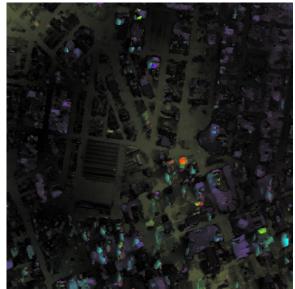
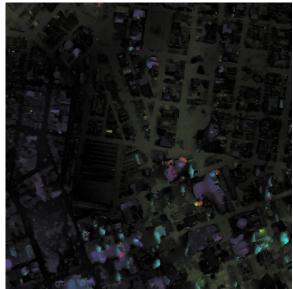
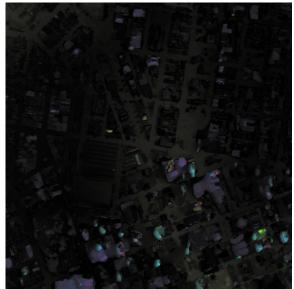


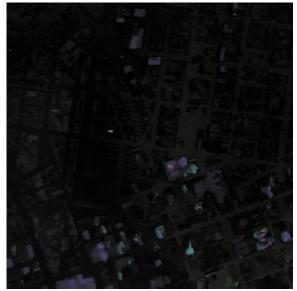
image 17/17


Flot optique des images 2048x2048 recalés. Temps TVL1 = 70s par image


Flot optique des images 2048x2048 recalés. Temps TVL1 = 70s par image

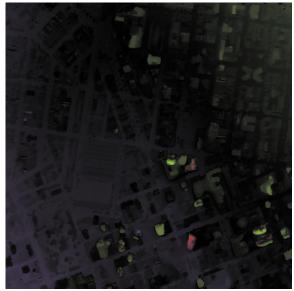

Flot optique des images 2048x2048 recalés. Temps TVL1 = 70s par image


Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

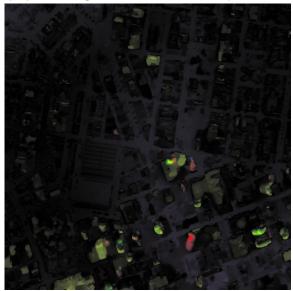

Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

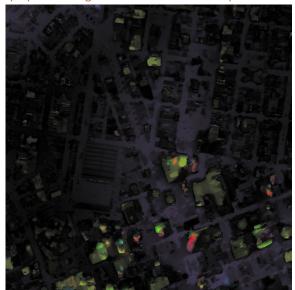

Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image


Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

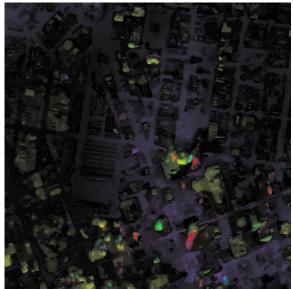
Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

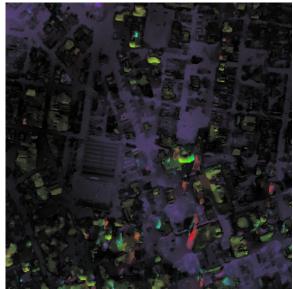


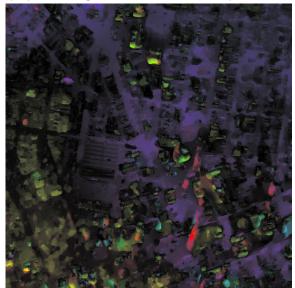
Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image



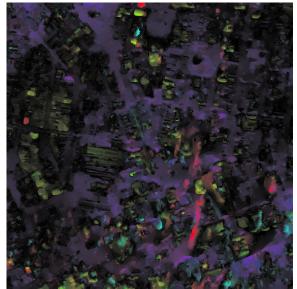
flot 09/11


Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image


Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image


Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image



Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

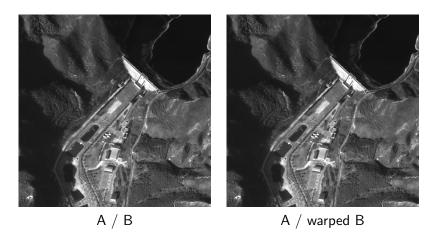
 $\mathsf{flot}\ \mathsf{09}/\mathsf{16}$

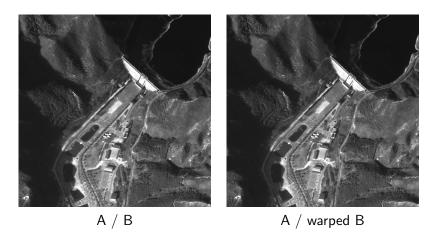
Flot optique des images 2048×2048 recalés. Temps TVL1 = 70s par image

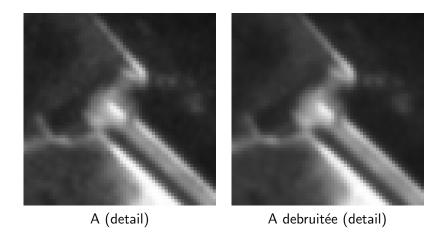
Débruitage à partir des 7 images centrales

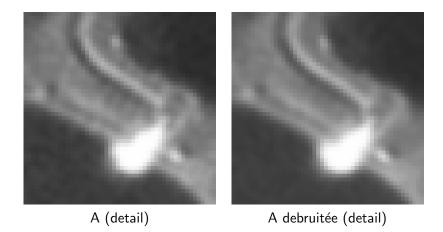
original / débruitée

(detail)


Débruitage à partir des 7 images centrales




original / débruitée



(detail)

Conclusion

Le flot optique est un outil dont son interêt pour les images satellitales n'est pas clair, mais il mérite être étudié.

- Précision sous-pixeliene par défaut
- Seulement petites disparités
- Pas besoinde stéreo-réctification
- ► Très sensible aux changements d'illumination