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Abstract

In this article we review the typical uses of Riemannian geometry in
image processing and we propose new applications arising from natural
geometric operations. Abstract surfaces are a common tool in image pro-
cessing, where a metric in the plane is built using the gradient of an
image, thus defining a Riemannian manifold. The most famous examples
are active contours, which are are closed geodesics, and anisotropic dif-
fusion, which is the heat equation on the manifold. In this context, we
investigate Gaussian curvature, Ricci flow, and the spectral theory of the
Laplace-Beltrami operator. Each of these constructions leads to a new
tool for image processing.

1 Introduction

The purpose of this article is to explore the applications of Riemannian geometry
to image processing. Some of these applications, such as active contours [1],
image-guided diffusion [2] or Cheeger cuts [3] are already standard tools in image
processing. However, there are still many standard ideas from Riemannian
geometry [4] that are seldom, if ever, used in the context of image processing.
For example, Gaussian curvature, the Laplace-Beltrami operator or Ricci flow.
Thus the main goal of this article is to investigate how useful these ideas are as
image processing tools.

The focus of this article is geometric rather than analytical. Thus, we do
not worry about questions of convergence. However, we have implemented all
the proposed techniques and the source code of the experiments is available as
supplementary material.

In this article, an image determines an abstract surface; not the graph
(x, y, I(x, y)), but an abstract manifold (M, g) where M is a rectangle and g
is a metric field, typically defined from the gradient of I. In particular our
surfaces need not be embedded in any higher-dimensional space. All the de-
scribed geometric techniques are already in use for surfaces embedded in 3D.
The novelty of the present article is to use them for the abstract surfaces that
are defined by images.

Plan of the paper: §2 Summary of Riemannian geometry. §3 Examples of
metric tensors. §4 Common uses of Riemannian geometry in image processing.
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Figure 1: Two interpretations of the same Riemannian manifold: a compli-
catedly curved submanifold of a flat space, or a flat manifold with complicated
metric field. In both cases, a closed geodesic is shown. The second interpretation
is useful in image processing, where the geodesics are called active contours.

§5 New applications.

2 Summary of Riemannian geometry

On this section we remind the basic constructions of Riemannian geometry [4].
Let M be a flat surface, for example a rectangle or the whole plane. A Rie-

mannian metric assigns to each point p ∈M a symmetric and positive definite
matrix gp = (E F

F G ). This matrix defines an inner product on the space of all
vectors emanating from point p. Thus, if xp and yp are vectors at point p, their
inner product is

gp(xp, yp) := xTp · gp · yp
and the norm of a vector is

‖xp‖g :=
√
gp(xp, xp).

The inner product allows to compute the angle between two vectors at the same
point, but the angle between two vectors at different points, is not defined.
This is the most important difference with respect to the Euclidean plane,
where vectors based at different points can be compared directly. Henceforth,
the set M equipped with the metric g, will be called the manifold. It is a
Riemannian manifold of dimension 2, also called Riemannian surface (but not
a Riemann surface, which is a different thing requiring a complex structure).

2.1 Length, area and distance

The length of a curve γ : [0, 1]→M is

length(γ) :=

∫ 1

0

‖γ′(t)‖g dt. (1)
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The length is independent of the parametrization. The action of the curve is

action(γ) :=

∫ 1

0

‖γ′(t)‖2g dt

The length is independent of the parametrization, but the action depends on
the parametrization. Given two points p, q ∈M their distance is defined as

dist(p, q) := inf
γ

length(γ)

where the inf is taken among all the curves γ joining p and q. With this
distance the manifold has the structure of a metric space. Finally, the area of
a region B ⊆M is defined as

area(B) :=

∫
B

√
EG− F 2 dxdy.

With this area measure, the manifold has the structure of a measure space.
These seemingly innocent expressions encode a lot of notation. The length

of a curve (x(t), y(t)) is, fully expanded,∫ 1

0

√
E(x(t), y(t))ẋ(t)2 + 2F (x(t), y(t))ẋ(t)ẏ(t) +G(x(t), y(t))ẏ(t)2 dt.

A moderately verbose notation, useful for practical computations, is the follow-
ing

length =

∫ 1

0

√
Eẋ2 + 2Fẋẏ +Gẏ2

or even

length =

∫
ds2

where
ds2 = Edx2 + 2Fdxdy +Gdy2

2.2 Geodesics

Geodesics are curves of locally minimal length. This means that a curve is a
geodesic when it can not be shortened by making a small deformation. Geodesics
parametrized by arc-length satisfy the following differential equations:{

ẍ = Γxxx ẋ
2 + 2Γxxy ẋẏ + Γxyy ẏ

2

ÿ = Γyxx ẋ
2 + 2Γyxy ẋẏ + Γyyy ẏ

2

where the Christoffel symbols Γijk are expressions containing E,F,G and their
partial derivatives with respect to x and y. There may be many geodesics of
different length joining the same pair of points; but the shortest curve that joins
two points, when it exists, is always geodesic.
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2.3 The Laplace-Beltrami operator

The differential operators of vector calculus have to be adapted to the non-
Euclidean settings. The differential operators of the gradient, divergence and
Laplacian need to be adapted to the non-Euclidean setting. For example, we
want the gradient of a function f to be a vector perpendicular to the level lines
of f (where perpendicularity is defined using the metric tensor). There are many
equivalent definitions, but for computational purposes we content ourselves with
their coordinate expressions:

grad (f) :=

(
Gfx − Ffy
EG− F 2

,
Efy − Ffx
EG− F 2

)

div (p, q) :=

(
p
√
EG− F 2

)
x

+
(
q
√
EG− F 2

)
y√

EG− F 2

and the Laplacian, which is called the Laplace-Beltrami operator, is defined as
the divergence of the gradient:

∆gf :=
1√

EG− F 2

[(
fxG− fyF√
EG− F 2

)
x

+

(
fyE − fxF√
EG− F 2

)
y

]

These operators describe many geometric constructions on the manifold. For
example, the distance function to any subset of the manifold satisfies the Eikonal
equation |grad(u)| = 1. The diffusion of information in the manifold is governed
by the heat equation ut = ∆gu. Similarly, the wave, Poisson and Schrdinger
equations on the manifold can be defined, and so on.

The operator −∆g is linear and, assuming Neumann boundary conditions,
self-adjoint with respect to the area element (

∫
p∆gq dA =

∫
q∆gp dA). More-

over, it is positive-definite. Thus, it has a sequence of eigenvalues 0 = λ1 < λ2 <
· · · which, unless the manifold has symmetries, are all different. The eigenfunc-
tions {ϕk} satisfy ∆gϕk = λkϕk and are an orthogonal basis of smooth functions
on M . When the metric is conformal to the Euclidean (meaning that F = 0
and E = G), then ∆gf = 1

E (fxx + fyy).

2.4 Gaussian curvature

Gaussian curvature measures how non-Euclidean the surface is at each point.
Typically, a surface has regions of positive curvature (called elliptical points)
and regions of negative curvature (called hyperbolic points) separated by curves
of zero curvature (called parabolic curves). Some degenerate cases are possible,
for example isolated parabolic points or regions of vanishing curvature, which
are called flat.

There are many equivalent definitionsof curvature which provide different
insights to its meaning [5]. For example, the relative difference of the perimeter
of a circle of radius ε with 2πε, as ε tends to zero. For our purposes, a coordinate
expression is more manageable. Due to the many symmetries of the Christoffel
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symbols there are a lot of different coordinate expressions. The shortest one
that we could find is the following one: A possible coordinate expression is the
following:

K = div

(−Γyxy
E

,
Γyxx
E

)
In the particular case of a metric conformal to the Euclidean, Gaussian curvature
has the following form

K = −1

2
∆ logE (2)

Points where K = 0 are called parabolic points.

2.5 Geodesic curvature

The geodesic curvature of a curve is a measure of how far the curve is to being a
geodesic. If the curve is parametrized by arc-length, the geodesic curvature is its
acceleration. In general coordinates, the geodesic curvature of a parametrized
curve γ(t) = (x(t), y(t)) is given by

κ(γ) :=
g(∇γ′γ′ , Jγ′)

‖γ′‖3g

where ∇γ′γ′ is the intrinsic acceleration, given by

∇γ′γ′ :=

ẍ+ Γxxx ẋ
2 + 2Γxxy ẋẏ + Γxyy ẏ

2

ÿ + Γyxx ẋ
2 + 2Γyxy ẋẏ + Γyyy ẏ

2


Notice that the geodesic equations say exactly ∇γ′γ′ = 0, thus geodesics have
vanishing geodesic curvature. The geodesic curvature of the coordinate axis has
a particularly simple form:

κ(horizontal) = Γyxx

√
EG− F 2

E
√
E

κ(vertical) = −Γxyy

√
EG− F 2

G
√
G

.

2.6 Ricci flow

So far we have worked on a manifold with a single, fixed metric. The Ricci flow
is a geometric flow by which the metric itself evolves according to a diffusion
equation, and ultimately converges to a metric of constant curvature. It is
defined by the following system of four PDE:

gt = −Kg

Where K is the Gaussian curvature of the metric g. To obtain this simple
form [6] we have to assume periodic boundary conditions (so that M is a flat
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torus). The matrix Ric = Kg is called the Ricci tensor, hence the name. It is
known [6] that Ric is approximated to first order by −∆g, where the Laplace-
Beltrami acts componentwise on g. Thus the Ricci flow is well approximated by
the heat equation acting on the metric gt = ∆g. However, this interpretation
serves only as a heuristic guide, since the approximation is not stable over time.
For the actual computations, it is better to stick to the initial description. Yet,
the current numerical methods for solving this highly nonlinear equation are
expectedly unstable [7].

3 Metrics

In this section we summarize some metrics that can be defined from a base
image I.

The simplest metrics are conformal to the Euclidean, which have the form
g = h(‖∇I‖) ( 1 0

0 1 ), where h is a decreasing function, such as h(s) = 1
s or h(s) =

e−s
2/2σ2 . Another example are anisotropic metrics, like

g = ∇I ⊗∇I + λ∇I⊥ ⊗∇I⊥

Here λ is intended to be a small number, or h(‖∇I‖).
Any embedding φ : M ↪→ Rn of the image domain defines a metric, induced

by the Euclidean metric of Rn:

g =

(
φx · φx φx · φy
φx · φy φy · φy

)
(3)

where the dots represent the Euclidean scalar product in Rn. For example, the
graph of the image intensity is an embedding into R3, and the RGB colors are
an embedding into R5. Local patches also define an embedding. For example,
patches of size 7 × 7 give an embedding into R49. The matrix of the induced
metric coincides with the local structure tensor computed using 7×7 square
neighborhoods.

Finally, the affine invariant gradient [8] is defined as

∇affI :=
|det(HI)|

|∇IT ·HI · ∇I|

where HI denotes the Hessian matrix of I. This is an affine invariant quan-
tity that can be used to replace the gradient magnitude ‖∇I‖ in the previous
formulas.

4 Explicit uses of Riemannian geometry in im-
age processing

In this section we recall four common and well-established uses of Riemannian
metrics in image processing.
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(a) (b)

Figure 2: Application of Riemannian thin plates to the problem of coloriza-
tion. (a) Color traces drawn on a grayscale image. (b) Solution of the problem
described in equation (5)

4.1 Active contours

Snakes [9, 1] or active contours were introduced as energy-minimizing curves on
an abstract surface. In the original description, the manifold is vividly called
a snake pit, where a user is supposed to draw a curve (the “snake”) which will be
the starting point for minimizing the energy. The general snake energy E(γ) =∫
L(γ, γ̇, γ̈), includes our geodesic length (1) as a particular case when L = ‖γ̇‖g.

Independently, it was realised the convenience to represent the evolution of
curves implicitly; thus, instead of evolving a curve expressed parametrically,
the equations describe the evolution of a function whose zero-level set is the
curve. This was first done for curves evolving under mean-curvature motion [10].
Finally, geodesic active contours [1] were introduced as a general settings to
describe the evolution of implicit curves in an arbitrary Riemannian manifold
towards a closed geodesic. Notice however that closed geodesics are much less
general than arbitrary geodesics, and implicit methods can only find closed
geodesics. In the context of image processing, active contours are used to find
smooth curves that follow the edges of an image I. Thus, curves following
the edges need to have a much smaller energy that curves that cross through
flat regions. This means that the metric has to be small on the parts of high
gradient of I. An ideal candidate is then the function 1

‖∇I‖ , which has the

desirable feature of being infinite on constant regions. In practice, it is better
to use a bounded decreasing function of the gradient (see section 3).
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4.2 Anisotropic diffusion

Anisotropic diffusion [11, 2] smooths an image without blurring the edges. Many
kinds of anisotropic diffusion correspond [12] to the heat equation on a certain
manifold (M, g), the metric tensor g being the diffusion tensor:{

ut = ∆gu

u(0) = I
(4)

In the conformal case, ∆g = 1
E∆ (notice that E appears outside the Euclidean

Laplacian). Notice that the metric remains constant along all the evolution, so
that the original Perona-Malik diffusion, which uses a time-varying metric, can
not yet be described in this framework.

The purpose of anisotropic diffusion is to avoid diffusion through edges.
Thus, the metric has to be large on the parts of high gradient of I. This is
the opposite as for the computation of geodesics. In fact, looking at the units
of each term in a physical setting, for diffusion it makes sense to use the dual
metric, whose matrix is the inverse of g.

4.3 Cheeger cuts

Normalized cuts [3] are a popular graph-based image segmentation technique.
They can be interpreted as a discretization [13] of an isoperimetric problem on
a manifold (M, g). The resulting techniques for this and related problems have
been widely used for image processing [14].

Weights are assigned to the edges of a graph according to the color differ-
ence joined pixels. Then, a relaxed discrete optimization is used to find the
partition of the vertex whose cut (sum of edge weights) has the minimal cost
(appropriately normalized by the volume of each part).

Thanks to the discretization technique used in graph-cuts [13], any Rieman-
nian metric can be discretized into a graph so that cuts of the graph have a
weight that approximates geodesic length. Thus, normalized cuts are readily
interpretable in a continuous setting (M, g) as an isoperimetric problem

min
A⊆M

length(∂A)

min(area(A), area(M\A))

The resulting techniques of this and related problems have been widely used for
image processing [14].

4.4 Geodesic Voronoi segmentations

A typical tool in surface segmentation are Voronoi diagrams [15]. The same
techniques are used on the abstract surfaces of images [16, 17]. The resulting
fast marching algorithms are modeled upon the Eikonal equation ‖∇gu‖ = 1.
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(a) (b)

Figure 3: Parabolic curves drawn on (a) the surface of the Apollo Belvedere,
and (b) the abstract surface of the Lena image. In the first case they have no
apparent structure. In the second case they follow the edges of the image.

5 New Possibilities

In this section we propose six new applications of Riemannian geometry to image
processing: Riemannian thin-plate splines, curvature edges, spectral descriptors,
Chladni figures, eigenfunction approximation and Ricci flow.

5.1 Riemannian thin plates

Thin plate splines [18] interpolate data given at scattered points. They are
determined by the equation ∆∆u = 0, with boundary conditions given by the
data points.

This definition is readily mapped to our Riemannian setting, The advantage
is that now, biharmonic functions are slowly varying on the Riemannian surface,
but they can be forced to be almost discontinuous in the Euclidean coordinates.
leading to a form of guided interpolation [19]. Thus given some data values f :
B→R on a set B ⊆M , we consider the following equation on Ω = M\B:{

∆g∆gu = 0 in Ω

u = f in ∂Ω
(5)

This linear equation is discretized and solved by standard methods such as
Gauss-Seidel. A possible application is image colorization (see Fig. 2), where
we solve this equation three times, one for each color channel f , and finally we
impose the intensities of the original image. Thanks to the metric, most of the
variation of the solutions f happens along the edges of the image.
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Figure 4: Partition of the image domain according to the sign of Gaussian
curvature. Left: Smooth synthetic image I. Middle: Conformal metric given
by E = e−‖∇I‖

2/2σ2

. Right: Curvature, positive (blue), negative (red), or very
close to zero (white). The points of negative curvature identify the position and
width of the edges.

5.2 Curvature edges

A famous experiment by Felix Klein [5], [20] consisted in drawing the curves
of parabolic points on the surface of Apollo’s Belvedere (see Fig. 3). These
curves do not have a particularly informative structure. On the other hand, the
curves of parabolic points on the abstract surface defined from an image follow
fairly well the edges of the image. In practice, they seem to offer no advantage
over simpler edge detection operators, besides the fact that they can be made
invariant to affine transforms when using an affine invariant metric.

The sign of Gaussian curvature is also a useful edge descriptor. We ob-
serve (see Fig. 4) that along each blurred edge there is a region of points of
negative curvature K < 0, surrounded by two curves of parabolic points K = 0.
The rest of the image domain consists in points of positive curvature K > 0,
albeit very close to zero except near the edges.

For the conformal metric given by E = e−‖∇I‖/2σ
2

the curvature can be
computed explicitly by formula (2), giving the following expression

K =
1

4σ2
∆‖∇I‖2

which is possibly the simplest third order elliptic operator.
By Gauss-Bonnet theorem, the integral of K over the whole image domain

is a constant that does not depend on the metric, but only on the topology of
the boundary conditions. For periodic boundary conditions, the integral of K
always vanishes.

5.3 Laplace-Beltrami spectral descriptors

The simplest structure of spectral theory is the sequence of eigenvalues 0 = λ1 <
λ2 < λ3 < · · · . They correspond to the frequencies of the vibration modes of the
surface. The number λ2 is called the fundamental tone, and the rest are called
the harmonics. In the case of embedded surfaces this sequence has been called
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the shape DNA [21, 22] because it is a useful descriptor of the shape, invariant
to arbitrary isometries of the surface. This name makes sense because, while
isospectral surfaces exist, they are relatively rare [23].

The Laplace-Beltrami spectrum is closely related [24] to the geodesic length
spectrum γ1 < γ2 < γ3 < · · · , which is the sequence of lengths of periodic
geodesics on the manifold. The first values of γi identify the “necks” of the
surface, while further values are the lengths of geodesics that surround several
necks in different combinations of increasing length.

The definition of the shape DNA applies also to our abstract surfaces, where
it provides a global descriptor of the image. By construction, it is invariant
to arbitrary isometric diffeomerphisms of the image domain; thus it inherits
all the invariance properties of the metric. However, its usefulness is limited
because it depends strongly on the boundary conditions that are used to define
the eigenfunctions. The interpretation of the geodesic length spectrum in this
context is interesting: the first values correspond to the perimeters of the blobs
of the image, and the following values encode the relative distances between the
blobs.

5.4 Laplace-Beltrami eigenvector segmentations

The eigenfunctions ϕk represent the shape of each vibration mode. For a physi-
cal surface, for example the board of a guitar, the sets [ϕk = 0] can be observed
by pouring sand on the surface and letting it vibrate with frequency λk. The
sand will move away from the vibrating parts of the surface and it will accumu-
late on the parts that remain static. The resulting patterns are called Chladni
figures, or nodal sets. They were first observed by Robert Hooke in 1680, and
later extensively studied by Ernst Chladni in 1787. These sets have limited
complexity because [24] the set M\[ϕk = 0] has at most k connected compo-
nents.

The nodal sets are a common tool in the modern study of three-dimensional
shapes [25, 26]. In the case of our abstract surfaces, they adapt well to the
boundaries of the objects (see Fig. 5). Due to their increasing complexity, they
give rise to a hierarchy of segmentations of the image domain.

5.5 Laplace-Beltrami eigenvector approximation

The eigenfunctions ϕk are an orthogonal basis of L2(M), allowing to perform
harmonic analysis. Thus, we can represent any function f : M → R as a
linear combination of ϕk. Most linear PDE can be solved explicitly using this
representation. For example, the Cauchy problem for the heat equation is solved
by means of the heat kernel [27]. First we express the initial condition u(0) as
a linear combination of eigenfunctions: u(0) =

∑
ckϕk and then the solution is

given by

u(t) =
∑

cke
−λktϕk.
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Figure 5: Left: First nodal sets of a guitar baseplate. Right: A synthetic image
and the first five nodal sets of its abstract surface (the color represents the sign
of each eigenfunction).

Similarly, the solution of Poisson equation ∆gu = f is u =
∑ ck

λk
ϕk where ck

are the coefficients of f .
This is not a practical method of solving equations because finding the eigen-

functions is harder than solving the equation directly. Still, these functions are a
convenient basis of smooth functions on the surface [28], analogous to sinusoidal
functions on the plane or spherical harmonics on the sphere.

5.6 Ricci Scale space

Ricci flow is already an important tool in the theoretical [29] and numerical [30]
study of embedded surfaces. Numerically, it is problematic because the surface
has to be re-embedded in R3 after each evolution step. For abstract surfaces,
the situation is much easier because we can directly evolve the metric field
using the equation gt = Ricg. Notice that this describes the evolution of the
metric, not of the image. But at any time the image can be easily recovered
from the metric field by solving an Eikonal equation in the Euclidean plane.
For example, if E is a function of the gradient E = h(‖∇I‖), then we solve
the Eikonal equation ‖∇u‖ = h−1(E(t)) to recover the image from the metric
coefficient E at a certain moment t. The resulting scale space has the same
visual effect as the Perona-Malik diffusion.

6 Conclusion

We have proposed several new applications of Riemannian geometry to the
context of image processing. Some of these applications provide a new insight
to classical methods, while others (e.g., interpolation by Riemannian thin plate
splines) are new techniques.
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The source code (written in C and Octave/Matlab) for reproducing the ex-
periments described in this paper is available as supplementary material.
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