
Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
4
/
2
9

v
0
.4
.3

IP
O
L

a
rt
ic
le

c
la
ss

A Simple Poisson Solver for Image Processing

Enric Meinhardt-Llopis1, Gabriele Facciolo2

1 CMLA, Ecole Normale Suprieure de Cachan, France 1 CMLA, Ecole Normale Suprieure de Cachan, France

PREPRINT September 14, 2015

Abstract
We present a näıve algorithm for solving the discrete Poisson equation on a domain which is
an arbitrary finite subset of a regular grid. The boundary condition for our algorithm must
be Dirichlet, there are no restrictions on the shape of the domain, and the running time is
proportional to the size of the domain. As an illustration, we present several applications of
this algorithm to image processing: inpainting by smooth functions, Poisson editing, and the
periodic + smooth image decomposition.

Source Code
The reviewed source code and documentation of a C implementation for the Poisson solver, and
of the described applications are available from the web page of this article1. Usage instructions
are included in the README.txt file of the archive.

Keywords: Poisson equation, Laplace equation, Poisson editing, inpainting, interpolation,
periodic component

1 Introduction

The celebrated Poisson Editing paper by Pérez–Gangnet–Blake contains the following sentences:

Equations (7) form a classical, sparse (banded), symmetric, positive-definite system. Be-
cause of the arbitrary shape of boundary ∂Ω, we must use well-known iterative solvers.
Results shown in this paper have been computed using either Gauss-Seidel iteration with
successive overrelaxation or V-cycle multigrid. Both methods are fast enough for inter-
active editing of medium size color image regions, e.g., 0.4 s. per system on a Pentium 4
for a disk-shaped region of 60,000 pixels.

Our goal is to describe explicitly the methods mentioned in this paragraph. We show that, in
practice, a parallel CPU multigrid algorithm is capable of achieving realtime performance for images
of arbitrary size.

Poisson equation is probably the easiest elliptic PDE, where it is used as an extremely well-
behaved model for other, more difficult equations. In numerical analysis, it is used as a toy example
to illustrate the power of the most advanced methods. For example, it is one of the few equations
where quadratic superconvergence of the multigrid is observing (thus the time to compute a solution
is proportional to the size of the problem).

1http://dx.doi.org/10.5201/ipol

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol

Enric Meinhardt-Llopis, Gabriele Facciolo

2 Results on a continuous setting.

Before introducing the discrete algorithms on Section 3 let us recall the basic constructions on a
continuous setting.

Poisson equation on a continuous domain. Let Ω be a domain of the euclidean plane R2, and
let f : Ω→ R and g : ∂Ω→ R be two functions. Poisson equation is{

∆u = f on Ω

u = g on ∂Ω
(1)

Here the function u : Ω→ R is the unknown to be found, the function f is called the datum and g
is called the Dirichlet boundary condition. The differential operator ∆ = ∂2

∂x2
+ ∂2

∂y2
is called the

Laplace operator, and it is arguably the simplest nontrivial second order operator. The existence
and uniqueness of solutions to equation (1), provided the data are regular enough, is a standard
result in linear PDE theory [9].

Laplace equation. Laplace equation is the particular case of Poisson equation when f = 0.{
∆u = 0 on Ω

u = g on ∂Ω
(2)

Solutions of Laplace equation are called harmonic functions. Thus, an harmonic function is uniquely
determined by its values on the boundary of the domain. A very important property of harmonic
functions is the maximum principle, that states that the minimum and maximum values of u are
attained on ∂Ω. In other words, the solution u of (2) is bounded by g:

‖u‖L∞(Ω) ≤ ‖g‖L∞(∂Ω)

Thanks to these properties, we see that Laplace equation can be used to interpolate [5] the values g
given on the curve ∂Ω to the whole domain Ω.

Relationship with heat equation. The heat equation with source −f and Dirichlet boundary
condition g is {

ut = ∆u− f on Ω× [0,∞]

u = g on ∂Ω× [0,∞]
(3)

Here we assume that f and g do not depend on t. If the solution u tends to a limit state u∞ as t→∞
then u∞ is a solution of the corresponding Poisson equation. This idea is used in some numerical
methods to solve Poisson equation: we solve the corresponding heat equation (which is easier) and
we let t→∞.

Variational interpretation. Laplace equation is associated to the following energy functional

El(u) =

∫
Ω

‖∇u‖2 (4)

Solving Laplace equation is equivalent [9] to minimizing El(u) among all the functions u such
that u|∂Ω = g. This variational interpretation is important because it says that solutions of Laplace

2

A Simple Poisson Solver for Image Processing

equation are very smooth (so that they can be very well approximated at a lower resolution). Fur-
thermore, the gradient descent of the functional El(u) is the heat equation. The following functional

Ep(u) =

∫
Ω

fu+ ‖∇u‖2 (5)

is likewise associated to Poisson equation. Notice that the functional is of the form Ep(u) = a(u, u)+
l(u), where a is a coercive bilinear map and l is a linear form. Thus, existence and uniqueness of the
minimum is directly assured by Lax-Milgram theorem [9].

Another lagrangian: Eq(u) =
∫

Ω
‖∇u − ~v‖2. This is associated to the Poisson equa-

tion ∆u = div(~v). This model is useful when we want to recover a function u from its
gradient ~v. Note that this has a solution even if rot(~v) 6= 0.

Relationship to Fourier analysis. Let us assume now that Ω = R2. Now, Poisson equation
reduces to ∆u = f because there is no boundary. This linear equation can be solved directly by
taking Fourier transforms:

−(ξ2 + η2)û(ξ, η) = f̂(ξ, η) (6)

so that

û(ξ, η) =
−1

ξ2 + η2
f̂(ξ, η) (7)

with 1/0 being an arbitrary value fixed by convention. Notice that the solution is not unique, being
defined up to the addition of an arbitrary harmonic function. The Fourier transforms above are
necessarily performed in the sense of distributions. An interesting particular case is when f is a band-
limited [0, 2π]2-periodic function. This means that f is a linear combination of functions ep,q(x, y) =
ei(px+qy) with (p, q) ∈ Z2, whose anti-Laplacian is readily computed. This particular case is commonly
used in image processing for solving Poisson equations on rectangular domains, using the discrete
Fourier transform.

3 The discrete Poisson, Laplace and Heat equations

To solve a Partial Differential Equation using a computer, it must be modelled as a finite problem.
There are several such discretization strategies. Conceptually, the simplest one is the finite element
method [14], where we solve the same differential equation, but restricted to a finite-dimensional
subspace of functions. A different strategy, better suited to image processing, is to use a finite-
difference approximation [15] of the derivatives appearing in the equation. Thus, the functions
appearing on the differential equation are modelled by digital images, and the differential equation
is reduced to an algebraic equation involving the pixel values of these images. This is the strategy
that we will use here.

The whole domain of a digital image is a finite rectangular gridD = {1, . . . ,W}×{1, . . . , H} ⊂ Z2.
We work with a region of interest Ω which is an arbitrary subset of D. The boundary of Ω is defined
as the points of D \ Ω that are 4-connected to Ω. This definition of boundary is well-suited for the
discrete Laplacian introduced below, but for other operators a different boundary may be needed. A
digital image is a function I : D → R. The discrete Laplacian is defined by the following five-point
scheme:

∆u(i, j) = −4u(i, j) + u(i+ 1, j) + u(i− 1, j) + u(i, j + 1) + u(i, j − 1)

0 1 0
1 −4 1
0 1 0

(8)

Notice that to compute ∆u at the boundaries of D we need to give values to u outside D. This
is done by copying the value of u from the nearest point inside D. This is an arbitrary choice

3

Enric Meinhardt-Llopis, Gabriele Facciolo

Algorithm 1: evaluate-image-at

Input : Image I : {1, . . . ,W} × {1, . . . , H} → R
Input : Position (i, j) ∈ Z2

Output: Value of I(i, j)

1 if i < 1 then
2 i← 1

3

4 if i > W then
5 i← W

6

7 if j < 1 then
8 j ← 1

9

10 if j > H then
11 j ← H

12

13 return I(i, j)

that corresponds to a vanishing Neumann condition on the boundary of D. It is also equivalent to
the graph Laplacian [3] on the graph whose vertices are the points of D and whose edges are given
by 4-connectivity. More formally:

Definition 1 (Discrete Laplace Operator). Let W and H be positive integers and let D = {1, . . . ,W}×
{1, . . . , H}. A digital image of size W ×H is a function u : D → R. The discrete Laplace operator
on D is the linear endomorphism u 7→ ∆u defined by

∆u(p) =
∑

p′∈D is a 4-neighbor of p

(
u(p′)− u(p)

)
(9)

Note that Definition 1 is equivalent to the five-point scheme (8). A vanishing discrete Laplacian
has an intuitive interpretation: if we regard the values of u as measuring some quantity, the fact
that ∆u(p) = 0 says that the quantity at point p equals the average quantity on the neighbors of p
(thus, u(p) can be recovered by averaging the values of u on the neighbors of p). If ∆u(p) = 0 for
every p, this means that the quantity is in equilibrium.

With these definitions we can introduce the discrete Poisson equation using the same notation as
in the continuous case.

Definition 2 (Discrete Poisson Equation). Let Ω be a subset of D = {1, . . . ,W} × {1, . . . , H},
let f : Ω→ R and let g : D\Ω→ R. The Discrete Poisson Equation on Ω with data f and boundary
condition g is {

∆u(i, j) = f(i, j) (i, j) ∈ Ω

u(i, j) = g(i, j) (i, j) ∈ ∂Ω
(10)

There are two interesting particular cases of Definition 2. When f = 0, the equation is called
the Discrete Laplace Equation on the domain Ω. When Ω = D, the boundary ∂Ω is empty and the
solution is determined only up to the addition of functions h such that ∆h = 0.

4

A Simple Poisson Solver for Image Processing

Algorithm 2: evaluate-laplacian-at (implements equation 8)

Input : Image I : D → R
Input : Position (i, j) ∈ D
Output: Value of ∆I(i, j)

1 x← evaluate-image-at(I, i, j)
2 a← evaluate-image-at(I, i+ 1, j)
3 b← evaluate-image-at(I, i− 1, j)
4 c← evaluate-image-at(I, i, j + 1)
5 d← evaluate-image-at(I, i, j − 1)
6 return a+ b+ c+ d− 4x

Proposition 1. The discrete Poisson equation (10) is a square linear system of size n, where n is
the cardinal of Ω. If Ω is a proper subset of D then the discrete Poisson equation is a nonsingular
linear system with a unique solution. If Ω = D then the system is singular with a one-dimensional
kernel formed by constant functions.

This proposition assures that the discrete Poisson equation is well-posed, and can be solved by
standard linear solvers. Note that, with empty boundary conditions, the only harmonic functions are
the constants. An analogous result in the continuous domain states that the only bounded harmonic
functions on the whole plane are the constants.

The discrete analogous of Heat equation describes the evolution of a function u(t, i, j) where (i, j)
are points on a rectangular grid and t are integer multiples of a time step τ :

Definition 3 (Discrete Heat Equation). Let Ω be a subset of D = {1, . . . ,W} × {1, . . . , H}, let f :
τZ+ ×Ω→ R, let g : τZ+×D \Ω→ R and let h : Ω→ R. The Discrete Heat Equation on Ω with
source f , boundary condition g, initial condition h, and time step τ is

u(t+τ,i,j)−u(t,i,j)
τ

= ∆u(t, i, j)− f(t, i, j) (i, j) ∈ Ω, t ∈ τZ+

u(t, i, j) = g(t, i, j) (i, j) ∈ ∂Ω, t ∈ τZ+

u(0, i, j) = h(i, j) (i, j) ∈ Ω

(11)

Gradient discretization issues. The the guidance field in the discrete domain is depends on the
choice of the gradient discetization. This issue is highlighted in Figure ?? (NO FIGURE YET) where
4 discretization schemes for computing the gradient yield different results. The solution proposed in
[1] consists in averaging the solution of the four schemes (CHECK IF CORRECT!).

5

Enric Meinhardt-Llopis, Gabriele Facciolo

4 Applications

Below we display several applications of the discrete Laplace and Poisson equations to image pro-
cessing. Note that in most of these applications, the equation is used as a heuristic model and its
exact solution is not necessarily sought for. Thus, we can solve them satisfactorily by running our
algorithm with very few iterations (e.g. 10), which gives approximate solutions with the visually
desirable properties, and runs extremely fast.

All the examples that we show here have been computed with the provided code with default
parameters. The input images for each experiment are included in the source code distribution, so
that these experiments can be reproduced exactly.

4.1 Smooth inpainting

The simplest application of Laplace equation is smooth inpainting (Figure 1). This is the task of
filling-in the missing values of an image, like holes or scratches. We define Ω as the set of unknown
pixels, and the known values of u outside Ω define the boundary condition. The solution of Laplace
equation on this data provides a smooth interpolation of the data.

This technique does not have any of the desirable properties of “real” inpainting methods [2, 6,
7, 8]: it does not recover the texture of the inpainted areas, and it fails even to continue edges that
traverse Ω. On the other hand, it may still be useful to complete very small holes (like letters) or
thin scratches. It is extremely fast to compute and the solutions satisfy the maximum principle (all
the new values are bounded by the values at the boundary of the hole). In some sense, it is the
simplest possible inpainting method. Accordingly [11], we name this algorithm Simplest Inpainting,
as the baseline inpainting method compared to which any other method will fare better.

Input: an image with holes Output: inpainting result

Figure 1: An example of smooth inpainting. The region Ω is defined as the bright green pixels.
To assign values to these pixels, we solve Laplace equation on Ω with the boundary condition taken
from the known pixels.

4.2 Interpolation from scattered data points

Interpolation is the extreme case of inpainting where the inpainting region is the whole image except
a few scattered points. Since our formulation (10) of the discrete Poisson equation is valid for an

6

A Simple Poisson Solver for Image Processing

arbitrary domain Ω, the same algorithm can be used. Note that this is not possible in the continuous
formulation (1), where ∂Ω must consist of a set of curves, not isolated points.

The simplest example is when Ω consists of a single pixel. In that case, the value of this pixel
is copied everywhere, resulting in a constant image. This happens even with zero iterations, due to
the multi-scale scheme.

The next simplest example is three different data points. In that case, we would like to recover
an affine image that interpolates the three values and has vanishing Laplacian. However, an affine
image does not satisfy the boundary condition at the borders of the image domain. Instead, this
results in a surface with cusps around the data points (Figure 2).

Input Output 3D visualization

Figure 2: Laplace interpolation of three data points.

4.3 Image approximation

It is tempting to feel disheartened by the cusps on Figure 2, and disregard Laplace equation as a
sensible tool for interpolation. Yet, Laplace interpolation has been used successfully [10] to approxi-
mate images to a very good precision for the purpose of lossy compression. The trick lies in choosing
the optimal points to represent the image data. It turns out that the best points are those located
in the parts of the image with high gradient, thus a Floyd-Sternberg dithering of the gradient norm
gives a near-optimal choice of points. The results are shown on 3.

7

Enric Meinhardt-Llopis, Gabriele Facciolo

Input (9% of the original pixels) Output (Laplace interpolation)

Figure 3: Image approximation by Laplace interpolation of carefully selected data points. Here Ω
is the black region on the input image, the boundary condition is given by the colored pixels, and
we solve Laplace equation on this data.

4.4 Periodic plus smooth image decomposition

An arbitrary image is typically not tile-able, because the colors at each side of the image do not
match, creating sharp discontinuities between tile boundaries (see Figure 5). These discontinuities
are horizontal and vertical, resulting in a cross-shaped pattern when one regards the power spectrum
of the original image.

A common trick [12] to obtain tile-able textures (and nicer power spectra) is to decompose an
image into its “periodic and smooth” components: I = P + S, where P is a tile-able image and S
is a smooth function. Since S is smooth, the image contents are mostly contained in P . If we
define “smooth” as ∆S = 0 and enforce tile-ability by fixing P on its border, we can obtain this
decomposition by Laplace equation. The resulting images P are tileable and their power spectrum
does not have a cross-pattern (Figure 4).

I P S

Figure 4: Decomposition of an image I into its periodic and smooth components, I = P + S. The
image S has positive and negative values and it has been re-scaled to [0, 255] for display.

8

A Simple Poisson Solver for Image Processing

Four copies of an image I Power spectrum of I

Figure 5: A typical image is not smoothly tile-able. Discontinuities in the replicated image appear
as a cross pattern in the power spectrum.

Four copies of P Power spectrum of P

Figure 6: The image P of Figure 4 is tile-able. Note that there are no discontinuities at the
boundaries, and that the power spectrum has no cross pattern.

9

Enric Meinhardt-Llopis, Gabriele Facciolo

4.5 Recover an image from its gradient

Poisson equation allows us to recover (up to an additive constant) an image I from the vector field∇I.
For that, we compute the scalar field f = div (∇I), and then we solve Poisson equation ∆u = f .
Since the domain is the whole image, this can be solved in the frequency domain multiplying by the
filter −1

ξ2+η2
, where the indeterminacy 1/0 is assigned an arbitrary value 0. The resulting image u has

the required gradient and zero average. We cannot use directly the discrete Poisson equation (10)
because it requires a Dirichlet boundary condition on at least one point. Thus, we fix the value
of u at a single pixel, and define the domain Ω as the complement of that pixel. The solution of
the discrete Poisson equation with this data coincides exactly with I when this single pixel is set
to its correct value. In practice, this algorithm is an order of magnitude slower than using Fourier
transforms.

Of course, you never need to compute an image from its own gradient (because you already have
the image!). In computational photography, however, you often build the gradient of an image that
you do not see, and then you need to recover this image. For example, to remove occlusions by fusion
of several images (see Figure 7), it is convenient to combine the gradients of several images [4]. Then,
a clean image is recovered from this gradient by solving Poisson equation. The Fourier technique is
Fast, but often it introduces artifacts due to the discontinuities at the boundary of the registered
images. Solving the discrete Poisson equation by the techniques allows a finer control of the desired
boundary conditions; in particular, the domain need not be rectangular (see Figure 8).

. . .
Input images Average of input images Combined Laplacian

Figure 7: An image fusion technique [4] computes the pointwise vector median of the gradients
of several registered images. Then the image without occlusions is recovered by solving Poisson
equation on the combined Laplacian.

10

A Simple Poisson Solver for Image Processing

Ω = Whole image, using Fourier Ω = Central ellipse, using Gauss-Seidel

Figure 8: Notice that the result with Fourier is locally correct (the occluding fence has disappeared),
but there are low-frequency color halos covering the whole image. These halos are due to the boundary
conditions implied by the discrete Fourier transform. Solving Poisson equation by iterative techniques
allows finer control of the boundary conditions. Here, we have solved Poisson with Ω equal to an
elliptical region in the image domain. The boundary condition has been taken from the first image of
the input sequence. Note that there are no low-frequency artifacts due to bad boundary conditions.

11

Enric Meinhardt-Llopis, Gabriele Facciolo

4.6 Poisson editing

The image fusion technique described above is just an example of Poisson Editing [1]. We can obtain
a seamless cloning by copying the gradients from one image into another, and then solving a Poisson
equation (see Figure 9).

[1] M. W. Tao, M. K. Johnson, and S. Paris, “Error-tolerant image compositing,” in Proceedings
of the 11th European conference on Computer vision: Part I, 2010, pp. 31–44.

Ω and g Data term f Poisson solution u

Figure 9: An example of Poisson editing: how to draw the face of Lena on the sky. For this experi-
ment, we have cut the face of the Lena image and computed its Laplacian f . Then we have imposed
this Laplacian on part Ω of another image g, by computing the solution of Poisson equation ∆u = f
on Ω, with Dirichlet boundary condition g. Note that the colors at the boundary are taken from the
landscape image, and they are filled using the texture of the face.

4.7 Poisson matting

[1] J. Sun, J. Jia, C. K. Tang, and H. Y. Shum, “Poisson matting,” ACM Trans. Graph., vol. 23,
no. 3, pp. 315–321, Aug. 2004.

From the article

In image composition, an image I is divided in a background image B and a foreground image
F with its alpha matte α by the matting equation:

I = αF + (1− α)B.

In order to get an approximate gradient field of matte, we take the partial derivatives on both
sides of the matting equation:

∇I = (F −B)∇α + α∇F + (1− α)∇B.

This is the differential form of the matting equation, for R, G and B channels individually. In
situations in which foreground F and background B are smooth, i.e., α∇F + (1−α)∇B is relatively
small with respect to (F −B)∇α, we can get an approximate matte gradient field as follows:

∇α ≈ 1

F −B
∇I.

It means that the matte gradient is proportional to the image gradient.

12

A Simple Poisson Solver for Image Processing

5 The Gauss-Seidel and conjugate gradient algorithms

The discrete Heat equation is not an equation that must be “solved” in any way. The values u(t, i, j)
at any t = kτ can be computed directly by an iterated evaluation of the definition.

Thus, a simple method to solve the discrete Poisson equation is to iterate the discrete Heat
equation until convergence is observed. The following proposition states that convergence happens
if the time step τ is small enough.

Proposition 2. In the discrete Heat equation (11), assume that τ < 1/2 and that f and g do not
depend on t. Then the succession of images uk(i, j) = u(kτ, i, j) is convergent and the limit u∞ is a
solution of the discrete Poisson equation with data f and boundary condition g.

Proof. See for example [13]. It suffices to show that the evolution of the discrete heat equation is
described by the iterated multiplication by a matrix whose singular values are all strictly smaller
than 1. This condition is assured by the inequality τ < 1/2.

Remark 1. The convergence described in proposition 2 holds true for any initial condition h.

The previous proposition provides an algorithm to obtain arbitrarily good approximations for the
solution of the discrete Poisson equation equation:

1. Chose a time step τ ∈ (0, 1/2)

2. Chose an initialization h(i, j)

3. Chose a number of iterations N

4. Compute u(Nτ, i, j) using equations (11).

Standard numerical linear algebra gives optimal answers for these three choices (see chapter 5.3
of Strang’s book [13] for a fascinating account on this subject). Here we are interested in the
best answers for image processing applications, were exact convergence is not always needed. For
example, for interpolation, or for Poisson editing, a visually acceptable approximation is extremely
fast to compute (say, in 3 iterations), but it can be very far from convergence.

Let us recall four standard iterative methods for solving a linear system Ax = b, given an initial
guess x0. Applied to the discrete Poisson equation, the methods are correspond to the following:

1. Jacobi Method. Iterate the discrete heat equation with τ = 0.25.

2. Gauss-Seidel Method. Iterate the discrete heat equation in-place with τ = 0.25.

3. Successive Over-Relaxation. Iterate the discrete heat equation in-place withp τ = 0.48.

4. Conjugate gradient. Unrelated to heat equation.

What does it mean “in-place”? Well, note that to implement Jacobi method, we need to store
two images in memory, one for the current iteration, and different one for the next iteration. These
images are swapped upon each iteration. In Gauss-Seidel method, we use only one image, and
perform all the computations in-place. This is obviously incorrect (with regards to heat equation)
because when we compute the five-point scheme on a new position, we are mixing values of the
previous and the current iteration. However, this “incorrect” method turns out to converge faster
to the correct solution. In Successive Over-Relaxation, we use a time step which is almost twice as
large as that allowed by Jacobi’s method, which converges even faster. Note that the ordering of the
pixels is inconsequential for Jacobi method, but a different ordering of pixels gives different results
for the Gauss-Seidel iterations.Nota: aqúı se podŕıan poner los experimentos sobre el orden
de recorrido de Ω: lexicographic, forth-back, 4-ways, random, onion-peeling....

13

Enric Meinhardt-Llopis, Gabriele Facciolo

Algorithm 3: gauss-seidel-iteration

Input : Image I : D → R // image with a combination of u and g

Input : Image f : Ω→ R // data term

Input : Number τ > 0 // time step

Output: (no output, the data of I is updated in-place)

1 for (i, j) ∈ Ω do
2 `← evaluate-laplacian-at(I, i, j)
3 I(i, j)← I(i, j) + τ(`− f(i, j))

Algorithm 4: gauss-seidel-solver

Input : Image f : Ω→ R // data

Input : Image g : D \ Ω→ R // boundary condition

Input : Image h : Ω→ R // initialization

Input : Number τ > 0 // time step

Input : Number N ∈ Z+ // number of iterations

Output: Image u : Ω→ R // computed approximation

1 for (i, j) ∈ Ω do // fill-in I(Ω) with the initialization h

2 I(i, j)← h(i, j)

3 for (i, j) ∈ D \ Ω do // fill-in I(∂Ω) with the boundary condition g

4 I(i, j)← g(i, j)

5 for k ∈ 1 . . . N do // run N iterations

6 gauss-seidel-iteration(I, f, τ)

7 for (i, j) ∈ Ω do // fill-in u(Ω) with the result

8 u(i, j)← I(i, j)

6 The Multi-scale strategy

As it is shown on Section 7, the convergence of Gauss-Seidel and conjugate gradient methods towards
the solution of Poisson equation is rather slow. However, looking at the intermediate images on each
iteration we see that the small details are solved on the first few iterations, while the global trends
in the image require thousands of iterations. The main insight of multi-scale methods is that any
object is small enough when seen from far enough.

Taking this insight into account, we see that the main tools of the multi-scale methods will be
the operations of zoom-in and zoom-out.

14

A Simple Poisson Solver for Image Processing

Algorithm 5: zoom-out-by-factor-two

Input : Image f : {1, . . . ,W} × {1, . . . , H} → R
Output: Image g : {1, . . . ,W/2} × {1, . . . , H/2} → R

1 for (i, j) ∈ {1, . . . ,W/2} × {1, . . . , H/2} do // traverse the output image

2 a1 ← f(2i+ 0, 2j + 0) // values of the four corresponding points

3

4 a2 ← f(2i+ 1, 2j + 0) // on the input image

5

6 a3 ← f(2i+ 0, 2j + 1)
7 a4 ← f(2i+ 1, 2j + 1)
8 m← 0 // cumulative sum

9

10 c← 0 // counter of finite values

11

12 for k ∈ {1, . . . , 4} do // compute sum and amount of finite values

13 if is-finite(ak) then
14 m← m+ ak
15 c← c+ 1

16 if c > 0 then
17 g(i, j)← m/c // average of all finite values, if there were any

18 else
19 g(i, j)← NaN // NaN otherwise

Algorithm 6: zoom-in-by-factor-two

Input : Image f : {1, . . . ,W/2} × {1, . . . , H/2} → R
Output: Image g : {1, . . . ,W} × {1, . . . , H} → R

1 for (i, j) ∈ {1, . . . ,W} × {1, . . . , H} do // traverse the output image

2 x← (i− 0.5)/2
3 y ← (j − 0.5)/2
4 g(i, j) = bilinear-interpolation(f, x, y)

Algorithm 7: bilinear-interpolation

Input : Image f : D → R
Input : Number x ∈ R
Input : Number y ∈ R
Output: Number f(x, y)

1 i← bxc
2 j ← byc
3 a← evaluate-image-at(f, i+ 0, j + 0)
4 b← evaluate-image-at(f, i+ 1, j + 0)
5 c← evaluate-image-at(f, i+ 0, j + 1)
6 d← evaluate-image-at(f, i+ 1, j + 1)
7 r ← evaluate-bilinear-cell(a, b, c, d, x− i, y − j)
8 return r

15

Enric Meinhardt-Llopis, Gabriele Facciolo

Algorithm 8: evaluate-bilinear-cell

Input : Numbers a, b, c, d ∈ R // values on the four cell corners

Input : Numbers x, y ∈ R // position inside the cell

Output: Number r // bilinear interpolation of the four values

1 r ← a(1− x)(1− y) + bx(1− y) + c(1− x)y + dxy
2 return r

Algorithm 9: pyramidal-laplace-solver

Input : Image g : D \ Ω→ R // boundary condition

Input : Number τ > 0 // time step

Input : Number N ∈ Z+ // number of iterations

Input : Number S ∈ Z+ // number of scales

Output: Image u : D → R // computed approximation

1 if S > 1 then // compute initialization Y recursively

2 g′ ← zoom-out-by-factor-two(g)
3 u′ ← pyramidal-laplace-solver(g′, τ, N, S − 1)
4 Y ← zoom-in-by-factor-two(u′)

5 else // on last scale, initialize Y to zero

6 for p ∈ D do
7 Y (p)← 0

8 u← gauss-seidel-solver(0, g, Y, τ,N)// run the solver initialized by Y

9 return u

Algorithm 10: pyramidal-poisson-solver

Input : Image f : Ω→ R // data term

Input : Image g : D \ Ω→ R // boundary condition

Input : Number τ > 0 // time step

Input : Number N ∈ Z+ // number of iterations

Input : Number S ∈ Z+ // number of scales

Output: Image u : D → R // computed approximation

1 if S > 1 then // compute initialization Y recursively

2 g′ ← zoom-out-by-factor-two(g)
3 f ′ ← zoom-out-by-factor-two(f)
4 for p ∈ D do
5 f ′(p)← 3f ′(p)// appropriate re-scaling of the data term

6

7 u′ ← pyramidal-poisson-solver(g′, f ′, τ, N, S − 1)
8 Y ← zoom-in-by-factor-two(u′)

9 else // on last scale, initialize Y to zero

10 for p ∈ D do
11 Y (p)← 0

12 u← gauss-seidel-solver(0, g, Y, τ,N)// run the solver initialized by Y

13 return u

16

A Simple Poisson Solver for Image Processing

7 Experiments

In this section we illustrate the effect of each step of the proposed algorithm over two simple examples,
one for Laplace equation and one for Poisson equation. We show the solution of each case in Figures 10
and 11.

Input (mask and boundary) Output

Figure 10: An example for Laplace equation. The input data is shown on the first image. The
region Ω is the set of black pixels, and the boundary condition is taken from the other pixels. The
output image is the exact solution obtained by running the method described in this paper with 500
iterations (error less than 10−6).

Input (mask and boundary) Input (data term) Output

Figure 11: An example for Poisson equation. The input data is shown on the first two images. The
region Ω is the set of black pixels, and the boundary condition is taken from the other pixels. The
output image is the exact solution obtained by running the method described in this paper with 500.
The output coincides exactly with the original “baboon” image.

17

Enric Meinhardt-Llopis, Gabriele Facciolo

18

A Simple Poisson Solver for Image Processing

n = 1 n = 10 n = 100 n = 1000

Figure 12: Laplace equation. First Gauss-Seidel iterations using the natural time step τ = 0.25.
The iterations have been initialized with u = 0 inside Ω (the black pixels). Note that the convergence
is very slow, and even after 1000 iterations the central part of Ω is still black.

n = 1 n = 10 n = 100 n = 1000

Figure 13: Laplace equation. First Gauss-Seidel iterations using an overshooting time step τ = 0.48.
Note that the convergence is much faster than for τ = 0.25.

τ = 0.49 τ = 0.499 τ = 0.5 τ = 0.501

Figure 14: The first Gauss-Seidel iteration, using different overshot parameters. If τ is larger, it
fills the domain with good values faster, but for τ ≥ 0.5 it becomes numerically unstable. For each
domain Ω there is an optimal parameter in the interval (0.48, 0.5).

19

Enric Meinhardt-Llopis, Gabriele Facciolo

c = 1 c = 10 c = 100 c = 1000

Figure 15: Laplace Equation. First Conjugate Gradient iterations. The convergence rate is similar
to Gauss-Seidel with the optimal overshot parameter. However, the error for the first hundreds of
iterations is much larger.

s = 2 s = 3 s = 4 s = 5

s = 6 s = 7 s = 8 s = 9

Figure 16: Laplace Equation. Effect of the multi-scale initialization. In these experiments, we
perform zero iterations of Gauss-Seidel and Conjugate Gradient. Note that with 9 multi-scale levels,
we obtain a visually satisfying approximation of the correct solution, even with zero iterations.

20

A Simple Poisson Solver for Image Processing

u

∆u

u− ũ
n = 0, c = 0 n = 10, c = 0 n = 0, c = 10 n = 40, c = 90

Figure 17: Laplace Equation. Effect of the some parameters of the approximate solutions.
Here n = number of Gauss-Seidel iterations and c = number of Conjugate Gradient iterations.
For each experience we display the image u, its laplacian ∆u with colors on the interval [−1, 1], and
the difference with the exact solution ũ, with colors on the interval [−20, 20]. In all these experiments
we have used τ = 0.48 and a number of scales s = 9. Note that the Laplacian is always very small far
from the boundary of the domain, even before starting the iterations. When running a few iterations
of each method, we obtain and very good approximation. To attain numerically exact convergence
for this example we need bout 800 Conjugate gradient iterations.

21

Enric Meinhardt-Llopis, Gabriele Facciolo

22

A Simple Poisson Solver for Image Processing

n = 1 n = 10 n = 100 n = 1000

Figure 18: Poisson equation. First Gauss-Seidel iterations using the natural time step τ = 0.25. The
iterations have been initialized with u = 0 inside Ω (the black pixels). Note that the convergence is
very slow, and even after 1000 iterations the central part of Ω is still dark. There is an important
observation, that can be repeated elsewhere regarding iterative methods for Poisson equation: the
convergence of the high frequencies is fast, and the convergence of the low frequencies is slow.

n = 1 n = 10 n = 100 n = 1000

Figure 19: Poisson equation. First Gauss-Seidel iterations using an overshooting time step τ = 0.48.
Note that the convergence is much faster than for τ = 0.25.

τ = 0.49 τ = 0.499 τ = 0.5 τ = 0.501

Figure 20: The first Gauss-Seidel iteration, using different overshot parameters. If τ is larger, it
fills the domain with good values faster, but for τ ≥ 0.5 it becomes numerically unstable. For each
domain Ω there is an optimal parameter in the interval (0.48, 0.5).

23

Enric Meinhardt-Llopis, Gabriele Facciolo

c = 1 c = 10 c = 100 c = 1000

Figure 21: Poisson Equation. First Conjugate Gradient iterations. The convergence rate is similar
to Gauss-Seidel with the optimal overshot parameter, and much faster than Gauss-Seidel with any
other parameter.

s = 2 s = 3 s = 4 s = 5

s = 6 s = 7 s = 8 s = 9

Figure 22: Poisson Equation. Effect of the multi-scale initialization. In these experiments, we
perform zero iterations of Gauss-Seidel and Conjugate Gradient. Note that the results are identical
as those for Laplace equation (Figure 16), since we are never using the data term f .

24

A Simple Poisson Solver for Image Processing

n = 1 n = 10 n = 100 n = 1000

Figure 23: Poisson Equation. First Gauss-Seidel iterations with natural timestep τ = 0.25, initialized
with the multi-scale solution s = 9 from Figure 22. Important observation: the iterations have only
been run in the last, full-resolution scale level. Note that the texture is correct but the colors are
washed out. This means that the high frequencies are correct and the low frequencies have still not
converged.

n = 1 n = 10 n = 100 n = 1000

Figure 24: Poisson Equation. First Gauss-Seidel iterations with overshooting timestep τ = 0.48,
initialized with the multi-scale solution s = 9 from Figure 22.

c = 1 c = 10 c = 100 c = 1000

Figure 25: Poisson Equation. First Conjugate Gradient iterations, initialized with the multi-scale
solution s = 9 from Figure 22. The last image coincides exactly (up to the RGB quantization error),
with the original baboon image, meaning that the method has converged before 1000 iterations.

25

Enric Meinhardt-Llopis, Gabriele Facciolo

n = 1 n = 10 n = 100 n = 1000

Figure 26: Poisson Equation. Gauss-Seidel iterations run only at the scale 1/4, with natural
timestep τ = 0.25, There are no iteration at the other scales.

n = 1 n = 10 n = 100 n = 1000

Figure 27: Poisson Equation. Gauss-Seidel iterations run only at the scale 1/4, with overshooting
timestep τ = 0.48. There are no iteration at the other scales.

c = 1 c = 10 c = 100 c = 1000

Figure 28: Poisson Equation. Conjugate Gradient iterations run only at the scale 1/4, with over-
shooting timestep τ = 0.48. There are no iteration at the other scales.

26

A Simple Poisson Solver for Image Processing

u

u− ũ
n = 10, c = 0 n = 0, c = 10 n = 10, c = 10 n = 40, c = 90

Figure 29: Poisson Equation. Solutions with the same amount of iterations run at every scale level.
Here n = number of Gauss-Seidel iterations and c = number of Conjugate Gradient iterations. For
each experience we display the image u and the difference with the exact solution ũ, with colors on
the interval [−20, 20]. In all these experiments we have used τ = 0.48 and a number of scales s = 9.
Note that, as opposed to Laplace Equation, here we need to run a much larger amount of iterations
to obtain a visually acceptable result.

27

Enric Meinhardt-Llopis, Gabriele Facciolo

8 Conclusion and future work

Possible extensions: nonzero neumann boundary conditions, riemannian metrics, linear shape from
shading, p-laplacian, amle, double laplacian (thin plates), etc.

References

[1] 5, 12

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Pro-
ceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 417–424. 6

[3] J. E. Boillat, Load balancing and poisson equation in a graph, Concurrency: Practice and
Experience, 2 (1990), pp. 289–313. 4

[4] A. Buades, G. Haro, and E. Meinhardt-Llopis, Obtaining High Quality Photographs of
Paintings by Image Fusion, Image Processing On Line, 5 (2015), pp. 159–175. 10

[5] V. Caselles, J.-M. Morel, and C. Sbert, An axiomatic approach to image interpolation,
Image Processing, IEEE Transactions on, 7 (1998), pp. 376–386. 2

[6] T. Chan and J. Shen, Local inpainting models and tv inpainting, SIAM J. Appl. Math, 62
(2001), pp. 1019–1043. 6

[7] A. Criminisi, P. Pérez, and K. Toyama, Region filling and object removal by exemplar-
based image inpainting, Image Processing, IEEE Transactions on, 13 (2004), pp. 1200–1212.
6

[8] A. Efros, T. K. Leung, et al., Texture synthesis by non-parametric sampling, in Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2, IEEE,
1999, pp. 1033–1038. 6

[9] L. C. Evans, Partial differential equations, Graduate studies in mathematics, American Math-
ematical Society, Providence (R.I.), 1998. 2, 3

[10] L. Hoeltgen, S. Setzer, and J. Weickert, An optimal control approach to find sparse
data for laplace interpolation, in Energy Minimization Methods in Computer Vision and Pattern
Recognition, Springer, 2013, pp. 151–164. 7

[11] N. Limare, J.-L. Lisani, J.-M. Morel, A. B. Petro, and C. Sbert, Simplest color
balance, Image Processing On Line, 1 (2011). 6

[12] L. Moisan, Periodic plus smooth image decomposition, Journal of Mathematical Imaging and
Vision, 39 (2011), pp. 161–179. 8

[13] G. Strang and K. Aarikka, Introduction to applied mathematics, vol. 16, Wellesley-
Cambridge Press Wellesley, MA, 1986. 13

[14] G. Strang and G. J. Fix, An analysis of the finite element method, vol. 212, Prentice-Hall
Englewood Cliffs, NJ, 1973. 3

[15] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for
elliptic problems, SIAM Journal on Numerical Analysis, 25 (1988), pp. 351–375. 3

28

	Introduction
	Results on a continuous setting.
	The discrete Poisson, Laplace and Heat equations
	Applications
	Smooth inpainting
	Interpolation from scattered data points
	Image approximation
	Periodic plus smooth image decomposition
	Recover an image from its gradient
	Poisson editing
	Poisson matting

	The Gauss-Seidel and conjugate gradient algorithms
	The Multi-scale strategy
	Experiments
	Conclusion and future work

