
Published in Image Processing On Line on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://www.ipol.im/

PREPRINT July 21, 2013

Block thresholding audio denoising algorithm

Marie de Masson d’Autume,
Christophe Varray

Eva Wesfreid

Abstract

This paper describes and analyzes the Guoshen Yu et al. non-diagonal block thresholding audio
denoising algorithm. This algorithm attenuates the Short Time Fourier Transform coefficients
of the noisy signal over a time-frequency block partition which is adapted to signal properties
using the SURE theorem. Numerical experiments are performed over music extracts to compare
denoised and underlying clean signals.

The ANSI C codes and data sound files used for experimentation are available on line. The
Matlab code which uses these C functions is also on line.

1 Introduction

The Guoshen Yu et al. algorithm [9] focuses on audio signals corrupted with additive Gaussian white
noise. This noise is specially hard to remove without damaging the underlying audio signal since it
is located in all frequencies.
The described block thresholding algorithm attenuates the Short Time Fourier Transform (STFT)
coefficients of the noisy signal by blocks using the same attenuation factor over each block. This
non diagonal processing is different from the diagonal processing, which attenuates each coefficient
independently without using potential dependencies between neighbor coefficients. This procedure
introduces isolated time-frequency artefacts called musical noise. Y. Ephraim and D. Malah [4], [5]
showed that musical noise is strongly attenuated with non-diagonal time-frequency estimators.
The Guoshen Yu et al. algorithm is based on the block thresholding estimators introduced by T.
Cai [1] which choose a block time-frequency partition minimizing the Stein Unbiased Risk Estimate
(SURE) [8]. The attenuated coefficients over this adapted block partition are smoothed with an ideal
Wiener filter before reconstruction with the inverse STFT to obtain the denoised signal.
Many experiments show that in certain frequency bands the spectrum of the noisy signal masks the
spectrum of the original one. The sound of the denoised signal is often damaged since a part of the
underlying signal spectrum is removed after denoising.
This paper describes the STFT algorithm in Section 2. Section 3 details the Wiener filter. Section
4 introduces the different steps of block thresholding algorithm with the SURE estimation. Finally,
experiments and results are shown in section 5 and the conclusion can be found in section 6.

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.ipol.im/

2 Short Time Fourier Transform

We denote

f̂(k) =
N∑
n=1

f(n)exp(
−2iπkn

N
) (1)

the discrete Fourier transform of a signal f = (f(n))1≤n≤N and

f(n) =
1

N

N∑
k=1

f̂(k)exp(
2iπkn

N
) (2)

its inverse. The STFT decomposes a signal f = (f(n))1≤n≤N into time-frequency atoms:

gj,k(n) = w(n− jq) exp

(
2iπkn

W

)
(3)

where (w(n))1≤n≤W is a real window function [6], j and k are respectively time and frequency indices,
1 ≤ j ≤ L, 1 ≤ k ≤ W , L is the number of window functions covering the signal support. The integer
q characterizes the superposition factor between the windows, generally half a window length. The
STFT

f 7−→ Sf (j, k) := 〈f | gj,k〉 =
W∑
n=1

f(n).w(n− jq) exp

(
−2iπkn

W

)
(4)

for 1 ≤ k ≤ W and 1 ≤ j ≤ L computes the complex coefficients matrix

Mf = (Sf (j, k))j,k (5)

using Algorithm 1. The inverse STFT

f(n) =
1

W

L∑
j=1

W∑
k=1

Sf (j, k). exp

(
2iπkn

W

)
(6)

reconstructs the signal f = (f(n))q≤n≤Lq using Algorithm 2, provided that

L∑
j=1

w(n− jq) = 1. (7)

Since f is a real signal the matrix of absolute values of its STFT coefficient is symmetric with respect
to its middle row. Thus, a signal time-frequency behavior can be visualized with an image of half
the matrix of absolute values of the coefficients matrix Mf .
Figure 1 shows the spectrogram (absolute value of the coefficients with logarithmic frequency scale)
of a Mozart oboe music extract. Figure 2 shows the spectogram of the noised Mozart signal.

Figure 1: Spectrogram of an oboe music extract

2

Figure 2: Spectrogram of a noisy oboe music extract

2.1 Hanning window function

The Guoshen Yu et al. algorithm computes the STFT using the Hanning window function (Figure
3). The Hanning window function is defined on]− 1, 1[by the C1(R) function

h : R → [0, 1]

x 7→

{
0 if |x| ≥ 1
1 + cos (πx)

2 if x ∈ [−1, 1]

Figure 3: The Hanning window

Figure 4 shows the Hanning window functions with half length window support superposition.

Figure 4: Hanning windows with half window support superposition

3

The Guoshen Yu et al. algorithm uses the STFT with discrete Hanning windows and odd support
length, W = 2q + 1,

w(n) =
1 + cos(πn

q
)

2
∀n ∈ [−q, q]. (8)

The support of the signal f = (fn)1≤n≤N ∈ RN can be covered using L windows, each one overlapping

the next one on q samples. Notice that L '
⌊
2NW

⌋
.

• A first window function is considered as a signal defined on N

w1 (n) = w (n− q) =
1 + cos

(
π
q

(n− q)
)

2

with support {0, 1, ..., 2q}.

• This window function shifted by q samples to the right is a signal defined on N with support
{q, q + 1, ..., 3q}.

• The jth window shifted by jq samples to the right

wj (n) = w (n− jq) =
1 + cos

(
π
q

(n− jq)
)

2
(9)

is a signal defined on N with support {(j − 1) q, (j + 1) q}.

Proposition 1 (Reconstruction property)

L∑
j=1

wj(n) = 1.

for all n ∈ [q, Lq] where L is the number of window functions.

In consequence if f ∈ RN ,

L∑
j=1

f(n)wj(n) = f(n)
L∑
j=1

wj(n) = f(n)

for n ∈ [q + 1, Lq]. This justifies the given inverse STFT in (6).

3 Wiener Filter

The ideal Wiener filter [6] [9] is an optimal time invariant linear denoising filter. It assumes that the
underlying clean signal Fourier transform modulus is known. Let f be an audio signal contaminated
by a Gaussian white noise

y = f + η ∈ RN

with E[η] = 0 and E[η2] = σ2.

4

Algorithm 1: STFT using window functions with odd support length

Input:

• f : 1D signal of known length,

• timewin: window size in time (in ms),

• fsampling: signal sampling frequency (in Hz).

1 Window length in number of samples: sizewin ← round(timewin ∗ fsampling/1000).
2 if sizewin is even then
3 sizewin ← sizewin + 1
4 end
5 halfsizewin ← (sizewin − 1)/2.
6 Make a Hanning window whanning of size sizewin using (8).
7 Number of needed windows: Nbwin ← floor(length(f) ∗ 2/sizewin).
8 Initialize the coefficient matrix STFTcoef : STFTcoef ← zeros(sizewin, Nbwin − 2)).
9 foreach j from 1 to Nbwin − 2 do

10 Keep the restriction of f on the wj (9) support: fj ← f .
11 Compute the windowed function fwj = fj whanning.
12 Compute the Fourier transform of this windowed function fwj.
13 Store this sizewin vector in the jth column of the STFTcoef matrix.

14 end
Output: STFTcoef .

Algorithm 2: Inverse STFT using window functions with odd support length

Input: :

• STFTcoef : Fourier coefficient matrix,

• fsampling: signal sampling frequency in Hz,

• length f : reconstructed signal length.

1 Window length: sizewin ← number of lines of the STFTcoef matrix.
2 Nb← number of columns of the STFTcoef matrix.
3 if sizewin is even then
4 sizewin ← sizewin + 1
5 end
6 halfsizewin ← (sizewin − 1)/2.
7 Initialize frec : frec ← zeros(length f).
8 foreach j from 1 to Nb do
9 Compute the inverse Fourier transform (ift) of the jth column of STFTcoef :

fwinrec ← ift(STFTcoef (:, j)).
10 Add the result to frec in the right spot:
11 u = (j − 1)halfsizewin
12 frec (u+ 1 : u+ sizewin)←− frec (u+ 1 : u+ sizewin) + fwinrec .

13 end
Output: frec reconstructed signal, array of length length f .

5

Let (ŷk)1≤k≤N be the discrete Fourier transform of y = y(n)1≤n≤N and (f̃n)1≤n≤N the signal whose

discrete Fourier transform is (ˆ̃fk)1≤k≤N with ˆ̃fk = akŷk.
The Wiener filter finds the best attenuation factors ak by minimizing the mean square error

MSE = E
[∑

k |
ˆ̃fk − f̂k|2

]
= E

[∑
k |ak(f̂k + η̂k)− f̂k|2

]
=

∑
k |(ak − 1)f̂k|2 + |ak|2σ2.

The differentiation with respect to ak gives

∂MSE

∂ak
= 2(ak − 1)|f̂k|2 + 2akσ

2,

which yields

ak =

(
|f̂k|2

σ2 + |f̂k|2

)
.

The Wiener filter will be used by Guoshen Yu et al. to smooth the thresholded noisy signal coefficients
before computing the denoised signal with the inverse STFT. Since the Fourier transform f̂k of the
signal is unknown, the empirical Wiener filter uses the equality

E|ŷk|2 = σ2 + |f̂k|2

to estimate |f̂k|2 as |ŷk|2 − σ2. This gives the attenuation factor

a′k =

(
|ŷk|2 − σ2

|ŷk|2

)
+

.

The Wiener denoising step therefore reads

(f + η)
STFT7−→ Sf+η(j, k) = cj,k

Wiener7−→ c̃j,k = a
′

j,kcj,k
STFT−1

7−→ f̃ (10)

where

a′j,k =

(
|cj,k|2 − σ2

|cj,k|2

)
+

. (11)

This empirical Wiener filter is a diagonal estimator which attenuates each coefficient separately, it
causes signal distortion known under the name of musical noise.

Variance of a windowed noise signal

The variance of w(n)η(n) is w(n)2σ2 for each n between 1 and W , thus their mean value is

σ2 1

W

∑
n

w(n)2 = σ2 1

W

∑
n

1

2
(1 + cos(

2πn

W
))2 = 0.375 σ2 (12)

4 Block thresholding

The thresholding signal denoising algorithm computes the STFT or other time-frequency transform
of the noisy signal and processes the matrix of coefficients to attenuate the noise. The STFT is the
transform mostly used to process audio signals.
Let us denote

y(n) = f(n) + η(n)

6

the audio noisy signal where η is a zero-mean Gaussian process independent of f and 1 ≤ n ≤ N .
The block thresholding processes the STFT coefficient matrix

C = {cj,k = Sf+η(j, k) 1 ≤ j ≤ L 1 ≤ k ≤ W }

associated to the time-frequency matrix

X = {(j, k) : 1 ≤ j ≤ L 1 ≤ k ≤ W }

where j and k are time and frequency indices (L is the number of windows used to compute the STFT
transform). This time-frequency matrix is first segmented into rectangular macroblocks of size 8 x
16 (8 samples in time and 16 samples in frequency). Each macroblock is partitioned into rectangular
blocks of the same size, Li x Wi with time length Li = 8, 4, 2 and wide frequencies Wi = 16, 8, 4, 2, 1.
For each macroblock, these 15 partitions into blocks of sizes

Mb =

8× 16 8× 8 8× 4 8× 2 8× 1
4× 16 4× 8 4× 4 4× 2 4× 1
2× 16 2× 8 2× 4 2× 2 2× 1

 (13)

were compared using a Stein Unbiased Risk Estimator (SURE) to select the best. SURE is described
in the next paragraph.

4.1 Attenuation factor

If (Bi)i∈I is a partition of the time-frequency domain X, the reconstruction formula (6) can be
rewritten by a mere rearrangement of the summation

f(n) =
1

W

I∑
i=1

∑
(j,k)∈Bi

Sf (j, k) exp

(
2iπkn

W

)
. (14)

The coefficients of each block Bi are attenuated, c̃j,k = aicj,k ∀(j, k) ∈ Bi, by a common factor

ai =

(
1− λσ2B#

i

||Yi||2

)
+

(15)

where

||Yi||2 =
∑

(j,k)∈Bi

|cj,k|2 (16)

and B#
i the number of coefficients in Bi. The value of λ is specified in the next paragraph. The

restored signal with these attenuated coefficients is

f̃(n) =
1

W

I∑
i=1

∑
(j,k)∈Bi

aicj,k exp

(
2iπkn

W

)
. (17)

Computation of λ

If the STFT coefficients of the noise
εj,k =< η | gj,k >

7

are computed with half overlapping Hanning window functions, the average noise energy follows a
χ2 distribution with B#

i degrees of freedom. The parameter λ is computed from B#
i by adjusting

the residual noise probability
P (ε2 > λσ2) < δ

The “musical noise” becomes barely audible with δ ' 0.1. Table I shows the corresponding λ values
for various block sizes B#

i :

B#
i 4 8 16 32 64 128

λ 4.7 3.5 2.5 2.0 1.8 1.5

Table 1
Threshold λ calculated for various block sizes B# with δ = 0.1%

Guoshen Yu et al. compute λ for the 15 block sizes (13) using table 1. For Wi = 1, the values of λ
are choosen equal to those for Wi = 2. In consequence the λ values corresponding to the 15 block
sizes (13) are written in the following matrix

Mλ =

1.5 1.8 2 2.5 2.5
1.8 2 2.5 3.5 3.5
2 2.5 3.5 4.7 4.7

 . (18)

Neither the risk of the method, defined by R = E{||f − f̃ ||2} nor its upper bound

R = E{||f − f̃ ||2} ≤ K
I∑
i=1

∑
(j,k)∈Bi

E{|Sf (j, k)− aicj,k|2} (19)

can be computed since f and Sf (j, k) are unknown. This upper bound is obtained using (14) and
(17).

SURE theorem

To estimate this block thresholding risk, T. Cai [1] uses the Stein Unbiased Risk Estimator (SURE):
[8]

Theorem 1 Let Y = (Y1, Y2, ..., Yp) be a Gaussian vector with identity as covariance matrix and
mean F = (F1, F2, ..., Fp). Let Y + h(Y) be an estimator of F where h = (h1, h2, ..., hp) almost
differentiable(1) (each hj : Rp → R1 is almost differentiable) and

∇.h =

p∑
j=1

∂hj
∂Yj

.

If E[
∑p

j=1 |∂hj(Y)/∂Yj|] <∞, then

R = E[||Y + h(Y)− F ||2] = p+ E[||h(Y)||2 + 2∇.h(Y)]

and
R̃ = p+ ||h(Y)||22 + 2∇.h(Y)

is an unbiased estimator of the risk R of Y + h(Y). It is called the Stein Unbiased Risk Estimator
(SURE).

To apply this theorem to our problem, we set y = f + η, Y = Sf + ε, E(ε) = 0 and call Y (resp. Sf ,
ε) the STFT coefficient matrix of y (resp. f , η) so that

E(Y) = Sf .

8

Best macroblock partition

For each macroblock partition {Bi i ∈ I}

E(Yi) = Fi

where
Yi = {cj,k = Sf+η(j, k) : (j, k) ∈ Bi}

and
Fi = {Sf (j, k) : (j, k) ∈ Bi}.

Moreover, from (15) and (16), the attenuation factor can be written as follows

ai =

(
Y 2
i − λσ2

Y 2
i

)
+

(20)

therefore

h(Yi) = aiYi − Yi = −Yi

(
λσ2

Y 2
i

1
Y 2
i ≥λσ2 + 1

Y 2
i <λσ

2

)
with h : CB#

i → CB#
i and

h(X) :=


−Xλσ2B#

i

||X||2 if ||X||2 > λσ2B#
i

−X if ||X||2 ≤ λσ2B#
i

(21)

which is continuous in Bi, differentiable in Ai for

Ai = {cj,k = Sf+η(j, k) ∈ Bi :
∑
||cj,k||2 6= λσ2B#

i }

then Lipschitz over Ai. In consequence h is almost differentiable.

Applying the SURE theorem to

• p = B#
i

• h(Yi) = (ai − 1)Yi

• ai given by (20)

the formula

R̃i = σ2

(
B#
i + E

{∣∣∣∣∣∣∣∣h(Yiσi
)∣∣∣∣∣∣∣∣2 + 2∇.h

(
Yi
σi

)})
(22)

gives an estimator of the ith-block risk:

Ri =
∑

(i,j)∈Bi

E[|Fi,j − aiYi|2]

=
∑

(i,j)∈Bi

E[|Fi,j − Yi − h(Yi)|2].

Therefore [9]

R̃i = σ2

B#
i +

λ2B#
i − 2λ(B#

i − 2)

Y 2
i

σ2

1
Y 2
i >λσ2 +B#

i

(
Y 2
i

σ2
− 2

)
1
Y 2
i <λσ

2

 . (23)

The risk of a macroblock partition is the sum of the estimated block risks,
∑

i R̂i. Each macroblock
is treated independently, the risk values of the 15 different macroblock partitions are computed and
the one with minimal risk is kept. This is done using Algorithms 3, 4, 5, 6 and 7.

9

Algorithm 3: Block Thresholding

Input: f : the noisy signal, timewin: window length in time (in ms), fsampling: signal sampling
frequency (in Hz), σnoise: the noise variance.

1 Window size in number of samples: sizewin ← round(timewin ∗ fsampling/1000).
2 if sizewin is even then
3 sizewin ← sizewin + 1
4 end
5 halfsizewin ← (sizewin − 1)/2
6 Number of needed windows: Nbwin ← floor(length(f) ∗ 2/sizewin).
7 Number of macroblock columns: nb Macroblk columns.
8 Number of macroblock lines: nb Macroblk lines.
9 Half number of macroblock lines: half nb Macroblk lines.

10 Compute matrix STFTcoef of size sizewin × (Nbwin − 2) using Algorithm 1.
11 Initialize STFTcoefth to a null matrix of size sizewin ×Nbwin
12 σhanning ← sizewin σnoise

√
0.375 using (1) and (12).

13 For negative frequencies (the halfsizewin + 1 first lines of STFTcoef):
14 foreach j from 1 to nb Macroblk columns do
15 For the first line of STFTcoef (which values are real) compute the attenuation factors

using equation (15) and update the corresponding STFTcoefth coefficients.
16 foreach i from 2 to half nb Macroblk lines do
17 Compute the macroblock i, j of STFTcoefth calling Algorithm 4 with input macroblock

i, j of STFTcoef , σhanning.

18 end
19 For the last few frequencies outside the set of macroblocks, compute the attenuation

factors using equation (15) and update the corresponding STFTcoefth coefficients.

20 end

21 For positive frequencies, conjugate the computed last halfsizewin lines of STFTcoefth .
22 Apply Wiener Filter: STFTcoefid ← Wiener(STFTcoefth).
23 Invert the result: frec ← inverseSTFT (STFTcoefid , timewin, fsampling, length(f)) using

Algorithm 2.
Output: frec.

Algorithm 4: Best partition on a macroblock using a SURE matrix

Input: macroblock of STFTcoef , σnoise.
1 Initialize SURE to a null matrix of size 3× 5 (number of possible macroblock partitions).
2 foreach Possible macroblock partition do
3 λ← Mλ (18) value corresponding to the current partition.
4 Compute the risk of the current macroblock partition using Algorithm 5 with input:

STFTcoef , partition, λ, σ.
5 Store the result in the SURE matrix coefficient corresponding to the current partition.

6 end
7 Find the Minimum of SURE and the matched partition.
8 Compute the STFTcoefth corresponding macroblock by calling Algorithm 6 with input:

macroblock of STFTcoef , best partition, corresponding λ value, σ.
Output: macroblock of STFTcoefth .

10

Algorithm 5: Risk value of the macroblock partition

Input: macroblock of STFTcoef , macroblock partition, λ, σ.
1 Initialize the variable Risk to 0.
2 foreach Mini-block do
3 Compute its risk value calling Algorithm 7.
4 Add this value to Risk.

5 end
Output: Risk.

Algorithm 6: Attenuation factor

Input: (macroblock of STFTcoef , macroblock partition, λ, σ).
1 Initialize the corresponding macroblock of STFTcoefth to zero.
2 foreach Block in the partition of the STFTcoef macroblock do
3 Compute the attenuation factor, using the equation (20).
4 Multiply all the STFT coefficients of the current block by this attenuation factor to

compute the corresponding macroblock of STFTcoefth .

5 end
Output: macroblock of STFTcoefth .

Algorithm 7: Risk value on a block of coefficients

Input: (block B of STFTcoef , λ, σ).
1 Compute the block risk using equation (23).
Output: Risk.

5 Experiments and Results

The described block thresholding procedure

(f + η)
STFT7−→ cj,k = Sf+η(j, k)

Thresholding7−→ c̃j,k = aicj,k
Wiener7−→ ˜̃cj,k

STFT−1

7−→ f̃

performs a strong noise reduction without preserving the whole time-frequency spectrum of the
underlying signal f . In consequence, sound damages are often audible. This happens when the
attenuation factor over a block Bi is zero (ai = 0) and the STFT coefficients of the signal f are
different from zero over Bi (Sf (j, k) 6= 0 for (j, k) ∈ Bi).

This loss of spectrum coefficients is clearly visible in figure 5 which shows Sf+η, Sf et Sf̃ for a trumpet
audio signal. This figure shows that for high frequencies the spectrum of the noisy signal masks
the one of the underlying clean signal and illustrates a high frequency distortion of the denoising
algorithm, which is also audible.

Figure 6 et 7 compare Sf+η, Sf et Sf̃ , for a fixed time value j = j0. They show that for high
frequencies, the noisy signal masks the original spectrum and the denoised signal is set to zero.

11

0.5 1 1.5 2 2.5 3

x 10
4

−0.5

0

0.5

Noisy trumpet signal

Time

A
m

p
lit

u
d

e

Time

F
re

q
u
e
n
c
y

STFT coefficients (absolute value)

2000 4000 6000 8000 10000 12000 14000
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

x 10
4

−0.5

0

0.5

Denoised trumpet signal

Time

A
m

p
lit

u
d

e

Time

F
re

q
u
e
n
c
y

STFT coefficients (absolute value)

2000 4000 6000 8000 10000 12000 14000
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

x 10
4

−0.5

0

0.5

Original trumpet signal

Time

A
m

p
lit

u
d

e

Time

F
re

q
u

e
n

c
y

STFT coefficients (absolute value)

2000 4000 6000 8000 10000 12000 14000
0

0.2

0.4

0.6

0.8

1

Figure 5: Noisy, denoised and original trumpet signal with spectrograms

50 100 150 200 250 300 350 400 450 500 550

0

5

10

15

20

25

30

35

40

45

STFT coefficients (in absolute value) for a fixed time indice

noisy signal

clean signal

denoised signal

Figure 6: Noisy, denoised and clean audio trumpet signal

Fig. 7 superposes f + η, f̃ and f for comparison.

50 100 150 200 250 300 350

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

Am
pl

itu
de

Noisy, denoised and clean trumpet signals

clean signal

noisy signal

denoised signal

Figure 7: Noisy, denoised and clean audio trumpet signal

12

6 Conclusion

This paper describes and reviews performances of the Guoshen Yu et al. block audio denoising
algorithm. This algorithm based on a non-diagonal time-frequency processing attenuates “musical
noise” artifacts. It denoises audio signals corrupted with additive Gaussian white noise.
A loss of the original signal spectrum after denoising is clearly visible. In consequence, in spite of
the improved audition, some damage is often audible. Inevitably, the sound of the denoised signal is
often damaged compared with the sound of the orginal signal since a part of the underlying signal
spectrum is removed by this procedure.

The ANSI C implementation (available on line) improves highly the algorithm running time com-
pared to the Matlab implementation.

References

[1] Y. Cai, H. Zhou A data-driving block thresholding approach to wavelet estimation, Annals of
Statistics, vol. 37, pp. 569-595, 2009. DOI: 10.1214/07-AOS538.

[2] O. Cappé, Elimination of the musical noise phenomenon with the Ephraim and Malah noise
suppressor, IEEE Transactions on Speech and Audio Processing, vol. 2, pp. 345-349, 1994. DOI:
10.1109/89.279283.

[3] D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, vol. 81,
pp. 425-455, 1994. doi: 10.1093/biomet/81.3.425

[4] Y. Ephraim and D. Malah, Speech enhancement using a minimum mean square error short-time
spectral amplitude estimator, IEEE Transactions on Acoustics Speech and Signal Processing, vol.
32, no. 6, pp. 1109-1121, Dec. 1984. DOI: 10.1109/TASSP.1984.1164453.

[5] Y. Ephraim and D. Malah, Speech enhancement using a minimum mean square error log-spectral
amplitude estimator, IEEE Transactions on Acoustics Speech and Signal Processing, vol. ASSP-
33, no. 2, pp. 443-445, Apr. 1985. DOI: 10.1109/TASSP.1985.1164550.

[6] Stéphane Mallat, a Wavelet tour of signal processing - The Sparse Way, 3rd edition, December
2009. ISBN:0123743702 9780123743701.

[7] R. J. McAulay and M. L. Malpass, Speech enhancement using soft decisions noise suppression
filter, IEEE Transactions on Acoustics Speech and Signal Processing, ASSP-28, pp. 137-145, 1980.

[8] Charles M. Stein, Estimation of the Mean of a Multivariate normal distribution, Annals of Statis-
tics, Vol. 9, No.6, 1135-1151, 1981. DOI:10.1214/aos/1176345632.

[9] Guoshen Yu, Stéphane Mallat and Emmanuel Bacry, Audio Denoising by Time-Frequency Block
Thresholding, IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 56, No. 5, May
2008. DOI: 10.1109/TSP.2007.912893.

13

	Introduction
	Short Time Fourier Transform
	Hanning window function

	Wiener Filter
	Block thresholding
	Attenuation factor

	Experiments and Results
	Conclusion

