
Published in Image Processing On Line on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/

PREPRINT September 18, 2013

STFT time-frequency visualization

Application to sound signals

Eva Wesfreid

CMLA, ENS Cachan, France
(eva@cmla.ens-cachan.fr)

Abstract

The short time Fourier transform (STFT) is the most widely used algorithm for analyzing non-
stationary signals. This paper describes two different STFT methods and their time-frequency
visualization with application to sound signals.

An ANSI C implementation is provided and available from the web page of this article. The
code is distributed under GPL license.

1 Introduction

STFT [1] [2] is a powerful algorithm to show a signal time-frequency behavior. Two different STFT
methods are described in this paper, the first one used by Guoshen et al. [3] for audio signals denoising
and the other one used by Gabriel Peyré [4] for signal processing. Non-stationary signals are analyzed
locally using window functions on overlapping time-intervals. The STFT algorithm computes the
Fourier transform of windowed signals (signals multiplied by overlapping window functions). The
windowed signal is written in a real matrix of p columns times w rows where p is the number of
windows, and w is the window length. The signal STFT is the Fourier transform of the windowed
signal computed column by column. Therefore the STFT coefficients are written in a complex matrix
of p columns times w rows. This matrix is then transformed into a color matrix and finally into a
time-frequency image, the spectrogram. This algorithm is applied to audio signals, some examples
of sound spectrograms with different choices of window length are shown on-line.

2 STFT algorithm

Windowed signal

A non stationary signal Fourier transform is analyzed locally using translated window functions. The
Hann window (commonly called Hanning Window) of length w

g[n] =

1
2

(
1− cos

(
2πn
w−1

))
for 0 ≤ n < w

0 otherwise
(1)

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/

verifies
g[0] = g[w − 1] = 0

and
g[q] = 1

if w is odd and q = w−1
2

(half window length). This is a smooth window function in the sense that

h[t] =

1
2

(
1− cos

(
2πt
w−1

))
for 0 ≤ t < w

0 otherwise

is a C1(R) function.

The p shifted window functions

gj[n] = g[n− jq] (2)

with 0 ≤ j ≤ p− 1 realize a partition of unity

p−1∑
j=0

gj[n] = 1

for q ≤ n ≤ pq. This partition of unity is not verified for even w length windows.

Figure 1 shows this partition for p = 4, w = 257, q = 128 (g0, g1, g2, g3). This figure displays the
window g0 = g defined in (1) over [0, w[with three other shifted windows g1, g2, g3 (2).

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

1.2 3∑

j=0

gj = 1

g0 g1 g2 g3

Figure 1: Hann overlapping windows

If f is a signal of length N = (p+ 1)q defined over [0, N [then f is windowed

f =

p−1∑
j=0

gjf

over [q, pq]. If f is a real column array then the windowed signal (gjf)0≤j<p is a real matrix of p
columns and w rows (w is the window length)

(gj[n]f [n]) 0≤n<w, 0≤j<p

Furthermore, the signal can be extended to [−q,N + q] and windowed with p+ 2 window functions

f =

p∑
j=−1

gjf

2

p∑
j=−1

gj[n] = 1

over [0, (p+ 1)q].

Figure 2 shows

p∑
j=−1

gj[n] = 1 over [0, 5q].

−100 0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

1.2 4∑

j=−1

gj = 1

g
−1 g0 g1 g2 g3 g4

Figure 2: Hann overlapping windows (including boundary windows)

Forward transform

The STFT computes the Fourier transform of a windowed signal, column by column

f −→ {gjf}0≤j<p −→ {ĝjf}0≤j<p

where ĝjf = (ĝjf [k])0≤k<w for each window index (time index) j (k is the frequency index),

Sf [k, j] = ĝjf [k] =
w−1∑
n=0

f [n+ jq]g[n] exp

(
−2iπnk

w

)
for 0 ≤ k < w and 0 ≤ j < p.

Therefore, the complex matrix Sf of p columns and w rows is the STFT of a signal f of length
N = (p+ 1)q defined over [0, N [(not extended to [−q,N + q]).

If gk,j[n] = g[n− jq] exp(2iπ[n−jq]k
w

) and < ., . > denotes the scalar product in Cw then

Sf [k, j] =< f, gk,j >

Backward transform with Hann window function

The backward STFT computes first the inverse Fourier transform of each column Sf [., j] = ĝjf

{gjf}0≤j<p ←− {ĝjf}0≤j<p
then f is reconstructed using the partition of unity over [q, pq] (for Hann window functions)

f =

p−1∑
j=0

gjf ←− {gjf}0≤j<p ←− {ĝjf}0≤j<p

3

and

f [n] =
1

w

p−1∑
j=0

w−1∑
k=0

ĝjf [k] exp(
2iπnk

w
) =

1

w

p−1∑
j=0

w−1∑
k=0

Sf [k, j] exp(
2iπnk

w
)

over [q, pq].
This backward transform is used in [3] and [6] for audio signal denoising.

STFT with renormalized window function

If V = (V [n])n∈Z is a window function such that V [n] ≥ 0 for 0 ≤ n < w and zero otherwise (w is
the window length) then the translated

Ṽj = V [n− jq] (3)

and renormalized [4] window function

Ṽj[n] =
Vj[n]√√√√p−1∑
j=0

V 2
j [n]

(4)

verifies
p−1∑
j=0

Ṽ 2
j [n] = 1 (5)

and

f [n] =

p−1∑
j=0

Ṽ 2
j [n]f [n] (6)

over [q, pq] and for a signal f of length N = (p+ 1)q defined over [0, N [.

Therefore we have the following reversible sequence

f −→ {Ṽjf}0≤j<p −→ {̂̃Vjf}0≤j<p −→ {Ṽjf}0≤j<p −→ {Ṽ 2
j f}0≤j<p −→ f

over [q, pq].

Furthermore, if

Ṽk,j[n] = Ṽ [n− jq] exp(
2iπ(n− jq)k

w
)

then

Sf [k, j] =< f, Ṽk,j >=
w−1∑
n=0

f [n+ jq]Ṽ [n] exp(−2iπnk

w
) = ̂̃Vjf [k]

Thus
f =

∑
j,k

< f, Ṽk,j > Ṽk,j

and

f [n] =

p−1∑
j=0

Ṽj[n]
w−1∑
k=0

Sf [k, j] exp(
2iπnk

w
) (7)

over [q, pq].

4

In consequence, the signal f can be decomposed as follows

f =
∑
j,k

Sf [k, j]Ṽk,j (8)

(the set of functions (Ṽk,j)k,j is a tight frame [5] and Sf [k, j] the matrix of coefficients).
The signals are usually extended to [−q,N + q[by symmetry or periodicity to reduce undesirable
boundary effects. In this case, the reconstructed functions (??) and (??) are defined over [0, (p+1)q[

Time-frequency representation

The time-frequency behavior of a real signal can be visualized with an image of the coefficient matrix
Sf [k, j] in absolute value. Since this matrix is symmetric with respect to a middle row and the log
values provide a better visualization, the spectrogram is the image of the following matrix

I = log(|Sf [k, j]|+ ε)0≤j<p, k>q

where ε ≈ 10−12 is used to hide null or quasi-null Sf [k, j] values.

For a better interpretation, this image is shown with the corresponding signal in the same graph.
Figure 3 shows an audio signal with noise clicks, and below its spectrogram with windows of 5 mil-
liseconds length. Since this signal is sampled with 44100 Hz, the window length is 221 samples (the
number of samples is equal to time window length(in ms)/1000 ∗ 44100).

500 1000 1500 2000 2500 3000 3500

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Signal with noise clicks

time samples

am
pli

tud
e

Spectrogram

window indexes

fre
qu

en
cy

 sa
mp

les

5 10 15 20 25 30 35

10

20

30

40

50

60

70

80

90

100

110

Figure 3: Audio signal (with clicks) and its spectrogram

A speech signal, bird sound and piano chords with theirs spectrograms are shown in Figure 4, 5, 6.

5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Speech signal

time samples

am
pli

tud
e

Spectrogram

window indexes

fre
qu

en
cy

 sa
mp

les

20 40 60 80 100 120 140 160 180

10

20

30

40

50

60

70

80

90

100

110

Figure 4: Speech signal and its spectrogram

0.5 1 1.5 2 2.5

x 10
4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Bird signal

time samples

am
pli

tud
e

Spectrogram

window indexes

fre
qu

en
cy

 sa
mp

les

50 100 150 200 250

10

20

30

40

50

60

70

80

90

100

110

Figure 5: Bird sound with its spectrogram

6

1 2 3 4 5 6 7 8 9

x 10
4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Signal

time samples
am

pli
tud

e

Spectrogram

window indexes

fre
qu

en
cy

 sa
mp

les

50 100 150 200

50

100

150

200

250

300

350

400

Figure 6: Piano chords and their spectrogram

3 Implementation for sound signals

An ANSI C implementation is available to:

• read and write audio files,

• compute a STFT matrix of coefficients,

• compute a spectrogram (time-frequency image) for different window lengths.

using the SNDFILE and FFTW3 libraries.

The readSound function transforms an audio file into a C structure which contains the number of
channels, the samples in each channel, its length, sample frequency and number of bits.

The writeSound function transforms this C structure into an audiofile.

The stft function computes a STFT coefficient matrix of the structure channel array.

The spectrogram function transforms this STFT coefficient matrix into an integer color matrix.

The savepng function transforms this color matrix into an image matrix.

audio file −→ C structure (S) −→ S.channel −→ coefficient matrix −→ time-frequency image

The readSound and writeSound C functions use SNDFILE and the stft C function uses FFTW3. In
both cases, the implemented functions facilitate the use of these libraries, providing a user-friendly
interface”.

7

Algorithm 1: STFT using renormalized window function

Input:

• f : 1D signal (sampled vector),

• N : signal length,

• nW : window length.

Output: STFT matrix

1 Make the vector w containing the window function.
2 foreach j from 1 to number of windows do
3 Translate the window V → Vj (3)

4 Renormalize this window Vj → Ṽj (4).

5 end
6 such that (5).

7 foreach j from 1 to number of windows do

8 Multiply the signal by the renormalized window Ṽj
9 Compute the fft of Ṽjf

10 Copy this result in column j of the STFT matrix.

11 end

Algorithm 2: Inverse STFT using renormalized window function

Input:

• M : coefficient matrix,

• N : length of the original signal,

• w: vector containing the window function

• nW : window length.

Output: reconstructed signal.

1 Initialize the reconstructed signal x to 0.

2 foreach j from 1 to the number of columns do
3 Put the column j of the matrix M in a complex vector yj,
4 Compute the inverse fft of this complex vector yj → zj,

5 Multiply zj by Ṽj
6 Add the result to the reconstructed signal (7).

7 end

8

References

[1] Alan V. Oppenheim, Ronald W. Schafer, Mark T. Yoder, Wayne T. Padgett, Disctrete-Time
Signal Processing, Prentice Hall, 2009.

[2] W. Koenig, H. K. Dunn, and L. Y. Lacy, The Sound Spectrograph, J. Acoust. Soc. Am. 18, 1,
19-49 (1946).

[3] Guoshen Yu, Stéphane Mallat, and Emmanuel Bacry, Audio Denoising by Time-Frequency
Block Thresholding, IEEE Transactions on Signal Processing, vol. 56, no. 5, May 2008.

[4] Gabriel Peyré, The Numerical Tours of Signal Processing - Advanced Computational Signal and
Image Processing, Matapli 94 (2011) 41-64.

[5] Stphane Mallat, A Wavelet tour of signal processing, 3rd edition. Academic Press, Dec. 2008.

[6] Marie de Masson d’Autume, Christophe Varray, Eva Wesfreid, Block thresholding audio denoising
algorithm. Submit to J-RASP.

9

	Introduction
	STFT algorithm
	Implementation for sound signals

