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Abstract

The short time Fourier transform (STFT) is the most widely used algorithm for analyzing non-
stationary signals. This paper describes two different STFT methods and their time-frequency
visualization with application to sound signals.

An ANSI C implementation is provided and available from the web page of this article. The
code is distributed under GPL license.

1 Introduction

STFT [1] [2] is a powerful algorithm to show a signal time-frequency behavior. Two different STFT
methods are described in this paper, the first one used by Guoshen et al. [3] for audio signals denoising
and the other one used by Gabriel Peyré [4] for signal processing. Non-stationary signals are analyzed
locally using window functions on overlapping time-intervals. The STFT algorithm computes the
Fourier transform of windowed signals (signals multiplied by overlapping window functions). The
windowed signal is written in a real matrix of p columns times w rows where p is the number of
windows, and w is the window length. The signal STFT is the Fourier transform of the windowed
signal computed column by column. Therefore the STFT coefficients are written in a complex matrix
of p columns times w rows. This matrix is then transformed into a color matrix and finally into a
time-frequency image, the spectrogram. This algorithm is applied to audio signals, some examples
of sound spectrograms with different choices of window length are shown on-line.

2 STFT algorithm

Windowed signal

A non stationary signal Fourier transform is analyzed locally using translated window functions. The
Hann window (commonly called Hanning Window) of length w

g[n] =


1
2

(
1− cos

(
2πn
w−1

))
for 0 ≤ n < w

0 otherwise
(1)
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verifies
g[0] = g[w − 1] = 0

and
g[q] = 1

if w is odd and q = w−1
2

(half window length). This is a smooth window function in the sense that

h[t] =


1
2

(
1− cos

(
2πt
w−1

))
for 0 ≤ t < w

0 otherwise

is a C1(R) function.

The p shifted window functions

gj[n] = g[n− jq] (2)

with 0 ≤ j ≤ p− 1 realize a partition of unity

p−1∑
j=0

gj[n] = 1

for q ≤ n ≤ pq. This partition of unity is not verified for even w length windows.

Figure 1 shows this partition for p = 4, w = 257, q = 128 (g0, g1, g2, g3). This figure displays the
window g0 = g defined in (1) over [0, w[ with three other shifted windows g1, g2, g3 (2).
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Figure 1: Hann overlapping windows

If f is a signal of length N = (p+ 1)q defined over [0, N [ then f is windowed

f =

p−1∑
j=0

gjf

over [q, pq]. If f is a real column array then the windowed signal (gjf)0≤j<p is a real matrix of p
columns and w rows (w is the window length)

(gj[n]f [n]) 0≤n<w, 0≤j<p

Furthermore, the signal can be extended to [−q,N + q] and windowed with p+ 2 window functions

f =

p∑
j=−1

gjf
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p∑
j=−1

gj[n] = 1

over [0, (p+ 1)q].

Figure 2 shows

p∑
j=−1

gj[n] = 1 over [0, 5q].
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Figure 2: Hann overlapping windows (including boundary windows)

Forward transform

The STFT computes the Fourier transform of a windowed signal, column by column

f −→ {gjf}0≤j<p −→ {ĝjf}0≤j<p

where ĝjf = (ĝjf [k])0≤k<w for each window index (time index) j (k is the frequency index),

Sf [k, j] = ĝjf [k] =
w−1∑
n=0

f [n+ jq]g[n] exp

(
−2iπnk

w

)
for 0 ≤ k < w and 0 ≤ j < p.

Therefore, the complex matrix Sf of p columns and w rows is the STFT of a signal f of length
N = (p+ 1)q defined over [0, N [ (not extended to [−q,N + q]).

If gk,j[n] = g[n− jq] exp(2iπ[n−jq]k
w

) and < ., . > denotes the scalar product in Cw then

Sf [k, j] =< f, gk,j >

Backward transform with Hann window function

The backward STFT computes first the inverse Fourier transform of each column Sf [., j] = ĝjf

{gjf}0≤j<p ←− {ĝjf}0≤j<p
then f is reconstructed using the partition of unity over [q, pq] (for Hann window functions)

f =

p−1∑
j=0

gjf ←− {gjf}0≤j<p ←− {ĝjf}0≤j<p
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and

f [n] =
1

w

p−1∑
j=0

w−1∑
k=0

ĝjf [k] exp(
2iπnk

w
) =

1

w

p−1∑
j=0

w−1∑
k=0

Sf [k, j] exp(
2iπnk

w
)

over [q, pq].
This backward transform is used in [3] and [6] for audio signal denoising.

STFT with renormalized window function

If V = (V [n])n∈Z is a window function such that V [n] ≥ 0 for 0 ≤ n < w and zero otherwise (w is
the window length) then the translated

Ṽj = V [n− jq] (3)

and renormalized [4] window function

Ṽj[n] =
Vj[n]√√√√p−1∑
j=0

V 2
j [n]

(4)

verifies
p−1∑
j=0

Ṽ 2
j [n] = 1 (5)

and

f [n] =

p−1∑
j=0

Ṽ 2
j [n]f [n] (6)

over [q, pq] and for a signal f of length N = (p+ 1)q defined over [0, N [.

Therefore we have the following reversible sequence

f −→ {Ṽjf}0≤j<p −→ {̂̃Vjf}0≤j<p −→ {Ṽjf}0≤j<p −→ {Ṽ 2
j f}0≤j<p −→ f

over [q, pq].

Furthermore, if

Ṽk,j[n] = Ṽ [n− jq] exp(
2iπ(n− jq)k

w
)

then

Sf [k, j] =< f, Ṽk,j >=
w−1∑
n=0

f [n+ jq]Ṽ [n] exp(−2iπnk

w
) = ̂̃Vjf [k]

Thus
f =

∑
j,k

< f, Ṽk,j > Ṽk,j

and

f [n] =

p−1∑
j=0

Ṽj[n]
w−1∑
k=0

Sf [k, j] exp(
2iπnk

w
) (7)

over [q, pq].
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In consequence, the signal f can be decomposed as follows

f =
∑
j,k

Sf [k, j]Ṽk,j (8)

(the set of functions (Ṽk,j)k,j is a tight frame [5] and Sf [k, j] the matrix of coefficients).
The signals are usually extended to [−q,N + q[ by symmetry or periodicity to reduce undesirable
boundary effects. In this case, the reconstructed functions (??) and (??) are defined over [0, (p+1)q[

Time-frequency representation

The time-frequency behavior of a real signal can be visualized with an image of the coefficient matrix
Sf [k, j] in absolute value. Since this matrix is symmetric with respect to a middle row and the log
values provide a better visualization, the spectrogram is the image of the following matrix

I = log(|Sf [k, j]|+ ε)0≤j<p, k>q

where ε ≈ 10−12 is used to hide null or quasi-null Sf [k, j] values.

For a better interpretation, this image is shown with the corresponding signal in the same graph.
Figure 3 shows an audio signal with noise clicks, and below its spectrogram with windows of 5 mil-
liseconds length. Since this signal is sampled with 44100 Hz, the window length is 221 samples (the
number of samples is equal to time window length(in ms)/1000 ∗ 44100).
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Figure 3: Audio signal (with clicks) and its spectrogram

A speech signal, bird sound and piano chords with theirs spectrograms are shown in Figure 4, 5, 6.
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Figure 4: Speech signal and its spectrogram
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Figure 5: Bird sound with its spectrogram
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Figure 6: Piano chords and their spectrogram

3 Implementation for sound signals

An ANSI C implementation is available to:

• read and write audio files,

• compute a STFT matrix of coefficients,

• compute a spectrogram (time-frequency image) for different window lengths.

using the SNDFILE and FFTW3 libraries.

The readSound function transforms an audio file into a C structure which contains the number of
channels, the samples in each channel, its length, sample frequency and number of bits.

The writeSound function transforms this C structure into an audiofile.

The stft function computes a STFT coefficient matrix of the structure channel array.

The spectrogram function transforms this STFT coefficient matrix into an integer color matrix.

The savepng function transforms this color matrix into an image matrix.

audio file −→ C structure (S) −→ S.channel −→ coefficient matrix −→ time-frequency image

The readSound and writeSound C functions use SNDFILE and the stft C function uses FFTW3. In
both cases, the implemented functions facilitate the use of these libraries, providing a user-friendly
interface”.
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Algorithm 1: STFT using renormalized window function

Input:

• f : 1D signal (sampled vector),

• N : signal length,

• nW : window length.

Output: STFT matrix

1 Make the vector w containing the window function.
2 foreach j from 1 to number of windows do
3 Translate the window V → Vj (3)

4 Renormalize this window Vj → Ṽj (4).

5 end
6 such that (5).

7 foreach j from 1 to number of windows do

8 Multiply the signal by the renormalized window Ṽj
9 Compute the fft of Ṽjf

10 Copy this result in column j of the STFT matrix.

11 end

Algorithm 2: Inverse STFT using renormalized window function

Input:

• M : coefficient matrix,

• N : length of the original signal,

• w: vector containing the window function

• nW : window length.

Output: reconstructed signal.

1 Initialize the reconstructed signal x to 0.

2 foreach j from 1 to the number of columns do
3 Put the column j of the matrix M in a complex vector yj,
4 Compute the inverse fft of this complex vector yj → zj,

5 Multiply zj by Ṽj
6 Add the result to the reconstructed signal (7).

7 end
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