
Temporally consistent gradient domain
video editing

Gabriele Facciolo1, Rida Sadek1, Aurelie Bugeau2, and Vicent Caselles1

1 DTIC, Universitat Pompeu Fabra, 08023 Barcelona, Spain,
{gabriele.facciolo,rida.sadek,vicent.caselles}@upf.edu
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Abstract. In the context of video editing, enforcing spatio-temporal
consistency is an important issue. With that purpose, the current varia-
tional models for gradient domain video editing include space and time
regularization terms. The spatial terms are based on the usual space
derivatives, the temporal ones are based on the convective derivative,
and both are balanced by a parameter β. However, the usual discretiza-
tions of the convective derivative limit the value of β to a certain range,
thus limiting these models from achieving their full potential. In this
paper, we propose a new numerical scheme to compute the convective
derivative, the deblurring convective derivative, which allows us to lift
this constraint. Moreover, the proposed scheme introduces less errors
than other discretization schemes without adding computational com-
plexity. We use this scheme in the implementation of two gradient do-
main models for temporally consistent video editing, based on Poisson
and total variation type formulations, respectively. We apply these mod-
els to three video editing tasks: inpainting correction, object insertion
and object removal.

Key words: Video editing, Poisson editing, temporal consistency, total
variation, convective derivative, numerical methods

1 Introduction

In the context of static image editing, the insertion/removal of content in an
image is generally performed using gradient domain methods. These methods
allow editing an image without introducing artifacts at the boundaries of the
edited regions. Consequently, gradient domain methods are widely used in im-
age processing for: seamless cloning and compositing [1, 2], shadow removal [3],
HDR compression [4], image inpainting [5–7], and matting [8] among others.
Essentially, gradient domain image editing is based on the manipulation of the
gradients of an image instead of its graylevels. The modified gradients are then
integrated to recover the resulting image. This procedure prevents the appear-
ance of seams at the boundaries of the edited region. For a more detailed intro-
duction to gradient-domain methods, the reader is referred to [9]. In particular,
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Poisson image editing [1] is one of such techniques; it formulates the problem
variationally as

min
u

∫
O⊂Ω

‖∇u− g‖2dx; with u|∂O = u0,

where Ω ⊂ R2 is the image domain, O ⊂ Ω is the region to be edited, g : O → R2

is the guidance vector field (e.g. gradient of the image to be composed), u : O →
R is the solution which best approximates the field g, and u0 : Ω → R is the
original image which provides the boundary conditions needed for reconstructing
the solution u. The solution of this problem is computed solving the Poisson
equation with Dirichlet boundary conditions u|∂O = u0.

Since a video is nothing but a stack of images captured at evenly spaced
times, it is natural to apply image editing techniques for video editing tasks.
However, video editing poses some challenges that were not present in still image
editing such as preserving the temporal consistency of the video. To cope with
these challenges, video editing tasks are generally broken down into three steps:
a) tracking the region where the editing is being performed [10, 11], a task that
may also require detecting occlusions of the region; b) computing the new content
of the region; and c) blending the new content with the original video so that
the modification is not noticeable. The first two steps are usually handled by
tracking and video inpainting techniques.

The focus of this work lies in computing the missing content in the editing
region and enforcing the temporal consistency during the blending step. We con-
sider three application scenarios: the correction of artifacts due to illumination
changes in inpainted video sequences; the insertion of objects in a video; and
the removal of objects. We restrict our study to the case where the inserted or
removed object is affixed to a surface (for instance a sign on a wall). However,
we do not restrict the motions of the camera nor of the surface in the scene. Our
method also copes with occlusions and disocclusions of the inserted/removed
object.

Temporal inconsistencies are sometimes more conspicuous than spatial ones.
They tend to manifest in the edited video by introducing an annoying flicker-
ing. A simple solution to avoid the flickering is to consider the video as a three-
dimensional volume and manipulate the spatio-temporal gradient to perform the
editing operations. In [12], it is shown that setting the spatio-temporal gradient
as the guidance field eliminates the flickering artifact. However, this approach is
only valid when the edited region is not moving. That is, if the target region is
moving, then the temporal consistency must be enforced by following its move-
ment in the scene. This may be the case of inserting new content in a video, like
the advertisement in Figure 1. In [13] the temporal consistency is imposed by
a Kalman smoothing process applied along the trajectories of the pixels, which
are computed by integrating the optical flow. Other variational approaches, such
as [14, 15], enforce temporal consistency by adding a spatial regularization term
to a temporal one, based on a derivative along the direction of the movement
(the convective derivative). Both terms are then balanced by a parameter β > 0.
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However, due to numerical problems that arise in the discretization of the con-
vective derivative, β is restricted to a certain range of values. This restriction
manifests itself in practice by requiring the guidance field to be present in all
frames.

In this paper, we propose a novel numerical scheme for computing the con-
vective derivative that allows β to take any desired value and, by that, allowing
the model to achieve its full potential. In particular, in some applications, we
may avoid computing the guidance field in all frames. Furthermore, the pro-
posed scheme introduces fewer errors than other discretization schemes. We use
this scheme in the definition of two gradient domain video editing formulations
that use L2- and L1-norms, which lead to Poisson [1] and total variation type
models, respectively. While the L2-norm forces smooth solutions, the L1-norm
allows sharp transitions which may be desirable to better preserve textures.

Let us describe the organization of the paper. Section 2 presents our for-
mulation for gradient domain video editing enforcing temporal consistency. In
Section 3 we discuss the discretization of the convective derivative. In Section 4
we present the proposed new discretization scheme. Section 5 shows applications
of the presented models to inpainting correction, object insertion, and object
removal. The experiments show the ability of our model to handle occlusions
automatically. Finally, in Section 6 we include some concluding remarks and
future work.

Fig. 1: Temporal consistency in gradient domain video editing. From left to right, a
video frame with motion vectors superimposed, the result of video editing imposing
the temporal consistency disregarding the motion of the scene, and the result of video
editing considering the motion of the scene.

2 Video editing model (continuous setting)

We propose a functional to perform gradient domain editing in a video while
enforcing the temporal consistency. For that we minimize an energy defined on
the spatio-temporal volume Π := Ω × T

Ep(u) =

∫
O⊂Π

|∂vu(x, t)|p + β‖∇xu(x, t)− g(x, t)‖p dx dt, (1)

where Ω ⊂ R2 is the rectangular image domain, T = [0, T ] is the temporal do-
main, O ⊂ Ω × T is the spatio-temporal domain where the editing is performed
(Figure 2 illustrates these domains), u : Ω × T → R is a scalar function repre-
senting the video, and v : Ω × T → R2 is a known velocity field obtained from
the original video u0. We consider p ∈ {1, 2} and β ≥ 0. Equation (1) is solved
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with Dirichlet boundary conditions u|∂O\∂Π = u0 at ∂O \ ∂Π and homogeneous
Neuman boundary conditions at O ∩ ∂Π.

The second term in (1) is similar to other gradient domain image editing
models [1, 2] and it is responsible for image editing at each frame. The spatial
gradient with respect to the two spatial dimensions is denoted by ∇x and the
field g : O → R2 is the guidance field which determines the new content of the
frames.

The first term in (1) imposes the temporal consistency on the video. We
denote by ∂vu(x, t) the convective derivative of u along v (a derivative of the
video u along the optical flow field v) which we describe next. Please, note that
throughout the text, we will refer to temporal boundary as the set of points
(x, t) ∈ ∂O such that the scalar product 〈[v1(x, t), v2(x, t), 1], n(x, t)〉 6= 0, where
n(x, t) is the normal to ∂O, and vi(·) denotes the i-th component of v.

Spatial boundary condition

Temporal 
boundary
condition

Fig. 2: Illustration of the spatio-temporal domain.

Temporal consistency and the convective derivative. A particle moving
in the real world describes a trajectory s : T → Ω when seen in a video. The
velocity field v(s(t), t) = d

dts(t) characterizes the motion of all the particles in
the video. Then, given any particle and the associated trajectory s, the temporal
consistency means that along s the graylevel of u(s(t), t) is constant, which can
be stated as

d

dt
u(s(t), t) = 0.

Applying chain’s rule to this equation we obtain

∂vu(x, t) := ∇xu(x, t) · v(x, t) + ∂tu(x, t) = 0, ∀(x, t) ∈ Ω × T. (2)

Here, ∂t denotes the derivative with respect to time ( ∂∂t ).
The left hand side of (2) corresponds to the definition of the convective

derivative of u, which is nothing else than the directional derivative in the di-
rection of the flow v. Therefore the temporal consistency can be stated in terms
of the convective derivative: ∂vu(x, t) = 0, ∀(x, t) ∈ Ω × T.

Analysis of the energy. In order to highlight the roles of the terms of (1), let
us re-write it as∫

T

∫
Ot

|∂vu(x, t)|p dxdt+ β

∫
T

∫
Ot

‖∇xu(x, t)− g(x, t)‖p dx dt, (3)
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where Ot denotes the slice of O at time t. Observe that the rightmost term is a
stack of independent gradient domain image editing problems, each spatial term
attaches to its guidance field g(·, t) and to the corresponding spatial boundary
condition. The leftmost term enforces the temporal consistency by introducing a
dependence between consecutive instants. In particular, it penalizes the changes
of intensity along the trajectories specified by v, while attaching to the temporal
boundary conditions.

The parameter β ≥ 0 determines the mixing between the temporal consis-
tency and the spatial term. When β →∞, the temporal consistency is irrelevant
and the solution is equivalent to solving many independent image editing prob-
lems. On the other hand, when β = 0 the functional only enforces the temporal
consistency. In this case, the information at the temporal boundary is trans-
ported along the trajectories specified by v; however, we are not able to deal
with the illumination changes that are incorporated by the space boundary con-
ditions. Moreover, in the case β = 0, if we consider only the boundary condition
at time t = 0, then solving (1) amounts to solve the advection equation (2).
A common choice of β for enforcing the temporal consistency is β ∼ 1

10 [15].
However, in some cases it is interesting to consider even lower values of β. This
could be the case in the absence of the guidance field, here the information needs
to be transported from the temporal boundaries. As we will see in Section 3.1
standard discretizations of (1) do not always behave in a satisfactory way when
β → 0.

The choice of p ∈ {1, 2} leads to two models with different characteristics of
the solution. Let us discuss these two cases.

Case p = 2: Here, the energy (1) is quadratic and its solution is computed by
solving the linear system

(∂∗v∂v ·+βdivx∇x·)u = βdivx g, (4)

where divx denotes the spatial divergence and ∂∗v is given by ∂∗vf = −∂tf +
divx(vf). Equation (4) is of Poisson-type, and we solve it by using the conjugate
gradient method.

The solution of (4) smoothly adapts to the boundary conditions of O. More-
over, any error due to inconsistencies between the boundary conditions and the
potential field g is smoothly spread across the whole domain O.

Case p = 1: Here, the energy (1) takes the form of a total variation minimiza-
tion problem. To solve it, we perform an implicit gradient descent:

uj+1 = arg min
u
E1(u) +

1

2λ
‖u− uj‖2, (5)

where λ is a positive number. Each iteration of the gradient descent entails the
resolution of a convex problem similar to the total variation model for denoising
[16, 17]. The solution of (5) is computed by solving its dual problem [17].Defining
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the dual variables ψ : O → R and ξ : O → R2, we perform the fixed point
iteration with time step τ ≤ 1/8:

ψk+1 =
ψk + τ∂v[∂

∗
vψ

k + βdivxξ
k + uj/λ]

1 + τ |∂v[∂∗vψk + βdivxξk + uj/λ]|
,

ξk+1 =
ξk + τ∇x[∂∗vψ

k + βdivxξ
k + uj/λ] + g/λ

1 + τ‖∇x[∂∗vψ
k + βdivxξk + uj/λ] + g/λ‖

,

and at convergence the solution is recovered as u = uj + λ(∂∗vψ + βdivxξ).
This method allows discontinuities of u in O and at its boundary. Its solution

attaches to the boundary conditions reducing the effects of the illumination
changes, but as opposed to the case p = 2 the transitions may not be smooth.
While setting p = 2 favors smooth transitions, the model with p = 1 produces
sharp transitions which may be desirable in some circumstances. It also allows
a better preservation of textures. Figure 7e shows the distribution of the error
in both cases and it also highlights the fact that texture is better preserved (we
refer to Section 5 for details).

Remark 1. The formulation of (1) can also easily accommodate spatial weights
for controlling the blending as in [18], and the temporal consistency term can be
modified as in [15] to keep the reflectance properties of the objects.

3 Discretization of the model

This section deals with the discretization of (1). The convective derivative is
defined using the velocity field v, so we start by commenting on the use of the
optical flow as an approximation for v. We argue that the optical flow is suited
for imposing the temporal consistency. Then, we study some numerical schemes
for computing the convective derivative and their limitations. In next section,
we introduce the deblurring convective derivative, a new numerical scheme for
computing it.

In what follows we work in a discrete setting. The spatial domain is now
a square lattice in Z2, Ω = {0, 1, . . . , N}2, and the temporal domain is T :=
{0, 1, . . . , T}; therefore a video is represented as a stack of T + 1 digital im-
ages (frames). The spatial gradient is computed using forward differences and is
denoted by ∇+

x .

About the optical flow: As a discrete approximation of the velocity field, we
use the optical flow computed on the original video u0 : Π → R. We define the
forward optical flow v+ : Ω×T→ R2 between two frames u(·, t) and u(·, t+1) as
a vector field such that u(x, t) and u(x+ v+(x, t), t+ 1) correspond to the same
point in the scene. Similarly, the backward optical flow v−, relates the frame at t
with the one at time t−1. We discretize the temporal consistency constraint (2)
using the forward optical flow as

∂+
v u(x, t) := û(x+ v+(x, t), t+ 1)− u(x, t) = 0, (6)
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Interpolated pixelforward 
optical flow

Fig. 3: Results with and without pre-processing of the optical flow. From left to right:
a diagram describing the pre-processing, the removed flows, the result obtained using
the pre-processed flow and without using it.

where û(x+v+(x, t), t+1) is the bilinear interpolation of u(·, t+1) at x+v+(x, t).
In a similar way, we can also discretize the temporal consistency constraint using
the backward optical flow. The optical flow used in our experiments is obtained
with the algorithm described in [19], but any optical flow algorithm with sub-
pixel precision and regularization (or better, with edge preserving regularization)
could be used.

As a last remark, the optical flow is not defined at the occluded/disoccluded
areas of a frame. In these cases there may be no correspondence for a pixel in the
next frame. While some optical flow algorithms produce occlusion maps, many
others do not, so we pre-process the flow to identify the occlusion/disocclusion
areas and remove them from the energy. A simple and direct way to achieve that
is to compute |û0(x + v+(x, t), t + 1) − u0(x, t)| > tol, where u0 is the original
video, and tol is a tolerance for the change in the gray levels. Flow vectors that
do not satisfy the tolerance criteria are removed from the energy. The discrete
energy becomes:

Ep(u) =
∑
t∈T

∑
x∈Ω
‖Occ(x, t)∂̄vu(x, t)‖p + β

∑
t∈T

∑
x∈Ω
‖∇+

x u(x, t)− g(x, t)‖p, (7)

where ∂̄v denotes a discretization of the convective derivative, for instance ∂+
v u(x, t),

and Occ : Ω×T→ {0, 1} indicates if a vector v+(x, t) satisfies the tolerance cri-
terion or not. The inclusion of Occ(·, ·) implies that occluded/disoccluded pixels
are only influenced by the spatial regularization term. Figure 3 illustrates with
an experiment the benefits of pre-processing the optical flow.

3.1 Discretization of the convective derivative

The discretization of the convective derivative given in (6) corresponds to an
implicit upwind scheme with an adaptive stencil [20]. That is, for computing
the bilinear interpolation û(x + v(x, t), t + 1) the convective derivative consid-
ers stencil points surrounding (x + vI(x, t), t + 1) (where vI(x, t) is the integer
part of the vector v+(x, t)), this results in a potentially different stencil for
each x. When used for simulating the advection equation, this adaptive scheme
allows to achieve stability with time steps beyond the one prescribed by the
Courant–Friedrichs–Lewy condition[20].
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t=
1
6

t=
3
1

t=
9
3

Original v−-scheme v+-scheme DCD

Fig. 4: Temporal propagation from frame t = 0, by solving (7) using β = 0 and p = 2.
Columns from left to right show the: original frame, results obtained with v−-scheme
(explicit), v+-scheme (implicit), and DCD scheme for discretizating the convective
derivative (see Section 4).

Using the forward optical flow v+ we define the v+-scheme for computing
the convective derivative as

∂+
v u(x, t) :=

{
û(x+ v+(x, t), t+ 1)− u(x, t) if t < T,
0 if t = T or (x+ v+(x, t), t+ 1) /∈ O,

where û : Z2 × T → R is a bilinear interpolation of u(·, t + 1) at x + v+(x, t),
modified in order to account for the Neumann boundary conditions at ∂(Ω×T).

Similarly, with the backward optical flow v− we define the discrete v−-scheme
for computing the convective derivative as

∂−v u(x, t) :=

{
u(x, t)− û(x +v−(x, t), t− 1) if t > 0,
0 if t = T or (x+ v−(x, t), t− 1) /∈ O.

We implement these operators as sparse matrices, which allow us to easily com-
pute their adjoints.

Evaluation: Let us consider the following experiment. We solve (7) with β = 0
(spatial term disabled) and with a Dirichlet boundary condition only at t = 0.
Note that the guidance field g is undefined in this experiment. In the solution,
we expect the content of the first frame to be transported according to the known
optical flow v from time t = 0 to all subsequent frames.

This experiment is related to simulating the advection equation ∂vu = 0 with
initial condition at t = 0. When applied in this setting, the v+- and v−-schemes
for computing the convective derivative correspond to applying explicit or im-
plicit upwind schemes for solving the advection equation, respectively. Using the
v−-scheme can be seen as applying an explicit scheme, where a filter is applied
to u(·, t − 1) to obtain u(·, t), while the v+-scheme behaves as an implicit one
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Fig. 5: Temporal propagation with β = 0.01, horizontal motion 0.175px/frame, g
known and p = 2. After 40 frames the results of v−-scheme (explicit scheme) or v+-
scheme (implicit scheme) are more distorted than with DCD. The plots of the evolution
of the error w.r.t. the ground truth (right) confirm it.

where an inverse filter relates u(·, t) with u(·, t+1). Figure 4 shows the results of
this transport experiment. It is not surprising to see that for both, the explicit
and implicit discretizations, the solutions are completely distorted only a few
frames away from t = 0. The reason being that these schemes introduce a nu-
merical diffusion (or oscillations) that is accumulated over time. These artifacts
are due to approximation errors in the discretization of the differential opera-
tors. In particular, in the case of the above upwind schemes the approximation is
only first-order accurate. Artifacts as those seen in Figure 4 are in general never
observed, since models like (7) are always applied with β > 0 and with a known
guidance field g for all the frames [14]. However, in some circumstances, like in
the case of partial occlusions, the guidance field may not be easily computed.
Moreover, as we see in Figure 5, even with β > 0 and with a known g, these
discretizations induce noticeable errors in the result. We have seen that due to
discretization issues we are unable to cope with a small value of β and, therefore,
unable to use (7) to its full potential.

4 The deblurring convective derivative (DCD)

It is interesting to note that, in the experiment shown in Figure 4, the effects
of the explicit and implicit schemes for discretizing the convective derivative are
somehow opposite. The explicit scheme introduces blurring in the solution, while
the implicit scheme sharpens the solution but also introduces oscillations. This
motivates the search for a new scheme which allows the convective derivative
to preserve the transported information for longer periods of time. The idea of
the deblurring convective derivative (DCD for short) is to attain this objective
as the balance of two opposing processes: implicit and explicit schemes. That is,
applying both the v+- and v−-schemes to moderate each other’s effects.

Let us analyze in detail the effect of using the explicit upwind scheme (v−-
scheme) while solving (7) by considering an illustrative example. We consider a
similar problem as before, where only the initial frame (t = 0) is known, and we
have a constant optical flow v− = [0.3, 0]T , v+ = [−0.3, 0]T (with this flow the



10
forward 
optical flow

forward 
optical flow

Fig. 6: On the left, we show a diagram depicting the v+-scheme for discretizing the
convective derivative. On the right, we show a diagram corresponding to the DCD: it
alternates between v− and v+-schemes.

problem reduces to 1D). Taking β = 0 and p = 2 in (7) and analyzing the first
two frames of the sequence we get: minu

∑
x∈Ω ‖∂−v u(x, 1)‖2. It is easy to see

that the values of u(·, 1) which minimize this energy are explicitly determined
by applying the filter [0.7, 0.3] (coefficients specific for this flow) to the rows
of frame u(·, 0). Similarly, frame u(·, 2) is obtained by filtering u(·, 1), and so
on. Denoting the filtering operator as Mv− , then we can describe this relation
as: u(·, t + 1) = Mv−u(·, t). In this case, the minimum of the complete energy
(for all the frames) is 0, and the solution is increasingly blurry with t since
u(·, t) = (Mv−)tu(·, 0), which confirms what we observed in Figure 4.

A similar analysis for the implicit upwind scheme (v+-scheme) reveals that
the solution of the problem restricted to the first frame, minu

∑
x∈Ω ‖∂+

v u(x, 0)‖2,
satisfies the relation Mv+u(·, 1) = u(·, 0), where Mv+ applies the filter [0.3, 0.7]
to the rows of u(·, 1). Therefore, u(·, 1) is given by the pseudo-inverse of Mv+

applied to u(·, 0). The repeated application of the pseudo-inverse acts as an in-
verse smoothing. This sharpening enhances the high frequencies in the solution
but also introduces numerical artifacts, as seen in Figure 4. Let us mention that,
by solving the linear system using the conjugate gradient method, this problem
is mitigated by its regularization effect.

The DCD takes advantage of the fact that these two schemes have opposite
effects on the data (one blurs while the other sharpens) and alternates between
them. Shortly, if between t = 0 and t = 1 we apply the v+-scheme (implicit),
then from frame t = 1 to t = 2 we apply v−-scheme (explicit) and so on. The
diagrams in Figure 6 shows how the temporal derivatives are taken.

Note that there is no computational overhead in the use of DCD with respect
to implicit or explicit schemes. It can also be applied sequentially on pairs of
frames [14] without the need of solving the complete system associated to (7).

In the DCD, a step with the v+-scheme permits to recover the frequencies
smoothed by the previous step (v−-scheme). However, it may also introduce
other high frequencies, which on the long term will build up as high frequency
artifacts. These artifacts can then be removed using a low-pass filter as a post-
processing step. In general the DCD preserves the transported information for
much longer periods of time without noticeable decay. The performance of the
proposed method is shown in Figures 4 and 5, where it is compared with the
implicit and explicit upwind schemes. Observe that the texture is preserved for
more than 70 frames (which is considered as a very long time).
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(a) Original sequence.

(b) Inpainted sequence.

(c) Corrected inpainting with p = 1

(d) Corrected inpainting with p = 2

(e) See caption.

Fig. 7: Correcting an inpainted domain to impose spatio-temporal consistency using
Equation (7) with p = {1, 2} and β = 1. Figure (e), left (resp. right), shows the modulus
of the difference of the magnitude of the gradients corresponding to the first column
of images 7b and 7c (resp. 7b and 7d). These images have been jointly scaled to take
values in [0, 255] (max value = 16). Note that in the case p = 2 the differences are
spread across the domain.

5 Applications

What we have presented so far can be used for a variety of applications. Here
we present some experiments that illustrate the usefulness of these techniques
in three applications:

1. Correcting an inpainted domain by making it temporally consistent.
2. Inserting an object on a surface while handling situations where the object

is partially occluded/disoccluded.
3. Removing an object from a surface while handling situations where the ob-

ject is partially occluded/disoccluded.

In what follows we discuss the experimental results for each application. The full
set of results can be viewed at http:\\gpi.upf.edu\static\emmcvpr11.

Inpainting correction: In this scenario, we are given an inpainted video se-
quence. Thus, we can compute the guidance field in all frames. We would like to
correct this inpainted sequence so that it becomes spatio-temporally consistent.
In order to achieve that, we use the inpainted video as our input and solve (7)
for p = {1, 2} and β = 1. Figure 7a shows the original sequence. Figure 7b shows
the resulting inpainted sequence. The sequence has been inpainted with an algo-
rithm that generates a temporally consistent inpainting, yet not consistent with
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(a) Original sequence. Frames t = 1..6 and t = 24..30.

(b) Inserted object using Equation (7) with p = 1

(c) Inserted object using Equation (7) with p = 2

Fig. 8: Object insertion experiment with handling of occlusions and disocclusions. Fig-
ures (a) show some frames of the original sequence, with the editing region superim-
posed. Figures (b) and (c) show the results obtained after solving (7) with p = 1 and
p = 2, respectively. In this experiment the new object is only provided in the first and
last frames of the sequence, and the editing region in-between is unknown. A closer
inspection of the results corresponding to p = 1 and p = 2 reveals that the model with
p = 1 preserves better the texture.

respect to the illumination changes at each frame. Figures 7c and 7d show the
result obtained by solving (7) with p = 1 and p = 2, respectively. Notice that
the inconsistency which is present in the inpainted sequence has been corrected
and the result is temporally and spatially consistent. We also observe that in
this case, the results of p = 1 and p = 2 are very similar.

Object insertion: As we have pointed out in Section 3, we pre-process the
optical flow for detecting occlusions/disocclusions and the tolerance criterion
used in the experiments is tol = 50. In this scenario, we wish to insert a two-
dimensional object into a video sequence and affix it to a surface. Thanks to
the DCD, we are able to coherently transport information present in one frame
into subsequent (or previous) frames in the video sequence. Basically, we start
inserting the object into a chosen frame that indicates the first appearance of the
object in the video. Let us call this the first frame. Then, by solving Equation (7)
with a small value of β (usually 0.01 for p = 1, and 0.0001 for p = 2) and
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Fig. 9: Example of object removal. We remove the object only in the first frame (by
inpainting) and then transport the information to subsequent frames by solving Equa-
tion (7) with p = 1. The result for p = 2 is similar. The complete sequence is available
at the webpage mentioned at the beginning of Section 5.

setting the first frame as a Dirichlet temporal boundary condition, we are able
to transport the first frame to the others. Since we are affixing an object on
a surface, the inserted object inherits the optical flow from this surface. The
occlusions are handled automatically by the temporal consistency using the pre-
processed optical flow and it suffices to insert the object into the first frame. If
we want to handle disocclusions, then we need also to insert the object into a
later frame in the sequence and set it as another Dirichlet boundary condition.
Let us call this the last frame. We note that in this setting we only need the
information in the first and the last frames. For the intermediate frames we just
have a hole that we fill-in with the new information.

Figure 8 shows an experiment where we insert a poster on a door replacing
an existing one. The area where we insert the poster is being occluded and
then disoccluded by a moving man. The total number of frames of the sequence
is 31. The results shown in Figure 8 are obtained by solving Equation (7) with
p = {1, 2}. As we can see, our method handles both occlusions and disocclusions.
Notice that sometimes, on the boundary of the occluding object, we can see some
small inconsistencies due to the inaccuracy of the optical flow. We will address
this issue in a future work.

Object removal: This object insertion case can be easily adapted to object
removal. We can remove an object from the first and last frames and then fill-in
the hole in these frames either by inpainting or by copying a zero gradient field
using Poisson editing, for instance. Then we can just transport the information
from the temporal boundaries to all the domain in-between. Figure 9 shows an
example.

6 Conclusions and future work

In this work we have presented the deblurring convective derivative, a novel
scheme for computing the convective derivative that allows us to maintain in-
formation for a long period of time without decay. We have also integrated this
derivative in a functional for video editing that imposes both spatial and tempo-
ral consistency. We applied this formulation to three video editing applications:
object insertion, object removal and inpainting correction.

Our solution relies extensively on the quality of the optical flow and we have
seen that inconsistencies in the optical flow affect considerably the quality of
the results. Our future work will mainly focus on how to detect and handle
inconsistent flows in order to improve the results.
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