Temporally consistent gradient domain video editing

G. Facciolo, R. Sadek, A. Bugeau and V. Caselles

Universitat Pompeu Fabra Image Processing Group http://gpi.upf.edu/

EMMCVPR 2011 St. Petersburg - 2011 July, 26th

Motivation

Gradient domain image edit [Perez et. al., Georgiev, Hagenburg et. al.]...

- applications: seamless compositing, tone mapping, shadow removal, matting, inpainting...
- manipulate image gradients
- blend seams

Motivation

Gradient domain image edit [Perez et. al., Georgiev, Hagenburg et. al.]...

- applications: seamless compositing, tone mapping, shadow removal, matting, inpainting...
- manipulate image gradients
- blend seams

Extension to video [Wang et. al., Bhat et. al.]...

- applications: inpainting correction, nonphotorealistic rendering, object insertion/removal, flickering removal...
- temporal consistency
- attach to temporal neighbors

Motivation

Gradient domain image edit [Perez et. al., Georgiev, Hagenburg et. al.]...

- applications: seamless compositing, tone mapping, shadow removal, matting, inpainting...
- manipulate image gradients
- blend seams

Extension to video [Wang et. al., Bhat et. al.]...

- applications: inpainting correction, nonphotorealistic rendering, object insertion/removal, flickering removal...
- temporal consistency
- attach to temporal neighbors
- [Werlberger et al. EMMCVPR11]

Facciolo, Sadek, Bugeau, Caselles (UPF)

Motivation: Considered tasks

Inpainting correction (enforce temp. consist.)

Object insertion/removal

Outline

Model

Discretization and limitations

Deblurring Convective Derivative (DCD)

Experiments

Conclusions and future work

Reminder: Poisson edit

$$\min_{u} \int_{O \subset \Omega} \|\nabla u - g\|^2 \mathrm{d}x$$

with

 $u|_{\partial O} = u_0$

Dirichlet boundary cond.

- $O \subset \Omega \subset \mathbb{R}^2$: edit domain
- $u: O \rightarrow R$: solution image
- $u_0: \Omega \to \mathbb{R}$: target image
- $g: \mathcal{O}
 ightarrow \mathbb{R}^2$: guidance field (i.e. abla s)

Reminder: Poisson edit

$$\min_{u} \int_{O \subset \Omega} \|\nabla u - g\|^2 \mathrm{d}x$$

with

 $u|_{\partial O} = u_0$

Dirichlet boundary cond.

- $O \subset \Omega \subset \mathbb{R}^2$: edit domain
- $u: O \rightarrow R$: solution image
- $u_0: \Omega \to \mathbb{R}$: target image
- $g: \mathcal{O}
 ightarrow \mathbb{R}^2$: guidance field (i.e. abla s)

Model: Temporal consistency

Temporal consistency hypothesis

Regarding the video as a volume ($\Pi := \Omega \times \mathbb{T}$); Points should "look uniform" along their trajectories s(t) in time:

$$\frac{\mathrm{d}}{\mathrm{d}t}u(s(t),t)=0\qquad u:\Pi\to\mathbb{R}$$

Applying chain's rule

$$\partial_{\mathbf{v}} u(\mathbf{x},t) := \mathbf{v}(\mathbf{x},t) \cdot \nabla_{\mathbf{x}} u(\mathbf{x},t) + \partial_t u(\mathbf{x},t) = 0$$

- v(x, t): velocity field (optical flow) characterizes all the trajectories
- $\partial_{v} u$: convective derivative
- enforce constant intensity minimizing |∂_vu(x, t)| ∀(x, t)

$$\min_{u} \int_{\mathbb{T}} \int_{O_t} \beta \|\nabla_x u(x,t) - g(x,t)\|^p + |\partial_v u(x,t)|^p \, \mathrm{d}x \, \mathrm{d}t$$

s.t. $u|_{\partial O} = u_0$

- $O \subset \Pi \subset \mathbb{R}^3$: edit domain (slice $O_r = \{x | (x, t) \in O; t = r\}$)
- $g: \ O
 ightarrow \mathbb{R}^2$: spatial guidance field
- $u: O \rightarrow \mathbb{R}$: solution image
- $u_0: \Pi \to \mathbb{R}$: target image
- $v: \ \Pi \to \mathbb{R}^2$: optical flow

•
$$p = \{1, 2\}$$
 and $\beta \ge 0$

$$\min_{u} \int_{\mathbb{T}} \int_{O_{t}} \beta \underbrace{\|\nabla_{x} u(x,t) - g(x,t)\|^{p}}_{\text{spatial consist.}} + \underbrace{|\partial_{v} u(x,t)|^{p}}_{\text{temporal consist.}} \, \mathrm{d}x \, \mathrm{d}t$$

$$\min_{u} \int_{\mathbb{T}} \int_{O_{t}} \beta \underbrace{\|\nabla_{x} u(x,t) - g(x,t)\|^{p}}_{\text{spatial consist.}} + \underbrace{|\partial_{v} u(x,t)|^{p}}_{\text{temporal consist.}} \, \mathrm{d}x \, \mathrm{d}t$$

 β balances spatial/temporal terms

- $\beta > 0$: temporal consistency and spatial term attach. to g
- $\beta = 0$: only temporal consistency (propagate from TBC)

$$\min_{u} \int_{\mathbb{T}} \int_{O_t} \beta \underbrace{\|\nabla_x u(x,t) - g(x,t)\|^p}_{\text{spatial consist.}} + \underbrace{|\partial_v u(x,t)|^p}_{\text{temporal consist.}} \, \mathrm{d}x \, \mathrm{d}t$$

 β balances spatial/temporal terms

- $\beta > 0$: temporal consistency and spatial term attach. to g
- $\beta = 0$: only temporal consistency (propagate from TBC)

Error penalty

- p = 2: smooth interpolation of inconsistencies from BC
- p = 1 : allow discontinuities in O

$$\min_{u} \int_{\mathbb{T}} \int_{O_{t}} \beta \underbrace{\|\nabla_{x} u(x,t) - g(x,t)\|^{p}}_{\text{spatial consist.}} + \underbrace{|\partial_{v} u(x,t)|^{p}}_{\text{temporal consist.}} \, \mathrm{d}x \, \mathrm{d}t$$

 β balances spatial/temporal terms

- $\beta > 0$: temporal consistency and spatial term attach. to g
- $\beta = 0$: only temporal consistency (propagate from TBC)

Error penalty

- p = 2: smooth interpolation of inconsistencies from BC
- p = 1 : allow discontinuities in O

Some temporal inconsistencies not considered by this model

- illumination changes, specularities
- occlusions

Discretization

- Spatial gradient discretized with forward differences: ∇_xu
- Convective derivative

$$\partial_{v}^{+}u(x,t) := \hat{u}(x+v^{+}(x,t),t+1) - u(x,t)$$

 $\hat{u}(x,t)$ interpolation of $u(\cdot,t)$ at x

• $v^+(x, t)$ forward optical flow (backward v^- also available)

Discretization

- Spatial gradient discretized with forward differences: ∇_xu
- Convective derivative

$$\partial_{v}^{+} u(x,t) := \hat{u}(x+v^{+}(x,t),t+1) - u(x,t)$$

 $\circ \hat{u}(x,t)$ interpolation of $u(\cdot,t)$ at x

• $v^+(x, t)$ forward optical flow (backward v^- also available)

Remove flow vectors corresponding to occlusions in u_0

Example: Inpainting correction

inpainted sequence

without temporal consistency $\beta = \infty$

with temporal consistency $\beta = 1$

Discretization of the convective derivative

How does the temporal consistency influence the results?

• Set $\beta = 0$, to evaluate what does do

$$\min_{u} \int_{\mathbb{T}} \int_{O_t} \beta \|\nabla_x u(x,t) - g(x,t)\|^p + |\partial_v u(x,t)|^p dx dt$$

- No guiding filed *g* in this experiment
- Temporal propagation from BC at frame t = 0, using p = 2
- Test convective derivative discretizations using v^+ and v^-

Discretization of the convective derivative

Facciolo, Sadek, Bugeau, Caselles (UPF)

Discretization of the convective derivative

- Conceptual experiment: two frames video, p = 2
- Denote $M_{v^{-/+}}u(\cdot,t)$ the interpolations $\hat{u}(\cdot,t)$
- Then minimizing $\sum |\partial_{v^{-/+}} u(x,t)|^2$

$$\sum |\hat{u}(x+v^{-}(x,t+1),t)-u(x,t+1)|^{2} = \|M_{v^{-}}u(\cdot,t)-u(\cdot,t+1)\|^{2}$$

corresponds to apply M_{v^-} (or inverse of M_{v^+}) to $u(\cdot, t)$

Key Obs.: have somewhat opposed effects: blur and "sharpen"

The idea is to alternate

- v^+ -scheme at even frames (sharpens) with
- *v*⁻-scheme at odd frames (blurs)

to moderate each other's effects

Facciolo, Sadek, Bugeau, Caselles (UPF)

- DCD reduce artifacts in the case $\beta = 0$
- But also improves results when $\beta \neq 0$

· Can be applied sequentially on pair of frames

In the case $\beta = 0$, due to the "inverse" steps

- odd frames will always contain some high freq. artifacts
- the result will eventually degenerate

In the case $\beta = 0$, due to the "inverse" steps

- · odd frames will always contain some high freq. artifacts
- the result will eventually degenerate

Reduce artifacts at odd frames

- · Post-process filtering the high frequency artifacts
- Running twice inverting order, and keep only blurred frames

Experiments: insertion/removal

Facciolo, Sadek, Bugeau, Caselles (UPF)

$$eta \sim 0, \, p = 1$$
 17/20

Experiments: insertion

$$eta\sim$$
 0, $p=$ 2

Facciolo, Sadek, Bugeau, Caselles (UPF)

Future directions

- Other interpolations other than bilinear
- Reduce the artifacts at "deblurred" frames
- Our algorithm relies extensively on the optical flow, reduce artifacts in the optical flow
- Use DCD for imposing temporal consistency of gradients

Conclusions

- Presented a functional for gradient domain video editing with temporal consistency
- Proposed discretization: Deblurring Convective Derivative
 - Allow to reduce the artifacts introduced by the discretization of the temporal consistency term
 - Computationally inexpensive
 - Improves results both for $\beta = 0$ and $\beta > 0$

Conclusions

- Presented a functional for gradient domain video editing with temporal consistency
- Proposed discretization: Deblurring Convective Derivative
 - Allow to reduce the artifacts introduced by the discretization of the temporal consistency term
 - · Computationally inexpensive
 - Improves results both for $\beta = 0$ and $\beta > 0$

Thank you.

More @ http://gpi.upf.edu/static/emmcvpr11/