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Today’s topics

I Distributions Theory

I Summary from previous lecture

I Poisson Editor

I Introduction
I Numerical Solution
I Seamless Cloning
I Mixing Gradients
I Selective Edition
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The Variational Interpretation

Proposition 1: Let Ω = [0, 2π]2 and f ∈ L2
per(R2). Then there

exists a unique function u ∈ H1
per(R2) minimizer of the energy

E (u) =
1

2

∫
Ω
|Du|2(x , y)dxdy −

∫
Ω
f (x , y)u(x , y)

and satisfying u = 0 in ∂Ω.

This solution is the restriction to Ω of an odd function belonging to
H2

per([−2π, 2π]2) (4π-periodic functions).

This solution is the same as the one from the Poisson equation with
Dirichlet conditions:

−∆u = f , u = 0 in ∂Ω
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Poisson Editor

Proposition 2: Let Ω = [0, 2π]2 and V = (v1, v2) ∈ (L2
per(R2))2 a vector

field. Then there exists a function u ∈ H1
per(R2) minimizer of the energy

E (u) =
1

2

∫
Ω

|Du − V |2(x , y)dxdy =

∫
Ω

(
(ux − v1)2 + (uy − v2)2

)
dxdy

and satisfying ∂u
∂n = 0 in ∂Ω.

This solution is the restriction to Ω of an even (paire) function belonging
to H1

per([−2π, 2π]2) (4π-periodic functions).

This solution is the same as the one from the Poisson equation with Neu-
mann conditions:

∆u = div(V ) =
∂v1

∂x
+
∂v2

∂y
,

∂u

∂n
= 0 in ∂Ω
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Proof In order to naturally have the boundary condition ∂u
∂n

= 0 it is
convenient to use the cosine basis decomposition for elements in L2([0, 2π]2)(

cos
(
kx
2

)
cos
(
ly
2

))
, with k, l ∈ N

Hence, we write

u(x , y) =
∑

k,l∈N ck,l(u) cos
(
kx
2

)
cos
(
ly
2

)
v1(x , y) =

∑
k,l∈N ck,l(v1) cos

(
kx
2

)
cos
(
ly
2

)
v2(x , y) =

∑
k,l∈N ck,l(v2) cos

(
kx
2

)
cos
(
ly
2

)
By using the respective Fourier expansions for ux , uy , (derivatives in the
distribution sense) and v1, v2 the Poisson energy can be re-written as

E(u) =
1

2

∑
k,l∈N

(
k

2
ck,l(u)− ck,l(v1)

)2

+

(
l

2
ck,l(u)− ck,l(v2)

)2
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Proof (cont. 1) Then, regrouping the energy E(u):

E(u) =
1

2

∑
k,l∈N∗

k2 + l2

4
ck,l(u)2−

(
kck,l(v1)+lck,l(v2)

)
ck,l(u)+ck,l(v1)2+ck,l(v2)2

Each term depends on a different ck,l(u). We need to minimize(
k2 + l2

4

)
ck,l(u)2 −

(
kck,l(v1) + lck,l(v2)

)
ck,l(u)

so if we differentiate and = 0, we get

ck,l(u) = 2
kck,l(v1) + lck,l(v2)

k2 + l2
, ∀k, l > 0

I u is in H1
per([−2π, 2π]2) since k

2
ck,l(u) ∈ l2(Z2) (so ux ∈ L2

per).

I The solution is unique up to a constant (the term c0,0(u) is not set).

If u is solution then u + C for C constant is also solution. Thus,

u(x , y) = C +
∑

k,l∈N∗

2
kck,l(v1) + lck,l(v2)

k2 + l2
cos

(
kx

2

)
cos

(
ly

2

)
I Same solution as the Poisson equation with the Neumann condition for

f = −div(V ) = −(v1)x − (v2)y
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Proposition 3: Let u be the solution of the Poisson editor for a
gradient field V = (v1, v2). Then u satisfies the equation

∆u = div(V )

in the distribution sense.
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Proof Consider a perturbation tϕ, with ϕ ∈ C∞
c (Ω) and t ∈ R. If u is a

minimum then

E(u + tϕ) =

∫
Ω

(D(u + tϕ)− V )2 ≥
∫

Ω

(Du − V )2 = E(u)

Then, ∫
Ω

(Du − V )2 + 2tDϕ · (Du − V ) + t2Du · Du ≥
∫

Ω

(Du − V )2

Since u is a minimum, the derivative in t = 0 should be zero∫
Ω

Dϕ · (Du − V ) = 0

This is the same as ∫
Ω

ϕx(ux − v1) + ϕy (uy − v2) = 0

Since ux , uy , v1 and v2 are in L2
loc they are also distributions:

< ux − v1, ϕx > + < uy − v2, ϕy >= 0

Next, from the definition of distribution derivative

− < uxx−(v1)x , ϕ > − < uyy−(v2)y , ϕ >= − < uxx+uyy−(v1)x−(v2)y , ϕ >= 0

and thus
∆u − div(V ) = 0.
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Periodic + Smooth decomposition

Proposition 4: Let u be a function such that ∂iu ∈ L2([0, 2π]2) for

|i| ≤ 2 . Then, there exists a function v ∈ H2
per([0, 2π]2) such that

∆v = ∆u in [0, 2π]2

This function is unique up to an additive constant. The difference
w = v − u verifies ∆w = 0 and hence it is smooth in [0, 2π]2.
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Periodic + Smooth decomposition
The P+S decomposition permits to visualize the Fourier spectrum getting rid
of the boundary effects (e.g. discontinuities when periodizing). The periodic
decomposition inherits all the image details since its laplacian is the same.

L. Moisan, Periodic plus Smooth Image Decomposition, Journal of Math. Imag. and Vision, 2011.
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Theorem :Unicity of the Fourier coefficients
If u is a distribution with the Fourier expansion

u =
∑
m∈Z2

cme
im·x = 0

then ∀m, cm = 0.
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End of last lecture summary.
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Image Edition

I Goal: Manipulate locally a digital image to change: color, replace
detail, change some region, ..., in an imperceptible way.

I Our vision perceives the Laplacian of images more than the images
themselves.

I A function in a compact domain can be reconstructed from its
laplacian and the values in the boundary.
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[Pérez et al. 2003] P. Pérez, M. Gangnet and A. Blake, “Poisson Image Editing”. ACM Transactions on Graphics.
Proc. of ACM SIGGRAPH 2003, vol 22, Issue 3 Pages: 313 - 318 (July 2003).

14 / 27



Image Completion: Simple Interpolation

Suppose we want to interpolate a function g(x) that we
only know it in the contour ∂Ω.

Proposed approach:

Minimize the following energy:

E (u) =

∫
Ω

|Du|2dx with u(x) = g(x) in ∂Ω.

This solution is the same as the one from the Laplace equation with
Dirichlet boundary conditions:{

∆u = 0 if x ∈ Ω
u(x) = g(x) if x ∈ ∂Ω.

This solution is over blurred (too smooth since ∆u = 0).
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Image Completion: Guided Interpolation

I We want to interpolate a function g(x) only
known it in the contour ∂Ω.

I We are given a guidance field v = (v1, v2).

I Goal: find a function u whose gradient is as
similar as possible to v and compatible with the
boundary condition.

Minimize the following energy:

E(u) =

∫
Ω

|Du − v|2dx with u(x) = g(x) in ∂Ω.

This solution is the same as the one from the Poisson equation with Dirichlet
boundary conditions: {

∆u = div(v) if x ∈ Ω
u(x) = g(x) if x ∈ ∂Ω.

where we have called div(v) = ∂v1x + ∂v2y .

This equation is the cornerstore of the framework proposed in [Pérez et al. 2003].
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Image Completion: Guided Interpolation

A simple case

I The guidance field is itself the gradient of a
function w ,

v = Dw .

Then ∆u = div(v) = div(Dw) = ∆w , and if we set z = w − u, we can
rewrite the problem as{

∆z = 0 if x ∈ Ω
z(x) = (g − w)(x) if x ∈ ∂Ω.
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Numerical Solution: Discrete Poisson Solver
- Images are defined in a discrete grid Ωd .

- We note ∂Ωd the set of boundary pixels.

- For each pixel x = (x , y) we define
N (x) = {(x − 1, y), (x + 1, y), (x , y − 1), (x , y + 1)}.

- A point x ∈ ∂Ωd iff x /∈ Ωd and N (x) ∩ Ωd 6= ∅.

I If the domain Ωd is not rectangular the Fourier technique doesn’t work.

I Directly solve the discrete variational (finite difference discretization)

Continuous energy:∫
Ω

|Du − v|2dx with u(x) = g(x) in ∂Ω.

Discrete energy:∑
x∈Ωd

∑
y∈N (x)

(
u(x)− u(y)− vi(x,y)(

x+y
2

)
)2

with u(x) = g(x) in ∂Ωd .

where i(x, y) =

{
1 if y = x± (1, 0),
2 if y = x± (0, 1).
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Numerical Solution: Discrete Poisson Solver

Discrete energy:∑
x∈Ωd

∑
y∈N (x)

(
u(x)− u(y)− vi(x,y)(

x+y
2

)
)2

with u(x) = g(x) in ∂Ωd .

where i(x, y) =

{
1 if y = x± (1, 0),
2 if y = x± (0, 1).

Its a quadratic optimization problem. Its

solution satisfies the following simultaneous linear equations

∀x ∈ Ωd , |N (x)|u(x)−
∑

y∈N (x)∩Ωd

u(y) =
∑

y∈N (x)∩∂Ωd

g(y) +
∑

y∈N (x)

ν(x, y)

where ν(x, y) = vi(x,y)( x+y
2

) and |N (x)| is the cardinal of N (x) (1 to 4) supposing
that Ωd is discrete connected (every point has at least one neighbor).

For the point in the interior of Ωd there aren’t boundary terms, then

∀x ∈ interior(Ωd ), |N (x)|u(x)−
∑

y∈N (x)∩Ωd

u(y) =
∑

y∈N (x)

ν(x, y)

This is a big linear system, with symmetric positive define sparse matrix (|Ωd |

unknown values). It can be solved by Gauss-Seidel iterative method.

19 / 27



Seamless Cloning

I Insert a part of image v0 in image u0.

I Copy and paste doesn’t work.

I Guidance field v taken directly from the source image.

We set v = Dv0, then div(v) = ∆v0. The problem becomes{
∆u(x) = ∆v0(x) if x ∈ Ω
u(x) = u0(x) if x ∈ ∂Ω.

In the discrete world

ν(x, y) = (v0(x)− v0(y)).
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Seamless Cloning
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Seamless Cloning
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Seamless Cloning
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Mixing Gradients

I Insert a part of image v0 in image u0 but keep details of image u0.

I See one image through the other.

I First idea: fill the domain Ωd with u0+v0

2

I Problem: transitions in the boundary of Ωd won’t be continous.

Image details are coded in the parts with big gradient of the image.

We can define the guidance field v as

v(x) =

{
Dv0(x) if |Dv0(x)| > |Du0(x)|, x ∈ Ω
Du0 otherwise.

The discrete problem becomes

ν(x, y) =

{
v0(x)− v0(y) if |v0(x)− v0(y))| > |u0(x)− u0(y)|, x ∈ Ωd

u0(x)− u0(y) otherwise.

22 / 27



Mixing Gradients
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Mixing Gradients
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Selective Edition

I Modify the image gradient field in order to keep only the values
interested by the operator.

There are different ways of defining the guidance field v in a non linear
way.

I Keep only the gradients bigger than certain threshold

v(x) =

{
Du0(x) if |Du0(x)| > δ, x ∈ Ω
0 otherwise.

I Enhance weak contrasts

v(x) = g(Du0(x))

with g(v) = |v |−αv and α ∈ [0, 1].
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Selective Edition
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Selective Edition
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http://graphics.cs.cmu.edu/projects/gradient-paint/

[McCann and Pollard 2008] James McCann and Nancy S. Pollard, “ Real-time Gradient-domain Painting”. ACM
Transactions on Graphics (SIGGRAPH 2008). August 2008, Vol 27. No. 3.
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http://graphics.cs.cmu.edu/projects/gradient-paint/


the end.
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