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The Variational Interpretation

Proposition 1: Let Q = [0,27]? and f € L3 (R?). Then there

exists a unique function v € Hi. (R?) minimizer of the energy

1
Ew) =5 [ 1DuP(x.y)dndy — [ F(xy)u(x.y)
Q Q
and satisfying v = 0 in 99.

This solution is the restriction to €2 of an odd function belonging to
ngr([—27r7 27]2) (4n-periodic functions).

This solution is the same as the one from the Poisson equation with
Dirichlet conditions:

—Au=f, u=0 in 00

3/ 27



Poisson Editor

Proposition 2: Let Q = [0,27]? and V = (v1, v2) € (L3,(R?))? a vector

field. Then there exists a function u € H:

oer(R?) minimizer of the energy

E(u) = / |Du — V|?(x, y)dxdy = /Q ((ux — v1)* + (uy — v2)?) dxdy

and satisfying 3 8“ =0 in 0N.

This solution is the restriction to Q of an even (paire) function belonging
to H3,([—2m,2n]?) (4m-periodic functions).
This solution is the same as the one from the Poisson equation with Neu-
mann conditions:

ovy  Ow ou

— =0 in 00

AU:dlv(V):a""aiy, 8["
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Proof In order to naturally have the boundary condition % =0itis

convenient to use the cosine basis decomposition for elements in L([0, 27]?)

(cos (&) cos (%)), with k,/ €N
Hence, we write

u(x,y) = > 4 jen Ck,i(u) cos (%) cos (%)

SIS

)

va(x,y) = Zk,/eN Ck,i(v2) cos (%) cos (Ey)

vi(x,y) = Zk,leN Ck,i(v1) cos (%) cos (

By using the respective Fourier expansions for uy, uy, (derivatives in the
distribution sense) and vi, v» the Poisson energy can be re-written as

E(u) = % Z (gck,/(U) - Ck,/(vl))Z + (éCk,/(U) - Ck,/(Vz))2

k,JEN
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Proof (cont. 1) Then, regrouping the energy E(u):

1 K+ P 2 2 2
E(u)_ik%* ()= (ko) +ew() ) cr(u)ti(n) +6ci ()

Each term depends on a different c,;/(u). We need to minimize

(k2 :_ /2) c(u)? — (ka,I(V1) + /Cky/(Vg)) ck,i(u)

so if we differentiate and = 0, we get

ka7/(V1) + /Ck,/(V2)

ap s k>0

ck,/(u) =2

> uisin Hye([—2m,27]%) since £cii(u) € IP(Z%) (so ux € Lpe).
> The solution is unique up to a constant (the term ¢po(u) is not set).
If uis solution then v+ C for C constant is also solution. Thus,

o 3 el Bl o () s ()

k,leN*

» Same solution as the Poisson equation with the Neumann condition for
f = —div(V) = —(v)x — (),
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Proposition 3: Let u be the solution of the Poisson editor for a
gradient field V = (v1, v2). Then u satisfies the equation

Au =div(V)

in the distribution sense.
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Proof Consider a perturbation tp, with ¢ € C°(Q2) and t e R. If uis a
minimum then

E(u+ to) = /Q(D(u+ t0) — V)2 > /Q(Du ~ VY = E(u)
Then,

/(Duf V)2 +2tDy - (Du— V) + t*Du - Du > /(Duf v)?
Q Q

Since u is a minimum, the derivative in t = 0 should be zero
/Dg0~(Du— V)=20
This is the same as ’
ot = )+ =) =0

Since uy, uy, vi and v» are in L2 they are also distributions:
<ux—vi,px >+ < u—va,p, >=0
Next, from the definition of distribution derivative
= <Ua—(1)x, 0 > — <uy—(v2)y, p >= — < tatuy—(vi)x—(v2)y, 9 >=0
and thus
Au—div(V) =0.
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Periodic + Smooth decomposition

Proposition 4: Let u be a function such that d'u € L?([0, 27]?) for
li| <2 . Then, there exists a function v € H2,,([0,27]?) such that

per
Av = Au in [0,27]?

This function is unique up to an additive constant. The difference
w = v — u verifies Aw = 0 and hence it is smooth in [0, 27]?.
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Periodic + Smooth decomposition

The P+S decomposition permits to visualize the Fourier spectrum getting rid
of the boundary effects (e.g. discontinuities when periodizing). The periodic
decomposition inherits all the image details since its laplacian is the same.

P + s

U

original Lena image periodic component smooth component (s)

corresponding Discrete Fourier Transforms (log-modulus)

L. Moisan, Periodic plus Smooth Image Decomposition, Journal of Math. Imag. and Vision, 2011.
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Theorem :Unicity of the Fourier coefficients
If uis a distribution with the Fourier expansion

u= E me™m* =0

then Vm, ¢,, = 0.
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End of last lecture summary.
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Image Edition
» Goal: Manipulate locally a digital image to change: color, replace
detail, change some region, ..., in an imperceptible way.

» Qur vision perceives the Laplacian of images more than the images
themselves.

» A function in a compact domain can be reconstructed from its
laplacian and the values in the boundary.

sources destinations cloning seamless cloning
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Poisson Image Editing

Patrick Pérez*

Michel Gangnet’

Andrew Blake*

Microsoft Research UK

Abstract

Using generic interpolation machinery based on solving Poisson
equations, a variety of novel tools are introduced for seamless edit-
ing of image regions. The first set of tools permits the seamless
importation of both opaque and transparent source image regions
into a destination region. The second set is based on similar math-
ematical ideas and allows the user to modify the appearance of the
image seamlessly, within a selected region. These changes can be
arranged to affect the texture, the illumination, and the color of ob-
jects lying in the region, or to make tileable a rectangular selection.

CR Categories: [3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; 13.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques; 1.4.3 [Im-
age Processing and Computer Vision]: Enhancement—Filtering;

Keywords: Interactive image editing, image gradient, guided in-
terpolation, Poisson equation, seamless cloning, selection editing

able effect. Conversely, the second-order variations extracted by
the Laplacian operator are the most significant perceptually.

Secondly, a scalar function on a bounded domain is uniquely de-
fined by its values on the boundary and its Laplacian in the interior.
The Poisson equation therefore has a unique solution and this leads
to a sound algorithm.

So, given methods for crafting the Laplacian of an unknown
function over some domain, and its boundary conditions, the Pois-
son equation can be solved numerically to achieve seamless filling
of that domain. This can be replicated independently in each of
the channels of a color image. Solving the Poisson equation also
has an alternative interpretation as a minimization problem: it com-
putes the function whose gradient is the closest, in the Lp-norm, to
some prescribed vector field — the guidance vector field — under
given boundary conditions. In that way, the reconstructed function
interpolates the boundary conditions inwards, while following the
spatial variations of the guidance field as closely as possible. Sec-
tion 2 details this guided interpolation.

[Pérez et al. 2003] P. Pérez, M. Gangnet and A. Blake, “Poisson Image Editing”. ACM Transactions on Graphics.
Proc. of ACM SIGGRAPH 2003, vol 22, Issue 3 Pages: 313 - 318 (July 2003).
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Image Completion: Simple Interpolation

, . o0
Suppose we want to interpolate a function g(x) that we
only know it in the contour 0f2.

Proposed approach:

Minimize the following energy:

E(u):/Q|Du|2dx with u(x) = g(x) in Q.

This solution is the same as the one from the Laplace equation with
Dirichlet boundary conditions:

Au=0 if xe
u(x) =g(x) if xe€d.

This solution is over blurred (too smooth since Au = 0).
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Image Completion: Guided Interpolation

> We want to interpolate a function g(x) only
known it in the contour 0€2.

> We are given a guidance field v = (vi, v»).

» Goal: find a function u whose gradient is as
similar as possible to v and compatible with the
boundary condition.

Minimize the following energy:

E(u):/Q|Du—v|2dx with  u(x) = g(x) in Q.

This solution is the same as the one from the Poisson equation with Dirichlet
boundary conditions:

{ Au=div(v) if xeQ
u(x) =g(x) if xeo.

where we have called div(v) = 9vi, + Ova,.

This equation is the cornerstore of the framework proposed in [Pérez et al. 2003]. ‘
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Image Completion: Guided Interpolation

A simple case

» The guidance field is itself the gradient of a
function w,

v = Dw.

Then Au = div(v) = div(Dw) = Aw, and if we set z = w — u, we can
rewrite the problem as

{Az:O if xeQ
z(x) = (g —w)(x) if xe€dQ.
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Numerical Solution: Discrete Poisson Solver

- Images are defined in a discrete grid Q4.

- We note 0, the set of boundary pixels.

- For each pixel x = (x, y) we define
N(x)={(x—1y),(x+1,y),(x,y = 1),(x,y + 1)}.
- A point x € 9Qq iff x ¢ Qg and N (x) N Q4 # 0.

> If the domain Qg is not rectangular the Fourier technique doesn’t work.
> Directly solve the discrete variational (finite difference discretization)

Continuous energy:

/ |Du —v[’dx  with u(x)=g(x) indQ.
Q

Discrete energy:

Z Z (u(x) — u(y (xy)( ?’))2 with  u(x) = g(x) in 0Qq.

xEQy yeN(x)

. [ 1 ify=x%£(1,0),
where i(x,y) = { 2 ify=x+(0,1).
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Numerical Solution: Discrete Poisson Solver

Discrete energy:

ST (ux) - uly) — viey(552))? with  u(x) = g(x) in 9.

XEQy yeEN (x)

where i(x,y) = { ; :: z z 2 i gézgg’ Its a quadratic optimization problem. Its

solution satisfies the following simultaneous linear equations

Ve Qq, NG - > uly)y= D> g+ Y. vxy)

yEN (x)NQy yEN (x)NOy yEN(x)

where v(x,y) = v;(x’y)(%) and |N(x)| is the cardinal of N(x) (1 to 4) supposing
that Qg is discrete connected (every point has at least one neighbor).

For the point in the interior of Q4 there aren’t boundary terms, then

Vx € interior(Qqy), [N (x)|u(x) — Z u(y) = Z v(x,y)

YEN (x)NQy yEN(x)
This is a big linear system, with symmetric positive define sparse matrix (|Qq|

unknown values). It can be solved by Gauss-Seidel iterative method.
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Seamless Cloning

> Insert a part of image vy in image up.
» Copy and paste doesn't work.

» Guidance field v taken directly from the source image.

We set v = Dvy, then div(v) = Avy. The problem becomes

{ Au(x) = Aw(x) if xe€Q
u(x) = up(x) if xe Q.

In the discrete world

v(x,y) = (vo(x) — vo(y))-
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Seamless Cloning

sources destinations cloning seamless cloning
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Seamless Cloning

. : cloning
sources/destinations
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Seamless Cloning

source/destination cloning seamless cloning
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Mixing Gradients

> Insert a part of image vy in image ug but keep details of image wp.
> See one image through the other.
> First idea: fill the domain Qg with %1%

» Problem: transitions in the boundary of 4 won't be continous.

Image details are coded in the parts with big gradient of the image.

We can define the guidance field v as

(x) = Dvo(x) if |Dvo(x)| > |Dug(x)], x €
Vo= Duy  otherwise.

The discrete problem becomes

_J w(x) —wly) if [vo(x) = vo(y))| > |uo(x) — uo(y)|,x € Qg
v(xy) = { up(x) — up(y)  otherwise.
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Mixing Gradients

/

(c) seamless cloning and destination av-
eraged

(d) mixed seamless cloning
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Mixing Gradients

source destination
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Selective Edition

> Modify the image gradient field in order to keep only the values
interested by the operator.

There are different ways of defining the guidance field v in a non linear
way.

> Keep only the gradients bigger than certain threshold
v(x) = { Dup(x) if |Dug(x)| > d,x € Q

0 otherwise.

» Enhance weak contrasts

v(x) = g(Duo(x))
with g(v) = |v|™*v and « € [0, 1].
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Selective Edition

]

&

Figure 10: Local illumination changes. Applying an appropriate
non-linear transformation to the gradient field inside the selection
and then integrating back with a Poisson solver, modifies locally
the apparent illumination of an image. This is useful to highlight
under-exposed foreground objects or to reduce specular reflections.

25 / 27



Selective Edition

Figure 11: Local color changes. Left: original image showing
selection Q surrounding loosely an object of interest; center: back-
ground decolorization done by setting g to the original color image
and f* to the luminance of g; right: recoloring the object of interest
by multiplying the RGB channels of the original image by 1.5, 0.5,
and 0.5 respectively to form the source image.
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Real-Time Gradient-Domain Painting

James McCann* Nancy S. Pollard®
Carnegie Mellon University Carnegie Mellon University

Figure 1: Starting from a blank canvas, an artist draws and colors a portrait using gradient-domain brush strokes. Additive blend mode
used for sketching, directional and additive for coloring. Artist time: 30 minutes.

http://graphics.cs.cmu.edu/projects/gradient-paint/

[McCann and Pollard 2008] James McCann and Nancy S. Pollard, “ Real-time Gradient-domain Painting”. ACM
Transactions on Graphics (SIGGRAPH 2008). August 2008, Vol 27. No. 3.
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http://graphics.cs.cmu.edu/projects/gradient-paint/

the end.
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