Hilbert and Fourier analysis C2

M. Delbracio & G. Facciolo

Previously...

- ▶ L^1 Space and norm
- Convergence of sequences of functions in L^1
- ► Dominated convergence theorem
- $\mathcal{C}_c(\mathbb{R}^N)$ is dense in $L^1(\mathbb{R}^N)$

Today's topics

- ▶ L^p and L^∞ Spaces
 - L^p, is a normed vector space
 - Convergence theorems in L^p
 - L^p are **Banach** spaces for $1 \le p \le \infty$
 - $\mathcal{C}_c(\mathbb{R}^N)$ is **dense** in $L^p(\mathbb{R}^N)$ for $1 \le p < \infty$
- ► CONVOLUTION, APPROXIMATION AND REGULARIZATION
 - Convolution*
 - Approximation of the identity, and $(f * k_h) \xrightarrow{L^p} f$
 - $\mathcal{C}^{\infty}_{c}(\Omega)$ is **dense** in $L^{p}(\Omega)$ for $1 \leq p < \infty$

L^1, L^p, L^∞

Def 3.1: L^p space

• $L^{p}(\mathbb{R}^{N})$: set of functions f defined a.e. such that

$$\int_{\mathbb{R}^N} |f(x)|^p \, dx < \infty, \quad 1 \le p < \infty$$

• $L^{\infty}(\mathbb{R}^N)$: set of functions such that

$$\exists c \ge 0 : |f(x)| \le c \text{ a.e. } x \tag{1}$$

$$\frac{L^{p}-\text{norms}}{\|f\|_{L^{p}} = (\text{or simply } \|f\|_{p}) = \left(\int_{\mathbb{R}^{N}} |f(x)|^{p} dx\right)^{\frac{1}{p}} \\ \|f\|_{L^{\infty}} = \text{supess}(f): \text{ (Essential sup.) smallest } c \text{ for which (1) holds}$$

Objective: Prove that L^p with $1 \le p < \infty$ is a Banach space (complete, normed, vector space)

L^p : normed vector space

To prove that L^p is a vector space we'll need:

<u>Theorem 3.1:</u> (Hölder inequality) Let $1 \le p, p' \le \infty$ with $p' = \frac{p}{p-1}$ (conjugate exponents). Then for all $f \in L^p$ and $g \in L^{p'}$, the function $fg \in L^1$ and: $\|fg\|_1 = \int |fg| \le \|f\|_p \|g\|_{p'}.$ <u>Proof \rightarrow see notes</u> **Théorème 3.1** (Inégalité de Hölder) Soit $1 \le p \le +\infty$. Pour tout $f \in L^p$ et $g \in L^{p'}$, la fonction fg est sommable et $\int |fg| \le ||f||_p ||g||_{p'}$.

Démonstration Supposons d'abord $1 . On utilise la concavité du logarithme sur <math>\mathbb{R}^+$. Si a > 0, b > 0, compte tenu de la relation $\frac{1}{p} + \frac{1}{p'} = 1$,

$$\log(\frac{1}{p}a^{p} + \frac{1}{p'}b^{p'}) \geq \frac{1}{p}\log(a^{p}) + \frac{1}{p'}\log(b^{p'}) = \log(ab). \text{ D'où}$$

Young's Inequality -> $ab \leq \frac{1}{p}a^p + \frac{1}{p'}b^{p'}$ et donc

$$\begin{split} |f(x)g(x)| &\leq \frac{1}{p} |f(x)|^p + \frac{1}{p'} |g(x)|^{p'}, \text{ qui donne} \\ &\int |f(x)g(x)| \leq \frac{1}{p} ||f||_{L^p}^p + \frac{1}{p'} ||g||_{L^{p'}}^{p'}. \end{split}$$

Pour trouver l'inégalité recherchée, on remplace le couple (f,g) par $(\lambda f, \frac{g}{\lambda})$, où $\lambda > 0$. On choisit $\lambda = \frac{||g||_{p'}^{\frac{1}{p}}}{||f||_{p}^{\frac{1}{p}}}$. Alors $\int |fg| \leq (\frac{1}{p} + \frac{1}{p'})||f||_{p}||g||_{p'}$,

qui est bien l'inégalité annoncée. Si p = 1 ou $p = +\infty$, on a $p' = +\infty$ ou p' = 1 et l'inégalité est immédiate en choisissant un représentant de g tel que sup $|g| = ||g||_{\infty}$: on a alors $\int |fg| \leq \sup |g| \int |f| = ||g||_{\infty} ||f||_{L^1}$.

 $L^{p}(\mathbb{R}^{N})$: normed vector space <u>Theorem 3.2</u>: $L^{p}(\mathbb{R}^{N})$ (with $1 \le p \le \infty$) is a vector space and $\|f\|p$ is a norm Points to prove:

1.
$$\|\lambda f\|_{p} = |\lambda| \|f\|_{p}$$
: by Definition of L^{p}
2. $\|f\|_{p} = 0 \Rightarrow f = 0$ a.e.: easy
3. $\|f + g\|_{p} \le \|f\|_{p} + \|g\|_{p}$: use Hölder.
Proof of 3.

$$\frac{\|f+g\|_{p}^{p}}{\int |f+g|^{p-1}} = \int |f+g|^{p} = \int |f+g|^{p-1} |f+g| \leq \text{ (triangle)}$$

$$\int \underbrace{|f+g|^{p-1}}{\||f|} \underbrace{|f|}{||f||_{p}} + \underbrace{||f+g|^{p-1}}{\|g|} \leq \text{ (Hölder x2)}$$

$$\frac{\||f+g|^{p-1}}{\||g||_{p}} \|g\|_{p} = \text{ (comput...)}$$

$$\frac{\||f+g\|_{p}^{p-1}}{\||g||_{p}} + \||g\|_{p} + \|g\|_{p}$$

Convergence in $L^{p}(\mathbb{R}^{N})$

Proposition 3.1: (Dominated convergence in L^p , $1 \le p < \infty$) Let $f_n(x) \to f(x)$ pointwise a.e., and exists $g \in L^p$ (chapeau) such that $|f_n(x)| \le g(x)$ a.e. for all *n*. Then $f_n \xrightarrow{L^p} f$. Proof \to

Démonstration On pose $h_n = |f_n - f|^p$. Alors $|h_n| \le (|f_n| + |f|)^p \le 2^p |g|^p$ p.p. car $|f_n| \le g$ p.p. et, en passant à la limite simple, $|f| \le g$ presque partout. On peut donc appliquer le théorème de la convergence dominée à h_n et conclure que $\underline{h_n \to 0}$.

Exercise 3. Dominated convergence counterexample for $L^{\infty}([0,1])$. Let : $f_n(x) = x^n$ over [0,1]: $f_n \in L^{\infty}([0,1]) \checkmark$, $|f_n(x)| \le 1 \checkmark$, $f_n(x) \to 0$ a.e. $x \in [0,1] \checkmark$ But $||f_n - 0||_{\infty} = \text{supess} |f_n| = 1 \forall n$.

... we also have Lemma 3.1: (Fatou in L^p for $1 \le p \le \infty$). If $\begin{cases} \bullet f_n(x) \to f(x) \text{ a.e.} \\ \bullet \|f_n\|_p \le c \end{cases}$, then $\|f\|_p \le \liminf \|f_n\|_p$ Proof \to see notes

$L^{p}(\mathbb{R}^{N})$ is Banach

<u>Theorem 3.3:</u> (Fischer-Riesz) $L^{p}(\mathbb{R}^{N})$ is complete for $1 \leq p \leq \infty$ (and therefore is Banach). "Complete: if every Cauchy seq. in L^{p} has a limit that is also in L^{p} ." <u>Proof</u> \rightarrow blackboard

Examples of Non Banach spaces

- 1. \mathbb{Q} with standard metric: seqs. of rationals can converge to elements of \mathbb{R}
- 2. Open intervals of \mathbb{R} with standard metric:

$$X = (0,1] \quad \frac{1}{n} \to 0 \notin X$$

3. C_c with L^1 metric:

seq. $f_n(x) = x^n \in \mathcal{C}_c([0,1])$ converges to an $f(x) \notin \mathcal{C}_c([0,1])$

Théorème 3.3 Les espaces $L^p(\mathbb{R}^N)$, $(1 \le p \le +\infty)$ sont des espaces de Banach. **Démonstration** Soit h_k une suite de Cauchy dans L^p . Si $p = +\infty$, $h_k(x)$ est de Cauchy pour presque tout x et converge uniformément vers une fonction h(x). Il est alors facile de vérifier que h(x) est essentiellement bornée et que la convergence de h_k vers h est uniforme. Soit maintenant $1 \le p \le \infty$. Une récurrence facile (exercice!) montre que l'on peut extraire une suite de la suite de Cauchy h_k , que nous noterons par commodité $f_n = h_{k_n}$, telle que

$$q, r \ge n \Rightarrow ||f_q - f_r||_{L^p} \le \frac{1}{2^n}.$$

On pose $g_n(x) = \sum_{1}^{n} |f_{k+1}(x) - f_k(x)|$ La suite de fonctions $g_n(x)$ est croissante. Notons g(x) sa limite. Par l'inégalité triangulaire,

$$\underbrace{(\int |g_n|^p)^{\frac{1}{p}}}_{k=1} = ||\sum_{k=1}^n |f_{k+1} - f_k||_p \le \sum_{k=1}^n ||f_{k+1} - f_k||_p \le 1.$$

En appliquant à $|g_n|^p$ le théorème de convergence monotone, on obtient donc

$$\int |g(x)|^p = \lim_n \int |g_n|^p \le 1.$$

Il en résulte que $\underline{g(x)}$ est presque partout finie, appartient à L^p et que $g_n(x)$ tend presque partout vers g(x). Comme (pour $n \ge m$), $\sum_{n=1}^{m} |f_{k+1} - f_k|(x) \le g_n(x) - g_m(x)$, la série $\sum_{n=1}^{\infty} (f_{k+1} - f_k)$ converge également presque partout. Donc $f_n(x) - f_1(x)$ converge presque partout vers une limite que l'on appelle $f(x) - f_1(x)$. De plus, $|f_n(x) - f(x)|^p \le (\sum_{n=1}^{\infty} |f_{k+1} - f_k(x)|)^p \le g(x)^p$ qui est chapeau intégrable. Donc $f_n - f$ converge vers 0 dans L^p . Rappelons que $f_n = h_{n_k}$ est une sous-suite extraite de la suite de Cauchy h_k . Mais si une sous-suite d'une suite de Cauchy converge, toute la suite converge. \mathcal{C}_{c} dense in L^{p} for $1 \leq p < \infty$ Theorem 3.4: $C_c(\mathbb{R}^N)$ is dense in $L^p(\mathbb{R}^N)$ for $1 \le p \le \infty$ $\mathsf{Proof} \to \mathsf{see} \mathsf{ notes}$ Sketch 1. For all $f \in L^p$ we define a seq. of **truncated** functions f_k : bounded and with compact support. By dominated convergence $f_{\iota} \xrightarrow{L^p} f$ 2. Since f_k is <u>bounded</u> and compactly supported then $f_k \in L^1$, and by density of C_c in L^1 there exists $\underline{g}_n \in \mathcal{C}_c$ such that $g_n \xrightarrow{L^1} f_k$. 3. The reverse Lebesgue Thm assures that a subsequence of g_n converges pointwise to f_k . Since $(g_n)_n$ and f_k are bounded and compactly supported, it is easy to find a dominating function in L^{p} to apply dominated convergence to get: $g_n \xrightarrow{L^p} f_k$ Exercise 7.

- 1. Is $\mathcal{C}_c(\mathbb{R})$ dense in $L^{\infty}(\mathbb{R})$?
- 2. Is $\mathcal{C}_c(\mathbb{R})$ dense in $L^1([0,1])$?

Convolution, approximation and regularization

We've seen that C_c is dense in L^p . This implies that we can approximate an L^p function as much as we want using continuous functions. However these functions may not be smooth (discontinuous derivatives).

In this part we'll construct sequences of infinitely differentiable functions for approximating L^p functions.

Convolution: The convolution of
$$f, g \in L^1(\mathbb{R}^N)$$
 is defined as
 $(f * g)(x) = \int f(x - y)g(y)dy = \int g(x - y)f(y)dy$

Convolution, approximation and regularization

Convolution: $(f * g)(x) = \int f(x - y)g(y)dy = \int g(x - y)f(y)dy$

Theorem 3.6: Let $f, g \in L^1(\mathbb{R}^N)$. Then $\underline{f(x-y)g(y)}$ is integrable for a.e. x, the convolved function $\underline{f * g \text{ is in } L^1}$ and $\underline{\|f * g\|_1 \leq \|f\|_1 \|g\|_1}$. Proof \rightarrow see notes

Démonstration On montre d'abord en appliquant le théorème de Fubini-Tonelli et le théorème de changement de variable que la fonction |f(x-y)g(y)| est sommable. En effet,

$$\frac{\int \int |f(x-y)g(y)|dxdy}{\int |g(y)|(\int |f(x)|dx)dy} = \int |g(y)|(\int |f(x-y)|dx)dy = \int |g(y)|(\int |f(x)|dx)dy = ||f||_{L^1}||g||_{L^1}.$$

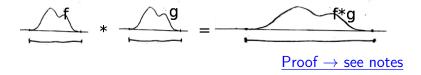
La fonction f(x-y)g(y) est donc sommable sur \mathbb{R}^{2N} et le théorème de Fubini assure que la fonction $y \to f(x-y)g(y)$ est sommable pour presque tout x et que la fonction alors définie presque partout par $f * g(x) = \int f(x-y)g(y)dy$ est elle-même sommable sur \mathbb{R}^N . On a finalement

$$\frac{||f * g||_{L^1}}{\int |f * g|(x)dx} \le \int |g(y)| (\int |f(x - y)|dx)dy = ||f||_{L^1} ||g||_{L^1}.$$
13 / 26

Support and convolution

<u>Def 2.6</u>: The support of f, Supp(f) is the complement of the largest open set O s.t. f(x) = 0 a.e. over O.

Proposition 3.2: Let f, g be such that (f * g)(x) is defined a.e.. Then $\operatorname{Supp}(f * g) \subset \overline{\operatorname{Supp}(f) + \operatorname{Supp}(g)}$.



Regularization by convolution

<u>Theorem 3.7:</u>(Regularization by convolution)

Let $f \in L^1(\mathbb{R}^N)$, $g \in \mathcal{C}(\mathbb{R}^N)$ bounded $(\|g\|_{\infty} < \infty)$ and with partial derivatives $\frac{\partial g}{\partial x}$ continues up to order k. Then the convolved function $(f * g)(x) = \int g(x - y)f(y)dy$ is defined for all x, f * g is continue and **bounded**, and the partial derivatives $\frac{\partial f * g}{\partial x}$ are continues up to order k. $\mathsf{Proof} \rightarrow \mathsf{blackboard}$ f * gg $\partial_x(f * g)$

Démonstration On remarque d'abord que la fonction $y \to q(x-y)f(y)$ est so $\frac{1}{26}\sqrt{26}$

L^1_{loc} SKIP

<u>Def 3.2</u>: We denote $L^1_{loc}(\mathbb{R}^N)$ the space of functions f such that: for all bounded set $\mathbf{B} \subset \mathbb{R}^N$, $f \in L^1(B)$. We say that $f_n \xrightarrow{L^1_{loc}} f$ if $f_n \xrightarrow{L^1(B)} f$ for all bounded set B.

Exercise 8.
$$[\mathcal{C}^0(\mathbb{R}^N) \text{ and } L^p(\mathbb{R}^N), 1 \le p \le \infty] \subset L^1_{loc}(\mathbb{R}^N).$$

$$\underbrace{ \text{Corollary 3.2:}}_{loc} \text{ If } f \in L^1_{loc} \text{ and } g \in \mathcal{C}^k_c, \text{ then } f * g \in \mathcal{C}^k_c.$$

$$\underbrace{ \text{Proof} \to \text{Ex. 9}}_{loc}$$

L² SKIP

Theorem 3.8: Let $f \in L^1(\mathbb{R}^N)$ and $g \in L^2(\mathbb{R}^N)$, then f * g(x)

- is defined almost everywhere,
- is square-integrable,
- and verifies $||f * g||_2 \le ||f||_1 ||g||_2$.

Let
$$f,g \in L^2(\mathbb{R}^N)$$
, then $f * g$

- is defined everywhere,
- is continuous,
- tends towards 0 at the infinity,
- and verifies $||f * g||_{\infty} \le ||f||_2 ||g||_2$.

Fundamental theorem of signal processing

<u>Theorem 3.9</u>: (Universality of the convolution) Let $T : L^2(\mathbb{R}^N) \to C_b(\mathbb{R}^N)$ be a <u>continuous linear operator</u> which is <u>translation invariant</u>.

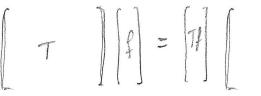
Then there exist a unique $g \in L^2(\mathbb{R}^N)$ such that T(f) = g * f. <u>Proof</u> \rightarrow see notes

Missing definitions:

- ▶ C_b set of <u>continuous</u> and <u>bounded</u> funct., equipped with the L^{∞} -norm
- <u>Translation</u> of a function by x: $(\tau_x f)(y) = f(y x)$
- Translation invariant operator: $T(\tau_x f) = \tau_x T(f)$

Discrete intuition:

- Linear Operator T
- Translation invariant
- Kernel g (row of T)



Approximations to the identity

<u>Def 3.4</u>: **Approximation of the identity or Mollifier.** Let $k \in L^1(\mathbb{R}^N)$ so that $\int k(x)dx = 1$ and $k(x) \ge 0$ a.e.. For all h > 0 we define: $k_h(x) = h^{-N}k\left(\frac{x}{h}\right)$. We call k_h approximation of the identity.

<u>Theorem 3.5:</u> ("Average continuity" in L^p) For all $f \in L^p(\mathbb{R}^N), 1 \le p < \infty$ we have $\lim_{y\to 0} \int_{\mathbb{R}^N} |f(x+y) - f(x)|^p dx = 0.$

 $\underline{\mathsf{Proof}} \to \underline{\mathsf{see notes}}$

-6 -4 -2 0 2

0.8

Proposition 3.3: If f is uniformly continuous and bounded in \mathbb{R}^N , then $f * k_h$ converges uniformly to f.

 $\underline{\mathsf{Proof}} \to \mathsf{blackboard}$

Définition 3.3 Soit $k \in L^1(\mathbb{R}^N)$ telle que $\int k(x)dx = 1$ et $k(x) \ge 0$ presque partout. On pose pour tout h > 0,

$$k_h(x) = h^{-N}k(\frac{x}{h}).$$

On appelle un tel système de fonctions k_h , h > 0, une "approximation de l'identité".

Proposition 3.3 Si f est <u>uniformément continue</u> et bornée sur \mathbb{R}^N , alors $f * k_h$ converge vers f uniformément. **Démonstration** On remarque d'abord que

 $\int k_h(x)dx = \int k(x)dx = 1, \qquad (3.7)$

$$k_h * f(x) - f(x) = \int (k_h(y)(f(x-y) - f(x))dy, \qquad (3.8)$$

et que (une conséquence du théorème de Lebesgue), pour η fixé et h assez petit,

Donc

$$\int_{|y| \ge \eta} |k_h(y)| dy \le \varepsilon.$$

$$(3.9)$$

$$\int_{|y| \ge \eta} |k_h(y)| dy \le \varepsilon.$$

$$(3.9)$$

$$\leq 2 \sup |f| \int_{|y| \ge \eta} |k_h(y)| dy + \sup_{|y| \le \eta} |f(x-y) - f(x)| \int |k_h(y)| dy \le 2\varepsilon$$

pourvu que l'on fixe premièrement $\underline{\eta}$ assez petit pour que le deuxième terme soit plus petit que ε , puis <u>h assez petit</u> pour que le premier soit aussi plus petit que ε . \circ

Approximations to the identity

<u>Theorem 3.10:</u> Let k_h be a mollifier. Then for all $f \in L^p(\mathbb{R}^N)$, $1 \le p < \infty$, the functions $f * k_h \xrightarrow{L^p} f$. <u>Proof \rightarrow blackboard</u> **Théorème 3.10** Soit k_h une approximation de l'identité. Alors pour toute fonction $f \in L^p(\mathbb{R}^N), 1 \leq p < \infty$, les fonctions $f * k_h$ convergent vers f dans L^p .

Démonstration Comme $f \in L^p$, on peut choisir par le théorème 3.5 η assez petit pour que

$$|y| \le \eta \Rightarrow \int |f(x-y) - f(x)|^p dx \le \varepsilon.$$
(3.10)

L'inégalité de Hölder et le fait que $k_h \ge 0, \ \int k_h = 1$ impliquent que pour toute fonction f dans $L^p,$ on ait

$$\left(\int k_h(x)|f(x)|dx\right)^p \le \int k_h(x)|f(x)|^p dx.$$
(3.11)

En effet,

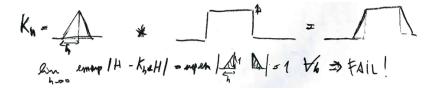
$$\left(\int k_h|f|\right)^p = \left(\int k_h^{\frac{1}{p}} k_h^{\frac{1}{p'}}|f|\right)^p \le \left(\int k_h|f|^p\right) \left(\int k_h\right)^{\frac{p}{p'}}.$$

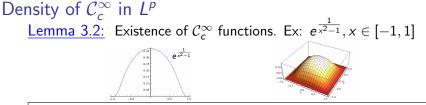
En utilisant les relations (3.7)-(3.11) et le théorème de Fubini,

$$\begin{split} \int |k_h * f(x) - f(x)|^p dx &= \int \left| \int (k_h(y)(f(x-y) - f(x))) dy \right|^p dx \le \int \int k_h(y) |f(x-y) - f(x))|^p dy dx \le \\ & 2^p \int |f(x)|^p dx \int_{|y| \ge \eta} |k_h(y)| dy + \int_{|y| \le \eta} |k_h(y)| dy \int |f(x-y) - f(x)|^p dx \le \\ & 2^p ||f||_{L^p}^p \varepsilon + \int |k_h(y)| \varepsilon = (2^p ||f||_{L^p}^p + ||k||_{L^1}) \varepsilon. \end{split}$$

Approximations to the identity

Ex. 11 Case $p = \infty$ in the previous theorem. Show an example where $f * k_h$ does not converge in L^{∞} to f.





Proposition 3.4: $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$

 $\underline{\mathsf{Proof}} \rightarrow \mathsf{blackboard}$

Proposition 3.4 Soit Ω un ouvert de \mathbb{R}^N . Alors $\mathcal{C}^{\infty}_c(\Omega)$ est dense dans $L^p(\Omega)$ pour tout $1 \leq p < \infty$.

Démonstration On considère les voisinages intérieurs bornés de Ω , $\Omega_r = \{x, B(x, r) \in \Omega\} \cap B(0, \frac{1}{r})$. Comme $\Omega = \bigcup_{r>0} \Omega_r$, on a par le théorème de Lebesgue

$$\forall \varepsilon \exists r, \ \int_{\Omega} |f(x) - f(x) 1\!\!1_{\Omega_r}|^p dx < \varepsilon.$$

On choisit alors r' < r tel que

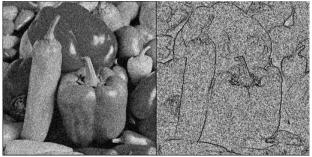
$$||(f 1 \hspace{-0.15cm} 1_{\Omega_r}) * k_{h_{r'}} - f 1 \hspace{-0.15cm} 1_{\Omega_r}||_{L^p(\Omega)} < \varepsilon.$$

On obtient donc $|||f - (f \mathbb{1}_{\Omega_r}) * k_{h_r'}||_{L^p(\Omega)} < 2\varepsilon$. Comme r' < r, le lemme 3.2 et le théorème 3.7 impliquent que $(f \mathbb{1}_{\Omega_r}) * h_{r'} \in \mathcal{C}^{\infty}_c(\Omega)$. \circ

Regularization by convolution for images

Digital images usually contain noise. Noise makes the image very irregular, difficulting the computation of image derivatives. The image derivatives are relevant because places with **high derivative** often coincide with **object boundaries**.

But computing the derivatives $Df = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ of a noisy image produces poor results.



Left image f, right |Df|

Regularization by convolution for images

Convolving f with a smooth function $k \in C^{\infty}$, assures that f * k is smooth, and also its derivatives.

