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Previously...

I L1 space and norm

I Convergence of sequences of functions in L1

I Dominated convergence theorem

I Cc(RN) is dense in L1(RN)
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Today’s topics

I Lp and L∞ Spaces
I Lp, is a normed vector space
I Convergence theorems in Lp

I Lp are Banach spaces for 1 ≤ p ≤ ∞
I Cc(RN) is dense in Lp(RN) for 1 ≤ p <∞

I Convolution, approximation and regularization
I Convolution∗

I Approximation of the identity, and (f ∗ kh)
Lp

→ f
I C∞c (Ω) is dense in Lp(Ω) for 1 ≤ p <∞
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L1, Lp, L∞

Def 3.1: Lp space

I Lp(RN): set of functions f defined a.e. such that∫
RN

|f (x)|p dx <∞, 1 ≤ p <∞

I L∞(RN): set of functions such that

∃c ≥ 0 : |f (x)| ≤ c a.e. x (1)

Lp-norms
‖f ‖Lp = (or simply ‖f ‖p) =

(∫
RN |f (x)|p dx

) 1
p

‖f ‖L∞ = supess(f ): (Essential sup.) smallest c for which (1) holds

Objective: Prove that Lp with 1 ≤ p <∞ is a Banach space
(complete, normed, vector space)
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Lp: normed vector space

To prove that Lp is a vector space we’ll need:

Theorem 3.1: (Hölder inequality)
Let 1 ≤ p, p′ ≤ ∞ with p′ = p

p−1 (conjugate exponents).

Then for all f ∈ Lp and g ∈ Lp
′
, the function fg ∈ L1 and:

‖fg‖1 =

∫
|fg | ≤ ‖f ‖p‖g‖p′ .

Proof → see notes
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Lp(RN): normed vector space
Theorem 3.2: Lp(RN) (with 1 ≤ p ≤ ∞) is a vector space and
‖f ‖p is a norm
Points to prove:

1. ‖λf ‖p = |λ|‖f ‖p: by Definition of Lp

2. ‖f ‖p =0⇒ f =0 a.e.: easy

3. ‖f + g‖p ≤ ‖f ‖p + ‖g‖p: use Hölder.

Proof of 3.

‖f + g‖pp =

∫
|f + g |p =

∫
|f + g |p−1|f + g |≤ (triangle)∫

|f + g |p−1︸ ︷︷ ︸ |f |︸︷︷︸+

∫
|f + g |p−1︸ ︷︷ ︸ |g |︸︷︷︸≤ (Hölder x2)∥∥ |f + g |p−1

∥∥
p′
‖f ‖p +

∥∥ |f + g |p−1
∥∥
p′
‖g‖p = (comput...)

‖f + g‖p−1p (‖f ‖p + ‖g‖p)
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Convergence in Lp(RN)
Proposition 3.1: (Dominated convergence in Lp, 1 ≤ p<∞)
Let fn(x)→ f (x) pointwise a.e., and exists g ∈ Lp (chapeau)

such that |fn(x)| ≤ g(x) a.e. for all n. Then fn
Lp−→ f .

Proof →

Exercise 3. Dominated convergence counterexample for L∞([0, 1]).
Let : fn(x) = xn over [0, 1]: fn ∈ L∞([0, 1]) X ,

|fn(x)| ≤ 1 X ,
fn(x)→ 0 a.e. x ∈ [0, 1] X

But ‖fn − 0‖∞ = supess |fn| = 1 ∀n. 0 1

... we also have Lemma 3.1: (Fatou in Lp for 1 ≤ p ≤ ∞).

If

{
• fn(x)→ f (x) a.e.
• ‖fn‖p ≤ c

, then ‖f ‖p ≤ lim inf
n
‖fn‖p

Proof → see notes
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Lp(RN) is Banach

Theorem 3.3: (Fischer-Riesz)
Lp(RN) is complete for 1 ≤ p ≤ ∞ (and therefore is Banach).
“Complete: if every Cauchy seq. in Lp has a limit that is also in Lp.”

Proof → blackboard

Examples of Non Banach spaces

1. Q with standard metric:
seqs. of rationals can converge to elements of R

2. Open intervals of R with standard metric:
X = (0, 1] 1

n → 0 /∈ X

3. Cc with L1 metric:
seq. fn(x) = xn ∈ Cc([0, 1]) converges to an f (x) /∈ Cc([0, 1])
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Cc dense in Lp for 1 ≤ p <∞
Theorem 3.4: Cc(RN) is dense in Lp(RN) for 1 ≤ p <∞

Proof → see notes
Sketch

1. For all f ∈ Lp we define a seq. of truncated func-
tions fk : bounded and with compact support.

By dominated convergence fk
Lp

−→ f

2. Since fk is bounded and compactly supported then fk ∈ L1, and by

density of Cc in L1 there exists gn ∈ Cc such that gn
L1

−→ fk .

3. The reverse Lebesgue Thm assures that a subsequence of gn
converges pointwise to fk . Since (gn)n and fk are bounded and
compactly supported, it is easy to find a dominating function in Lp

to apply dominated convergence to get: gn
Lp

−→ fk

Exercise 7.

1. Is Cc(R) dense in L∞(R)?

2. Is Cc(R) dense in L1([0, 1])?
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Convolution, approximation and regularization

We’ve seen that Cc is dense in Lp. This implies that we can approximate
an Lp function as much as we want using continuous functions. However
these functions may not be smooth (discontinuous derivatives).

In this part we’ll construct sequences of infinitely differentiable functions

for approximating Lp functions.

Convolution: The convolution of f , g ∈ L1(RN) is defined as

(f ∗ g)(x) =

∫
f (x − y)g(y)dy =

∫
g(x − y)f (y)dy
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Convolution, approximation and regularization
Convolution: (f ∗ g)(x) =

∫
f (x − y)g(y)dy =

∫
g(x − y)f (y)dy

Theorem 3.6:
Let f , g ∈ L1(RN). Then f (x − y)g(y) is integrable for a.e. x, the

convolved function f ∗ g is in L1 and ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.
Proof → see notes
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Support and convolution

Def 2.6: The support of f , Supp(f ) is the complement of the
largest open set O s.t. f (x) = 0 a.e. over O.

Proposition 3.2: Let f , g be such that (f ∗ g)(x) is defined a.e..

Then Supp(f ∗ g) ⊂ Supp(f ) + Supp(g).

Proof → see notes
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Regularization by convolution
Theorem 3.7:(Regularization by convolution)
Let f ∈ L1(RN), g ∈ C(RN) bounded (‖g‖∞ <∞) and with partial
derivatives ∂g

∂xi
continues up to order k . Then the convolved function

(f ∗ g)(x) =
∫
g(x − y)f (y)dy is defined for all x, f ∗ g is continue and

bounded, and the partial derivatives ∂f ∗g
∂xi

are continues up to order k.

Proof → blackboard

f g f ∗ g

∂x(f ∗ g)
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L1
loc SKIP

Def 3.2: We denote L1loc(RN) the space of functions f such that:
for all bounded set B ⊂ RN , f ∈ L1(B).

We say that fn
L1loc−→ f if fn

L1(B)−→ f for all bounded set B.

Exercise 8. [C0(RN) and Lp(RN), 1 ≤ p ≤ ∞] ⊂ L1loc(RN).

Corollary 3.2: If f ∈ L1loc and g ∈ Ckc , then f ∗ g ∈ Ckc .
Proof → Ex. 9
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L2 SKIP

Theorem 3.8:
Let f ∈ L1(RN) and g ∈ L2(RN), then f ∗ g(x)

I is defined almost everywhere,

I is square-integrable,

I and verifies ‖f ∗ g‖2 ≤ ‖f ‖1‖g‖2.

Let f , g ∈ L2(RN), then f ∗ g
I is defined everywhere,

I is continuous,

I tends towards 0 at the infinity,

I and verifies ‖f ∗ g‖∞ ≤ ‖f ‖2‖g‖2.
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Fundamental theorem of signal processing

Theorem 3.9: (Universality of the convolution)
Let T : L2(RN)→ Cb(RN) be a continuous linear operator
which is translation invariant.

Then there exist a unique g ∈ L2(RN) such that T (f ) = g ∗ f .
Proof → see notes

Missing definitions:

I Cb set of continuous and bounded funct., equipped with the L∞-norm

I Translation of a function by x: (τx f )(y) = f (y − x)

I Translation invariant operator: T (τx f ) = τxT (f )

Discrete intuition:

I Linear Operator T

I Translation invariant

I Kernel g (row of T )
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Approximations to the identity

Def 3.4: Approximation of the identity or Mollifier.
Let k ∈ L1(RN) so that

∫
k(x)dx = 1 and k(x) ≥ 0 a.e..

For all h > 0 we define: kh(x) = h−Nk
(
x
h

)
.

We call kh approximation of the identity.

Theorem 3.5: (“Average continuity” in Lp)
For all f ∈ Lp(RN), 1 ≤ p <∞ we have
limy→0

∫
RN |f (x + y)− f (x)|pdx = 0.

Proof → see notes

Proposition 3.3: If f is uniformly continuous and bounded in RN ,
then f ∗ kh converges uniformly to f .

Proof → blackboard
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Approximations to the identity

Theorem 3.10: Let kh be a mollifier.

Then for all f ∈ Lp(RN), 1 ≤ p <∞, the functions f ∗ kh
Lp−→ f .

Proof → blackboard
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Approximations to the identity

Ex. 11 Case p =∞ in the previous theorem.
Show an example where f ∗ kh does not converge in L∞ to f .
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Density of C∞c in Lp

Lemma 3.2: Existence of C∞c functions. Ex: e
1

x2−1 , x ∈ [−1, 1]

Proposition 3.4: C∞c (Ω) is dense in Lp(Ω)
Proof → blackboard
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Regularization by convolution for images

Digital images usually contain noise. Noise makes the image very
irregular, difficulting the computation of image derivatives.
The image derivatives are relevant because places with high derivative
often coincide with object boundaries.

But computing the derivatives Df =
(

∂f
∂x ,

∂f
∂y

)
of a noisy image

produces poor results.

Left image f , right |Df |
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Regularization by convolution for images
Convolving f with a smooth function k ∈ C∞, assures that f ∗ k is
smooth, and also its derivatives.
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