Hilbert and Fourier analysis C3

M. Delbracio & G. Facciolo

Today's topics

- Hilbert Spaces
 - Orthogonal projections and subspaces
 - Riesz Theorem
- ► ORTHONORMAL BASES (BASES HILBERTIENNES).
 - Separable Hilbert spaces
 - Parseval identity
 - Weak convergence

Hilbert spaces

Def 4.1:

• **Real Hilbert space** is a vector space over \mathbb{R} , equipped with an inner product (u, v), and that is also complete with respect to the norm induced by the product :

$$\|u\|:=\sqrt{(u,u)}.$$

• Complex (Hermitian) Hilbert space is a vector space over \mathbb{C} , equipped with an Hermitian inner product, and that is also complete with respect to the norm induced by the product.

An Hermitian product verifies:

$$\blacktriangleright (u, v) = \overline{(v, u)}$$

$$(\lambda u, v) = \lambda(u, v) \quad , \quad (u, \lambda v) = \overline{\lambda}(u, v)$$

•
$$(u, v + w) = (u, v) + (u, w)$$

Examples of Hilbert spaces

- ▶ Finite dimensional Euclidean space $\mathbb{C}^N = \{(a_1, ..., a_N) : a_k \in \mathbb{C}\},\$ equipped with the product: $(a, b) = \sum_{k=1}^N a_k \overline{b_k}.$
- ▶ $L^2(E)$ equipped with the product $:(f,g) = \int_E f(x) \overline{g(x)} dx$.
- ▶ $\ell^2(\mathbb{N})$ the space of sequences $u = (u_1, u_2, ..., u_n)$ in \mathbb{C} s.t. $\sum |u_n|^2 < \infty$, equipped with the product: $(u, v) = \sum u_n \overline{v_n}$.

Or we can associate $\ell^2(\mathbb{N})$ to piecewise constant functions in $L^2(\mathbb{R})$. ℓ^2 is a closed subspace of a complete space $L^2(\mathbb{R})$, so it is also complete.

Hilbert spaces

Proposition 4.1: (Cauchy-Schwarz inequality)

 $|(f,g)| \le ||f|| ||g||$

 $\underline{\mathsf{Proof.}} \to \mathsf{blackboard}$

Démonstration la démonstration est évidemment la même qu'en dimension finie puisqu'elle se fait dans le plan de f et g. On pose $(f,g) = e^{i\theta}|(f,g)|$ et on développe $||f + te^{i\theta}g||^2 \ge 0$, ce qui donne

$$\begin{split} ||f||^2 + t(f,e^{i\theta}g) + t(e^{i\theta}g,f) + t^2 ||g||^2 \geq 0, \mbox{ soit} \\ ||f||^2 + 2t |(f,g)| + t^2 ||g||^2 \geq 0. \end{split}$$

L'inégalité de Cauchy-Schwarz exprime que le discriminant de ce trinôme est négatif. o

Orthogonality

<u>Def</u>: We say that $u, v \in H$ are **orthogonal** if (u, v) = 0.

For a couple of orthogonal vectors f and $g \in H$ we have the **Pythagoras theorem**: $||f + g||^2 = ||f||^2 + ||g||^2$.

Which extends to sequences of orthogonal vectors $u_k \in H$

$$\|\sum_{k} u_{k}\|^{2} = \sum_{k} \|u_{k}\|^{2}.$$

For **infinite sequences** the completeness of H implies that $(\sum_k u_k) \in H$, but for that $\sum_k ||u_k||^2$ must be convergent. The following proposition shows that.

Proposition 4.2: Let u_n be a sequence of orthogonal vectors in H. If $\sum_n ||u_n||^2 < \infty$ then $\sum_n u_n$ converge in H, and If $\sum_n ||u_n|| < \infty$ then $\sum_n u_n$ converge in H.

<u>Proof.</u> \rightarrow see notes

Orthogonal projections

Theorem 4.1:

Let *H* be a Hilbert space, and *C* be a non-empty, **closed** and <u>convex subset of *H*</u>. Then for all $f \in \overline{H}$,

- there exist a unique point of C, which we call projection of f, such that its distance to f is minimum.
- ► The projection point is characterized as the unique point g ∈ C such that:

$$\forall h \in C, Re(f-g, h-g) \leq 0$$

 $h \xrightarrow{h_t} g$
C

If C is a **closed subspace** of H, then the projection of f is the **unique** point $g \in C$ such that f - g is orthogonal to all the elements of C.

 $\underline{\mathsf{Proof.}} \to \mathsf{blackboard}$

 $\sim f$

Proof theorem 4.1 - unicity of projection

<u>Lemma 4.1:</u> (Parallelogram identity)

$$\frac{1}{2}(\|u+v\|^2+\|u-v\|^2)=\|u\|^2+\|v\|^2.$$

Démonstration du théorème 5.1 Montrons d'abord l'unicité. S'il existait deux éléments g_1 et g_2 réalisant la projection de f sur C, on aurait en considérant leur milieu $\frac{g_1+g_2}{2}$ et en appliquant l'identité du parallélogramme à $u = f - g_1$ et $v = f - g_2$,

$$\frac{1}{2}||2f - (g_1 + g_2)||^2 = ||f - g_1||^2 + ||f - g_2||^2 - \frac{1}{2}||g_1 - g_2||^2.$$

Donc $||f - \frac{g_1 + g_2}{2}||^2 < d(f, C)^2$. Mais comme $\frac{g_1 + g_2}{2}$ est dans C, c'est impossible.

Proof theorem 4.1 - existence of projection

On montre maintenant l'existence de la projection. Soit g_n une suite de C telle que $||f-g_n|| \rightarrow d(f, C)$. En utilisant de nouveau l'inégalité du parallélogramme,

$$\frac{1}{2}||g_n - g_m||^2 = ||f - g_n||^2 + ||f - g_m||^2 - 2||f - \frac{g_n + g_m}{2}||^2$$

Quand *n* et *m* tendent vers l'infini, le membre de droite tend vers 0. En effet, $||f - g_n|| \text{ et } ||f - g_m||$ tendent vers d(f, C) et on a $-2||f - \frac{g_m + g_n}{2}|| \le -2d(f, C)$, puisque $\frac{g_m + g_n}{2}$ appartient à *C*.

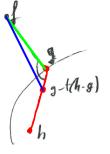
La suite $\underline{g_n}$ est donc de Cauchy et converge vers un élément g de C, car C est fermé. Donc $||f-g_n|| \to ||f-g||$ et donc ||f-g|| = d(f, C).

Proof theorem 4.1 - charact. inequality: $Re(f-g, h-g) \leq 0$

Pour tout $h \in C$, et $t \in [0, 1]$, les points g + t(h - g) du segment [g, h] appartiennent à \overline{C} . On a donc

$$\begin{aligned} \forall t \in [0,1], \ \underline{||f-g||^2} &\leq \underline{||f-g-t(h-g)||^2} \text{ ce qui est \'equivalent à } \\ \forall t \in [0,1], \ t^2 ||h-g||^2 - 2t \text{Re}(f-g,h-g) \geq 0. \end{aligned}$$
 (5.2)

On divise par t > 0 et on fait tendre t vers 0^+ pour obtenir (5.1). Réciproquement si (5.1) est vérifiée pour tout $h \in C$, (5.2) aussi et en faisant t = 1 on voit que ||f - g|| réalise la distance minimale de f à un point de C.



Proof theorem 4.1 - when C is closed subspace

If C is a **closed** subspace of H, then the projection of f is the **unique** point $g \in C$ such that (v, g - f) = 0 for all $v \in C$.

Considérons pour terminer le cas où C est un sous-espace vectoriel fermé de H. Soit g la projection de f. Pour tout v dans C, $g + e^{i\theta}v$ appartient à C. On a donc $\operatorname{Re}(e^{i\theta}(v, g - f)) \leq 0$ pour tout θ et donc (v, g - f) = 0. Réciproquement, si $g \in C$ vérifie (v, g - f) = 0 pour tout $v \in C$, on a (v - g, g - f) = 0 pour tout v dans C et par la deuxième partie du théorème 2.1, g est bien la projection de f sur C.

Orthogonal projections

Exercise 1

Show that the projection *P* over a closed convex set is a contraction, i.e. $||Pf_1 - Pf_2|| \le ||f_1 - f_2||$.

Hint: Use $Re(f_1 - Pf_1, h - Pf_1) \leq 0$ with $h = Pf_2$.

Orthogonal subspaces

<u>Def 4.1</u>: Let A be a subset of H, its **orthogonal** A^{\perp} is defined as $A^{\perp} = \{v : \forall f \in A, (v, f) = 0\}.$

 A^{\perp} is a **closed subspace** of *H*.

Corollary 4.1: If F is a closed subspace of a Hilbert space H, then all $f \in H$ can be decomposed uniquely as:

$$f = g + h$$
, $g \in F$, $h \in F^{\perp}$,

where g and h are respectively the orthogonal projections of f onto F and F^{\perp} . So we have :

1.
$$H = F + F^{\perp}$$
,
2. $(F^{\perp})^{\perp} = F$,
3. $H^{\perp} = \{0\}$, and
4. if $A \subset H$ then $(A^{\perp})^{\perp} = \overline{Vect(A)}$.
Proof. \rightarrow see notes

Representation theorem

Theorem 4.2: (Rietz)

Let *H* be a Hilbert space. For all $f \in H$, the application $H \to (\cdot, f)$ is a continuous linear operator over *H*.

Conversely, if \tilde{f} is a continuous linear operator over H, then there exists a unique element $f \in H$ such that $\tilde{f}(v) = (v, f)$. Proof. \rightarrow blackboard

Continuous linear operators.

A linear transformation L between two normed vector spaces X and Y is continuous if and only if there exists some M > 0 such that for all $v \in X$

 $\|L(v)\|_Y \leq M \|v\|_X$

Representation theorem

Démonstration La première assertion découle de l'inégalité de Cauchy-Schwarz. Montrons la réciproque. Soit \tilde{f} une forme linéaire continue et non nulle sur H et <u>L</u> son noyau, qui est un espace vectoriel fermé. Comme $\tilde{f} \neq 0$, <u>L</u> est un sous-espace propre de H (c'est-à-dire strictement inclus dans H). Comme <u>L</u> est fermé, par la relation (5.4) L^{\perp} n'est pas réduit à $\{0\}$. Soit $g \in L^{\perp}$, non nul. On a donc $\tilde{f}(g) \neq 0$ et on pose pour tout $v \in H$

$$v = \frac{\tilde{f}(v)}{\tilde{f}(g)}g + (v - \frac{\tilde{f}(v)}{\tilde{f}(g)}g) = v_1 + v_2.$$

Le second terme vérifie $\tilde{f}(v_2) = 0$ et appartient donc à L. Comme $g \in L^{\perp}$, on a donc

$$(v,g) = \frac{f(v)}{\tilde{f}(g)} ||g||^2.$$

Il en résulte que

$$\tilde{f}(v) = (v, \frac{\tilde{f}(g)}{||g||^2}g).$$

0

Orthonormal (Hilbert) bases

<u>Definition 4.2</u> We say that $A \subseteq H$ is **total** if Vect(A) (the vector space generated by A) is dense in H.

Corollary 4.2 *A* is **total** if and only if $A^{\perp} = \{0\}$

<u>Def.</u> A metric space is **separable** if it contains a set which is <u>countable</u> and <u>dense</u>.

<u>Def 4.3</u>: Let *H* be a <u>separable</u> Hilbert space. We call **Hilbert basis** of *H* an orthonormal system of vectors (finite or infinite) $(e_n)_{n \in \mathbb{N}}$ which is <u>total</u>.

So $(e_n)_n$ is a Hilbert base if $(e_n, e_m) = \delta_{m,n}$ and $\overline{Vect((e_n)_n)} = H$.

Orthonormal (Hilbert) bases

Theorem 4.3:

$\label{eq:separable} \begin{array}{l} \mbox{Every separable Hilbert space admits an orthonormal basis.} \\ \hline \mbox{Proof.} \rightarrow \mbox{blackboard} \end{array}$

Démonstration Soit $(f_n)_n$ une suite dense de H. On en extrait par récurrence sur nun <u>sous-système libre</u> (que nous appellerons encore par commodité (f_n)), c'est-à-dire tel qu'aucun vecteur de la suite n'est combinaison linéaire des autres. Le système obtenu n'est plus nécessairement dense, mais il reste total. On applique alors le procédé de Gram-Schmidt à la suite f_n . Celà veut dire qu'on pose par récurrence

$$g_1 = f_1, \ g_{n+1} = f_{n+1} - \sum_{k=1}^n (f_{n+1}, g_k) \frac{g_k}{||g_k||^2},$$

ce qui donne un système orthogonal et on pose finalement $e_n = \frac{g_n}{||g_n||}$, ce qui donne une suite e_n orthonormée. Le système est bien total, puisque les e_n engendrent les f_n .

Orthonormal (Hilbert) bases - Parseval

<u>Theorem 4.4</u>: Let *H* be a separable Hilbert space, and $(e_n)_{n \in \mathbb{N}}$ be an orthonormal base of *H*. Then:

1. All the elements $f \in H$ can be expressed as:

$$f=\sum_n (f,e_n)e_n=\sum_n c_n(f)e_n.$$

2. The coordinates c_n over the base verify the Parseval identity:

$$||f||^2 = \sum_n |c_n(f)|^2.$$

3. And reciprocally, if c_n is a sequence such that $\sum_n |c_n|^2 < \infty$ then the serie $\sum_n c_n e_n$ converge to an element $f \in H$ which verifies $c_n = (f, e_n)$.

<u>Proof.</u> \rightarrow blackboard

Orthonormal (Hilbert) bases - Parseval

Démonstration On pose $f_m = \sum_{1}^{m} c_n(f)e_n$. On vérifie que $(f - f_m, e_n) = 0$ pour $n \leq m$. Par le théorème 5.1 des projections, cela veut dire que f_m est la projection orthogonale de f sur le sous-espace vectoriel engendré par les e_n pour $0 \leq n \leq m$. Par la relation (5.3) et le théorème de Pythagore, on déduit que $||f_m||^2 \leq ||f||^2$. Toujours par le théorème de Pythagore, on a donc

$$||f_m||^2 = \sum_{1}^{n} |c_n(f)|^2 \le ||f||^2,$$
(5.7)

ce qui prouve que la série $\sum_{n} c_n(f)e_n$ est convergente dans H (proposition 5.2). Appelons g sa somme. Reste à montrer que f = g. Mais si $n \leq m$, on voit que $(f_m - g, e_n) = 0$ et en passant à la limite quand $m \to \infty$, on obtient $(f - g, e_n) = 0$. Donc f - g est orthogonal à un système total et est donc nul.

Separable Hilbert spaces and ℓ^2

<u>Corollary 4.3</u>: Every separable Hilbert space *H* is isomorphic and isometric to $\ell^2(\mathbb{N})$.

<u>Proof:</u> Associating the coordinates $(c_n(f))_{n \in \mathbb{N}}$ of a vector $f \in H$ to a sequence $c \in \ell^2(\mathbb{N})$. Because of Parseval identity, the two representations are isometric. Moreover, computing the the inner product reduces to:

$$(f,g) = \left(\sum_{n} c_{n}(f), \sum_{n} c_{n}(g)\right) = \sum_{m} \sum_{n} c_{m}(f) \overline{c_{n}(g)} \delta_{m=n} = \sum_{n} c_{n}(f) \overline{c_{n}(g)}.$$

Weak convergence

<u>Def 4.4</u>: A sequence u_n in a Hilbert space H is said to **converge** weakly to $u \in H$ if $(v, u_n) \rightarrow (v, u)$ for all v in H. We denote $u_n \rightharpoonup u$.

Proposition 4.3: If $u_n \in H$ is a bounded sequence $(||u_n|| \leq C)$ in a separable Hilbert space H, then there exists a **sub-sequence** $(u_{n_k})_k$ which **converges weakly**

$$\forall v \in H, (u_{n_k}, v) \rightarrow (u, v)$$

and

$$\|u\|\leq \liminf_n\|u_n\|.$$

 $\underline{\mathsf{Proof.}} \rightarrow \mathsf{blackboard}$

Weak convergence

Démonstration On utilise l'isomorphisme avec $l^2(\mathbb{N})$ muni de la base canonique $(e_k)_{k \in \mathbb{N}}$. Par commodité on notera encore u_n une sous-suite de u_n extraite par un procédé d'extraction diagonale de sorte que pour tout $k \in \mathbb{N}$ on ait $(u_n, e_k) \to x_k$. Ceci est possible car par le théorème de Cauchy-Schwartz, $|(u_n, e_k)| \leq ||u_n|| \leq C$ est borné. Pour plus de détails sur le procédé d'extraction diagonale, voir le théorème 1.6. En appliquant le lemme de Fatou à la suite de suites (u_n, e_k) , $n \in \mathbb{N}$, on obtient

$$\sum_{k} x_{k}^{2} \le \liminf_{n} \sum_{k} |(u_{n}, e_{k})|^{2} = \liminf_{n} ||u_{n}||^{2} \le C^{2}.$$

Posons $u = \sum_k x_k e_k$. Alors $u \in H$ et

$$||u||^2 = \sum_k |x_k|^2 \le \liminf_n ||u_n||^2.$$

Finalement montrons que $(u_n, v) \rightarrow (u, v)$ pour tout $v \in H$. C'est immédiat quand v est une combinaison linéaire finie des e_n et donc pour v dans un sousensemble dense D de H. Prenons maintenant v quelconque dans H. On fixe ε , puis $w \in D$ tel que $||v - w|| \leq \varepsilon$. On a $|(u_n - u, v)| \leq |(u_n - u, w)| + |(u_n - u, w - v)|$. Le premier terme est petit pour n grand. Par l'inégalité de Cauchy-Schwartz et l'inégalité triangulaire, le second est plus petit que $2C\varepsilon$.

22 / 28

Weak convergence

<u>Remark:</u> Weak convergence of orthonormal bases. Let e_n be a Hilbert base of H. Then $e_n \rightarrow 0$.

 $\forall x \in H$ we have by Parseval: $\sum_{n} |(e_n, x)|^2 = ||x||^2 < \infty$ then $|(e_n, x)|^2 \xrightarrow{n \to \infty} 0.$

Exercise 4 Let $H = L^2(0, 2\pi)$, and $u_n(x) := \sin(nx)$. Show that u_n weakly converges to 0 in H, but does not converge in norm $L^2([0, 2\pi])$ to 0.

Exercise 4 solution:

Converge in the L^2 **sense.** The best candidate for a limit is the null function because sin nx is oscillating, we'll see that this limit is not attained in the L^2 sense:

$$\|\sin nx\|^2 = \int_0^{2\pi} |\sin nx - 0|^2 dx = \frac{1}{n} \int_0^{n2\pi} |\sin y|^2 dy = \pi.$$

Weak convergence.

• If $f \in C^1(0, 2\pi)$, then there exists K such that $|f(x)| \leq K$ and $|f'(x)| \leq K$ in $[0, 2\pi]$ (due to the compact support) and then:

$$(f, \sin nx) = \int_0^{2\pi} f(x) \sin nx \, dx = \left(\frac{-f(x)\cos nx}{n}\Big|_0^{2\pi} + \frac{1}{n} \int_0^{2\pi} f'(x) \underbrace{\cos nx}_{\leq 1} \, dx \\ \leq \frac{1}{n} \underbrace{(-f(2\pi) + f(0))}_{\leq 2K} + \frac{1}{n} \underbrace{\|f'\|\|\cos nx\|}_{\leq 2\pi\sqrt{K}} = \frac{2}{n} (K + \pi\sqrt{K}) \stackrel{n \to \infty}{\longrightarrow} 0.$$

• Since C^1 is dense in $L^2(0, 2\pi)$ then for any $g \in L^2(0, 2\pi)$ there exists $f \in C^1(0, 2\pi)$ s.t. $||g - f|| \le \varepsilon$. Then we have the weak convergence of the sequence $u_n := \sin nx$:

$$|(g, u_n)| \leq |(g-f, u_n)| + |(f, u_n)| \leq \underbrace{\|g - f\|}_{\leq \varepsilon} \underbrace{\|u_n\|}_{\sqrt{\pi}} + \underbrace{|(f, u_n)|}_{\rightarrow 0} \rightarrow 0 \quad \forall g , \forall u_n.$$

28

Haar Wavelets

Décomposition d'images sur la base de Haar Nous nous plaçons dans $L^2(\mathbb{R}^2)$. Nous considérons tout d'abord la fonction de $L^2(\mathbb{R})$

$$H(x) = \begin{cases} 1 & \text{si } 0 \le x < \frac{1}{2} \\ -1 & \text{si } \frac{1}{2} \le x < 1 \\ 0 & \text{sinon.} \end{cases}$$
(5.8)

Nous définissons ensuite $I(x) = \mathbb{1}_{[0,1)}$, puis les trois fonctions de $L^2(\mathbb{R}^2)$

$$H_1(x,y) = H(x)I(y)$$
, $H_2(x,y) = I(x)H(y)$ et $H_3(x,y) = H(x)H(y)$.

Enfin nous définissons

$$H_{i,j_1,j_2}^k(x,y) = 2^k H_i(2^k x - j_1, 2^k y - j_2), \quad k, j_1, j_2 \in \mathbb{Z}, i = 1, 2, 3.$$

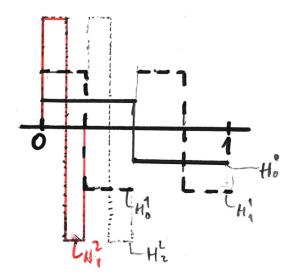
On peut montrer (voir l'exercice 7) que ces fonctions forment une base hilbertienne de $L^2(\mathbb{R}^2)$. Donc si pour une fonction $f \in L^2(\mathbb{R}^2)$ nous définissons les coefficients

$$c_{i,j_1,j_2}^k(f) = \langle f, H_{i,j_1,j_2}^k \rangle,$$

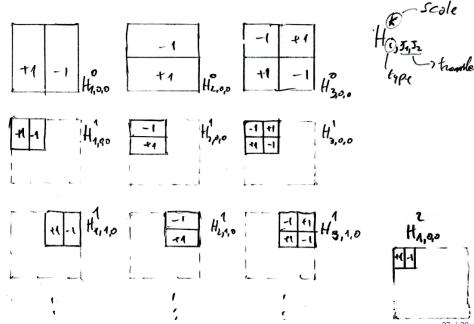
alors

$$f = \sum_{i=1}^{3} \sum_{k,j_1,j_2 \in \mathbb{Z}} c_{i,j_1,j_2}^k(f) H_{i,j_1,j_2}^k$$

Haar Base - 1D



Haar Base - 2D



27 / 28

Haar Wavelets - Application to image compression

k=8

Haar Wavelets - Application to image compression

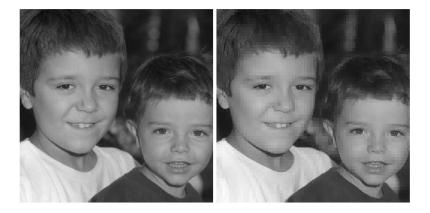


Figure 5.2: Exemple de compression d'images dans une base hilbertienne. A gauche, l'image originale (même image que figure 5.1), à droite l'image obtenue en ne gardant que 10% des coefficients dans la base de Haar (voir la formule (5.10)).

Haar Wavelets - Application to image compression

