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Today’s topics

I Hilbert Spaces
I Orthogonal projections and subspaces
I Riesz Theorem

I Orthonormal bases (Bases Hilbertiennes).
I Separable Hilbert spaces
I Parseval identity
I Weak convergence

2 / 28



Hilbert spaces

Def 4.1:
• Real Hilbert space is a vector space over R, equipped with an
inner product (u, v), and that is also complete with respect to the
norm induced by the product :

‖u‖ :=
√

(u, u).

• Complex (Hermitian) Hilbert space is a vector space over C,
equipped with an Hermitian inner product, and that is also
complete with respect to the norm induced by the product.

An Hermitian product verifies:

I (u, v) = (v , u)

I (λu, v) = λ(u, v) , (u, λv) = λ̄(u, v)

I (u, v + w) = (u, v) + (u,w)
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Examples of Hilbert spaces

I Finite dimensional Euclidean space CN ={(a1, ..., aN) :ak ∈C},
equipped with the product: (a, b) =

∑N
k=1 akbk .

I L2(E ) equipped with the product :(f , g) =
∫
E f (x) g(x)dx .

I `2(N) the space of sequences u = (u1, u2, ...un) in C s.t.∑
|un|2 <∞, equipped with the product: (u, v) =

∑
unvn.

Or we can associate `2(N) to piecewise constant functions in L2(R).

`2 is a closed subspace of a complete space L2(R), so it is also

complete.
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Hilbert spaces

Proposition 4.1: (Cauchy-Schwarz inequality)

|(f , g)| ≤ ‖f ‖‖g‖
Proof. → blackboard
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Orthogonality

Def: We say that u, v ∈ H are orthogonal if (u, v) = 0 .

For a couple of orthogonal vectors f and g ∈ H we have the
Pythagoras theorem: ‖f + g‖2 = ‖f ‖2 + ‖g‖2.

Which extends to sequences of orthogonal vectors uk ∈ H

‖
∑
k

uk‖2 =
∑
k

‖uk‖2.

For infinite sequences the completeness of H implies that
(
∑

k uk) ∈ H , but for that
∑

k ‖uk‖2 must be convergent.
The following proposition shows that.

Proposition 4.2: Let un be a sequence of orthogonal vectors in H.

If
∑

n ‖un‖2 <∞ then
∑

n un converge in H, and
If
∑

n ‖un‖ <∞ then
∑

n un converge in H.
Proof. → see notes
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Orthogonal projections

Theorem 4.1:
Let H be a Hilbert space, and C be a non-empty, closed and
convex subset of H. Then for all f ∈ H,

I there exist a unique point of C , which we call projection of
f , such that its distance to f is minimum.

I The projection point is characterized as the unique point
g ∈ C such that:

∀h ∈ C ,Re(f − g , h − g) ≤ 0 .

If C is a closed subspace of H, then the projection of f is the
unique point g ∈ C such that f − g is orthogonal to all the
elements of C .

Proof. → blackboard

7 / 28



Proof theorem 4.1 - unicity of projection
Lemma 4.1: (Parallelogram identity)

1

2
(‖u + v‖2 + ‖u − v‖2) = ‖u‖2 + ‖v‖2.
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Proof theorem 4.1 - existence of projection
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Proof theorem 4.1 - charact. inequality: Re(f−g , h−g)≤0
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Proof theorem 4.1 - when C is closed subspace

If C is a closed subspace of H, then the projection of f is the unique
point g ∈ C such that (v , g − f ) = 0 for all v ∈ C .
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Orthogonal projections

Exercise 1
Show that the projection P over a closed convex set is a
contraction, i.e. ‖Pf1 − Pf2‖ ≤ ‖f1 − f2‖.

Hint: Use Re(f1 − Pf1, h − Pf1) ≤ 0 with h = Pf2 .
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Orthogonal subspaces

Def 4.1: Let A be a subset of H , its orthogonal A⊥ is defined as

A⊥ = {v : ∀f ∈ A, (v , f ) = 0}.

A⊥ is a closed subspace of H.

Corollary 4.1: If F is a closed subspace of a Hilbert space H,
then all f ∈ H can be decomposed uniquely as:

f = g + h , g ∈ F , h ∈ F⊥,

where g and h are respectively the orthogonal projections of f onto
F and F⊥. So we have :

1. H = F + F⊥,

2. (F⊥)⊥ = F ,

3. H⊥ = {0}, and

4. if A ⊂ H then (A⊥)⊥ = Vect(A). Proof. → see notes
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Representation theorem

Theorem 4.2: (Rietz)
Let H be a Hilbert space. For all f ∈ H, the application H → (·, f )
is a continuous linear operator over H.

Conversely, if f̃ is a continuous linear operator over H, then there
exists a unique element f ∈ H such that f̃ (v) = (v , f ).

Proof. → blackboard

Continuous linear operators.
A linear transformation L between two normed vector spaces X and Y is
continuous if and only if there exists some M > 0 such that for all v ∈ X

‖L(v)‖Y ≤ M‖v‖X
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Representation theorem
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Orthonormal (Hilbert) bases

Definition 4.2 We say that A ⊆ H is total if Vect(A) (the vector
space generated by A) is dense in H.

Corollary 4.2 A is total if and only if A⊥ = {0}

Def. A metric space is separable if it contains a set which is
countable and dense.

Def 4.3: Let H be a separable Hilbert space.
We call Hilbert basis of H an orthonormal system of vectors (finite
or infinite) (en)n∈N which is total.

So (en)n is a Hilbert base if (en, em) = δm,n and Vect ((en)n) = H.
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Orthonormal (Hilbert) bases

Theorem 4.3:
Every separable Hilbert space admits an orthonormal basis.

Proof. → blackboard
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Orthonormal (Hilbert) bases - Parseval

Theorem 4.4: Let H be a separable Hilbert space,
and (en)n∈N be an orthonormal base of H. Then:

1. All the elements f ∈ H can be expressed as:

f =
∑
n

(f , en)en =
∑
n

cn(f )en.

2. The coordinates cn over the base verify the Parseval identity:

‖f ‖2 =
∑
n

|cn(f )|2.

3. And reciprocally, if cn is a sequence such that
∑

n |cn|2 <∞
then the serie

∑
n cnen converge to an element f ∈ H which

verifies cn = (f , en).

Proof. → blackboard
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Orthonormal (Hilbert) bases - Parseval
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Separable Hilbert spaces and `2

Corollary 4.3: Every separable Hilbert space H is isomorphic

and isometric to `2(N).

Proof: Associating the coordinates (cn(f ))n∈N of a vector f ∈ H to a
sequence c ∈ `2(N). Because of Parseval identity, the two representations
are isometric. Moreover, computing the the inner product reduces to:

(f , g) = (
∑
n

cn(f ),
∑
n

cn(g)) =
∑
m

∑
n

cm(f )cn(g)δm=n =
∑
n

cn(f )cn(g).
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Weak convergence

Def 4.4: A sequence un in a Hilbert space H is said to converge
weakly to u ∈ H if (v , un)→ (v , u) for all v in H.
We denote un ⇀ u.

Proposition 4.3: If un ∈ H is a bounded sequence (‖un‖ ≤ C ) in
a separable Hilbert space H, then there exists a sub-sequence
(unk )k which converges weakly

∀v ∈ H, (unk , v)→ (u, v)

and
‖u‖ ≤ lim inf

n
‖un‖.

Proof. → blackboard
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Weak convergence
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Weak convergence

Remark: Weak convergence of orthonormal bases.
Let en be a Hilbert base of H. Then en ⇀ 0.

∀x ∈ H we have by Parseval:
∑

n |(en, x)|2 = ‖x‖2 <∞ then

|(en, x)|2 n→∞−→ 0.

Exercise 4 Let H = L2(0, 2π), and un(x) := sin(nx).
Show that un weakly converges to 0 in H,
but does not converge in norm L2([0, 2π]) to 0.
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Exercise 4 solution:
Converge in the L2 sense. The best candidate for a limit is the null
function because sin nx is oscillating, we’ll see that this limit is not
attained in the L2 sense:

‖ sin nx‖2 =

∫ 2π

0

| sin nx − 0|2dx =
1

n

∫ n2π

0

| sin y |2dy = π.

Weak convergence.
• If f ∈ C 1(0, 2π), then there exists K such that |f (x)| ≤ K and
|f ′(x)| ≤ K in [0, 2π] (due to the compact support) and then:

(f , sin nx) =

∫ 2π

0

f (x) sin nx dx =

(
−f (x) cos nx

n

∣∣∣∣2π
0

+
1

n

∫ 2π

0

f ′(x) cos nx︸ ︷︷ ︸
≤1

dx

≤ 1

n
(−f (2π) + f (0))︸ ︷︷ ︸

≤2K

+
1

n
‖f ′‖‖ cos nx‖︸ ︷︷ ︸

≤2π
√
K

=
2

n
(K + π

√
K )

n→∞−→ 0.

• Since C 1 is dense in L2(0, 2π) then for any g ∈ L2(0, 2π) there exists
f ∈ C 1(0, 2π) s.t. ‖g − f ‖ ≤ ε . Then we have the weak convergence of
the sequence un := sin nx :

|(g , un)| ≤ |(g−f , un)|+|(f , un)| ≤ ‖g − f ‖︸ ︷︷ ︸
≤ε

‖un‖︸︷︷︸
√
π

+ |(f , un)|︸ ︷︷ ︸
→0

→ 0 ∀g ,∀un.
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Haar Wavelets
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Haar Base - 1D
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Haar Base - 2D
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Haar Wavelets - Application to image compression

k = 7 and k = 8
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