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I We’ve seen that the hermitian Hilbert space L2(−π, π)
admits a base of sinusoids

1√
2π

(
e inx
)
n∈Z

that we call Fourier base.

I Then, for any f ∈ L2(−π, π) we can write its Fourier series

f (x) =
∑
n∈Z

cn(f )e inx (in the sense of the L2 norm)

where

cn(f ) =
1

2π

∫ π

−π
f (x)e−inxdx

are the Fourier coefficients.
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Today’s topics

I Fourier Series

I 2D Fourier bases
I Decreasing of Fourier coefficients and application to JPEG

compression
I Gibbs Phenomenon
I Summary
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2D Fourier base

Now, we describe the 2D Fourier bases.

Notation: Let’s write the vector components as x = (x1, x2) ∈ R2,
k = (k1, k2) ∈ R2 and denote its product: x k = x1k1 + x2k2.

Definition: Separable functions. A function of 2 independent
variables is said to be separable if it can be expressed as a product
of 2 functions, each of them depending on only one variable.

w(x1, x2) = u(x1)v(x2)
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2D Fourier base

Lemma 5.2:
The separable functions of the form w(x) = u(x1)v(x2) with
u, v ∈ L2(0, 2π) form a system which is total for L2([0, 2π]2).

Proof → blackboard
Proof:
The characteristic functions of rectangles are separable,
and they form a total system of L2([0, 2π]2) because by Property
2.4 they are dense in L1([0, 2π]2) .

5 / 26



2D Fourier base
Lemma 5.3:
If uk(x)→ u(x) and vl(x)→ v(x) in L2(0, 2π), then
uk(x1)vl(x2)→ u(x1)v(x2) in L2([0, 2π]2) with l, k →∞.

Proof → blackboard
Proof:

I Observe that the product of u, v ∈ L(0, 2π) is in L2([0, 2π]2)
since, by applying Fubini’s theorem we can derive:

‖u(x1)v(x2)‖L2([0, 2π]2) = ‖u(x1)‖L(0, 2π)‖v(x2)‖L(0, 2π)
I The L2-norm of the difference

‖

±u(x1)vl (x2)︸ ︷︷ ︸
uk(x1)vl(x2)− u(x1)v(x2)‖L2([0, 2π]2) ≤

(triangle inequality) ≤ ‖(uk−u)vl‖L2([0, 2π]2)+‖u(vl−v)‖L2([0, 2π]2) =

= ‖uk − u‖L2(0,2π)︸ ︷︷ ︸
→0

‖vl‖L2(0,2π) + ‖u‖L2(0,2π) ‖vl − v‖L2(0,2π)︸ ︷︷ ︸
→0

→ 0

goes to 0 when k , l → +∞.
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Theorem 5.3:
The functions ek(x) = 1

2π e
ikx , k ∈ Z2 form a Hilbert base of

L2([0, 2π]2), then for any function u ∈ L2([0, 2π]2) we have:

u(x) =
∑
k∈Z2

ck(u)e ikx with ck(u) =
1

(2π)2

∫
[0,2π]2

u(x)e−ikxdx , (5.2)

and the series converge in in the sense of the L2-norm.
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Decreasing of Fourier coefficients and compression
• The Fourier coefficients of a 2π-periodic function f ∈ C p are:

cn(f ) =
1

2π

∫ 2π

0

e−inx f (x)dx =
1

2π

1

(in)p

∫ 2π

0

e−inx f (p)(x)dx ,

they decrease faster for higher p, that is for more regular functions.

• If f is C 1 over [0, 2π] but not 2π-periodic (so that it presents a
discontinuity at 0) then after integrating by parts the coefficients become:

cn(f ) =
1

2π

1

in

∫ 2π

0

e−inx f ′(x)dx︸ ︷︷ ︸
(R.L.)

n→∞−→ 0

+
f (0+)− f (2π−)

2π(in)︸ ︷︷ ︸
O( 1

n )

.

The first term is o( 1
n ), but cn(f ) is still O( 1

n ) because of the jump at 0.
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Decreasing of Fourier coefficients and compression

A decay of the Fourier coefficients of O( 1n ) implies that 1000 terms
of the sum are needed to attain an approximation error of 10−3:

|SN f (x)− f (x)|2 =
∑
n≥N
|cn(f )|2 ≤

∑
n≥N

(
1

n

)2

= O

(
1

n

)
.

The same happens in 2D.

A slow decay of the coefficients impacts in the compression rates
of the signal. An alternative to handle the discontinuities due to
the periodization, is to use the cosine transform.

cn(f ) =
1

π

∫ 2π

0
cos(nx)f (x)dx

As we’ve seen the cosine transform amounts to symmetrize the
signal, avoiding the jumps at the boundaries due to the
periodization.
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Decreasing of Fourier coefficients
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Application: JPEG (monochromatic)

Basic JPEG

1. Convert color image to luminance (Y)

2. Split the image in blocks of size 8x8

3. For each block:
I compute its 2D-DCT transform
I quantize the 2D-DCT coefficients

4. Differential coding of DC coefficients

5. Zigzag scan, run-length and Huffman coding of AC
coefficients

Discrete Cosine Transform (DCT)
The DCT takes a vector x ∈ RN and returns X ∈ RN as given by:

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n +

1

2

)
k

]
k = 0, . . . ,N − 1
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2D-DCT base vectors (8× 8)
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JPEG - quantization
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JPEG - coding of DC coefficients
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JPEG - coding of AC coefficients

15 / 26



JPEG - example
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JPEG - example
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JPEG - example
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JPEG - example (higher contrast)

19 / 26



Gibbs phenomenon
The Gibbs phenomenon is the result of the approximation of
a signal by its partial sums.

If the function f presents a discontinuity, then its partial
representation will present oscillations and overshoots by the jump:

I the amplitude of the overshoots does not depend on the
number of coefficients in the partial sum,

I and as we increase the number of terms in the sum the
frequency of the oscillations increases.
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Gibbs phenomenon

A periodic function with a jump f can be decomposed as the sum
f = f̃ + s where f̃ is continuous and s is a jump function.
By the localization principle, the Fourier series of the continuous
part f̃ converges everywhere. And the Gibbs phenomenon will
affect only the jump function s.

Therefore, to characterize the Gibbs phenomenon it suffices to
study one jump function. We’re going to study the 2π-periodic
sawtooth function.
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Gibbs phenomenon
Proposition 5.2: (Gibbs phenomenon)

Consider the partial sums of the 2π-periodic function s(x) = π−x
2

sn(x) :=
n∑

k=1

sin(kx)

k
,

then
∀ε > 0 lim

n→∞
sup

x∈(0,ε]
sn(x) = (1 + c)s(0+),

lim
n→∞

inf
x∈[−ε,0)

sn(x) = (1 + c ′)s(0−).
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Gibbs phenomenon
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Gibbs phenomenon in images
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Gibbs phenomenon in images
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Summary

I L1, Lp, L∞ spaces and norms
I Completeness (Banach) and density results

I Hilbert spaces
I Orthogonality and projections
I Riesz theorem for linear maps

I Hilbert bases
I Parseval’s identity : f ∈ H then ‖f ‖2 =

∑
n |cn(f )|2

I Haar base
I Fourier base of L2(−π, π): 1√

2π

(
e inx
)
n∈Z

I Weak convergence: un ⇀ u if ∀v ∈ H, (v , un)→ (v , u)

I Fourier series
I L2 convergence of partial sums

I Convolution and Fourier
I Fundamental theorem of signal processing: all translation

invariant linear operators are convolutions
I Convolution theorem: cn(f ∗ g) = cn(f )cn(g)
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