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Today’s topics

I Discrete Fourier Transform
I Forward and inverse dft

I Aliasing and subsampling

I Image Manipulation through DFT
I Fourier image representation

I Zoom by zero-padding

I Image Traslation, Rotation
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Let u be a periodic, continuous signal with period a for which we
know N (odd) samples uniformly distributed:

u

(
ka

N

)
:= uk , k = 0, . . . ,N − 1

Suppose we look for a trigonometric polynomial

P(x) =

n= N
2
−1∑

n=− N
2

ũne
2πinx

a

that interpolates the samples uk , that is:

P

(
ka

N

)
= uk k = 0, . . . ,N − 1

How do we find this polynomial?
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Auxiliary Properties of ωN

Let us call ωN = e
2πi
N , Nth-rooth of unity : ωN

N = 1.

(a)
∑N−1

k=0 ω
k
N = 0

(b)
∑N−1

k=0 ω
kl
N = 0 for l 6= 0 module N

(c)
∑k0+N−1

k=k0
ωkl
N = 0 for l 6= 0 module N.

Excercise: prove it.
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Discrete Fourier Transform DFT

Let us call ωN = e
2πi
N , Nth-rooth of unity : ωN

N = 1.

Def 1: The Discrete Fourier Transform dft of uk is defined as
the sequence

ũn =
1

N

N−1∑
k=0

ukω
−k·n
N for n = −N

2
, . . . ,

N

2
− 1

and the Inverse Discrete Fourier Transform idft as

uk =

N
2
−1∑

n=−N
2

ũnω
n·k
N for k = 0, . . . ,N − 1.
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Proposition 1: The Discrete Fourier Transform of uk , namely ũn
are the unique coefficients such that the trigonometric polynomial

P(x) =

n=N
2
−1∑

n=−N
2

ũne
2πinx

a

satisfies

P

(
ka

N

)
= uk for k = 0, . . . ,N − 1

In other words the dft composed with the idft gives the Identity:

uk
dft−→ ũn

idft−→ uk
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Proof.
For k = 0, . . . ,N − 1,

P

(
ka

N

)
=

N
2 −1∑

n=− N
2

ũne
2πinka
Na =

N
2 −1∑

n=− N
2

ũnω
nk
N

=

N
2 −1∑

n=− N
2

(
1

N

N−1∑
l=0

ulω
−ln
N

)
ωnk
N

=
1

N

N−1∑
l=0

ul

N
2 −1∑

n=− N
2

ω−lnN ωnk
N

=
1

N

N−1∑
l=0

Nδ(k − l)ul = uk

Where δ is defined over Z, and takes value 1 in 0 and 0 otherwise.

The unicity comes from the fact that every surjective linear application in
CN to itself is also injective.
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Corollary 1: If u is a trigonometric polynomial

u(x) =

n=N
2
−1∑

n=−N
2

ũne
2πinx

a

then ũn can be calculated from the dft of the samples of u.

In this particular case the dft of uk are the Fourier coefficients of
u: ũn = cn(u).

In other words after sampling a function u, the dft computes the
Fourier coefficients of u from the samples uk as long as u is a
trigonometric polynomial of degree ≤ N

2 .
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Proposition 2: Let u be a continuous a-periodic function. Then
the coefficients ũn approximate the Fourier coefficients cn(u) by
the trapezoid method, for n = −N

2 , . . . ,
N
2 − 1.

Remember that if u ∈ L2(0, a), the coefficients from the Fourier
series of u are defined for n ∈ Z , by

cn(u) =
1

a

∫ a

0
u(x)e−

2iπnx
a

ũn =
1

N

N−1∑
k=0

ukω
−nk
N

Proof.
Excercise (approximate integral by trapezoids + u is
a-periodic)
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Proposition 3: If the samples uk are real then:

I ũ0 and ũ−N
2

are real

I ũk = ũ−k for k = 1, . . . , N2 − 1.

Proof.
By definition

ũn =
1

N

N−1∑
k=0

ukω
−nk
N

We have ũ0 = 1
N

∑
k uk and ũ− N

2
= 1

N

∑
k(−1)kuk which are both real.

Moreover,

ũ−n =
1

N

N−1∑
k=0

ukω
kn
N =

1

N

N−1∑
k=0

ukω
−nk
N =

1

N

N−1∑
k=0

ukω
−nk
N = ũn
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Proposition 4: If u is a real trigonometric polynomial with

frequencies between: −N
2 , . . . ,

N
2 − 1 the coefficient ũ−N

2
is zero.

Proof.

P(x) = ũ0 +

N
2 −1∑
n=1

(
ũne

2inπx
a + ũ−ne

− 2inπx
a

)
+ ũ− N

2
e−

2iNπx
a

where every term is real with the exception of the last one, so we
necessary have ũ− N

2
= 0.
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Audio signal: ”ah” vowel
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The Two-Dimensional dft

Consider a ∈ R and u continuous function u : R2 → R such that
u(x + a, y + a) = u(x , y). We choose N ∈ N (odd) and we define

uk,l = u

(
ka

N
,
la

N

)
.

The 2D dft of uk,l is defined as the sequence of coefficients, for
m, n ∈ {−N

2 , . . . ,
N
2 − 1},

ũm,n =
1

N2

N−1∑
k=0

N−1∑
l=0

uk,lω
−mk
N ω−nlN .
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Proposition 1:
The Discrete Fourier Transform of uk,l , namely ũm,n are the unique
coefficients such that the trigonometric polynomial

P(x , y) =

m,n=N
2
−1∑

n=−N
2

ũm,ne
2πimx

a e
2πiny

a

satisfies

P

(
ka

N
,
la

N

)
= uk,l for k , l = 0, . . . ,N − 1.

In other words:

I the 2D dft composed with the 2D idft gives the Identity.
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Aliasing: repliement de spectre ou aliasage

Aliasing from Wikipedia

“In signal processing and related disciplines, aliasing refers to an
effect that causes different signals to become indistinguishable (or
aliases of one another) when sampled. It also refers to the
distortion or artifact that results when the signal reconstructed
from samples is different from the original continuous signal.”
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Aliasing Theorem

Theorem 1: Let u ∈ L2(0, a) such that
∑

n∈Z |cn(u)| <∞. Then
the dft of the N samples (uk) is the N-periodization of the
Fourier coefficients of u,

ũn =
+∞∑

q=−∞
cn+qN(u), for n = −N

2
, . . . ,

N

2
− 1.
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Proof.
Since u(x) =

∑
m∈Z cm(u)e

2πixm
a we have

u

(
ka

N

)
=
∑
m∈Z

cm(u)e
2πim
a

ka
N =

∑
m∈Z

cm(u)ωmk
N , for k = 0, . . . ,N − 1

Every m ∈ Z can be written as m = qN + n with −N
2
≤ n ≤ N

2
− 1. Hence for

k = 0, . . . ,N − 1,

u

(
ka

N

)
=

+∞∑
q=−∞

N
2
−1∑

n=− N
2

cn+qN(u)ω
k(n+qN)
N =

+∞∑
q=−∞

N
2
−1∑

n=− N
2

cn+qN(u)ωkn
N ωNq

N︸︷︷︸
=1

=

N
2
−1∑

n=− N
2

(
+∞∑

q=−∞

cn+qN(u)

)
ωkn
N

But from the inverse dft formula, u
(
ka
N

)
=
∑ N

2
−1

n=− N
2

ũnω
nk
N since both

equations define the dft we have the desired result

ũn =
+∞∑

q=−∞

cn+qN(u), for n = −N

2
, . . . ,

N

2
− 1.
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Aliasing Theorem : analogous result in 2D

Theorem 2: Let u ∈ L2([0, a]2) such that
∑

n,m∈Z |cn,m(u)| <∞.
Then the dft of the N samples (uk,l) is the (N,N)-periodization
of the Fourier coefficients of u,

ũm,n =
+∞∑

p,q=−∞
cm+pN,n+qN(u), for m, n = −N

2
, . . . ,

N

2
− 1.

19 / 44



Aliasing

The term aliasing comes from the presence of parasite coefficients

cm+pN,n+qN(u) for (p, q) 6= (0, 0)

when computing the frequency coefficient ũm,n.

ũm,n = cm,n(u) +
∑

p,q 6=(0,0)

cm+pN,n+qN(u)

︸ ︷︷ ︸
alias

for m, n = −N
2 , . . . ,

N
2 − 1,

To think: When does aliasing occur?
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Subsampling

Given a sampled signal we subsample it a factor p.

Def 2: Let (uk), k = 0, . . . ,N − 1 and p ∈ N dividing N. We
define the subsampling operator of order p as follows:

Sp : RN → RN/p

(uk)k=0,...,N−1 −→ (vk) = (ukp)k=0,...,N/p−1

The signal (vk) is called a subsampling of order p.
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Subsampling
A typical case p = 2. N is even and N/2 is even.

Corollary 2: Let (vk) = S2 ((uk)). Then (ṽn), the dft of (vk) can be

written, for n = −N
4 , . . . ,

N
4 − 1,

ṽn = ũn + ũn− N
2︸ ︷︷ ︸

=0 if n<0

+ ũn+ N
2︸ ︷︷ ︸

=0 if n≥0

.

Proof.
Let P(x) be the unique trigonometric polynomial with N coefficients that
interpolates (uk)k=0,...,N−1. Since P is a trigonometric polynomial with
N coefficients,

ũn = cn(P) for n = −N

2
, . . . ,

N

2
− 1

Then apply Theorem 1 to P(x). The dft of the N
2 samples (vk) satisfies

ṽn =
+∞∑

q=−∞
cn+q N

2
=

{
cn(P) + cn+ N

2
(P) if n < 0,

cn(P) + cn− N
2

(P) if n ≥ 0.
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Subsampling - Aliasing: 2D

Corollary 3: Let (vk,l) = S2 ((uk,l)) a subsampled digital image by
a factor of 2. Then (ṽm,n), the dft of (vk,l) can be written, for
m, n = −N

4 , . . . ,
N
4 − 1 as

ṽm,n =
∑

(ε1,ε2)∈{0,1,−1}

ũm+ε1
N
2
,n+ε2

N
2
.

What does the previous Corollary say?
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Aliasing: Toy Example 2× subsampling
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Aliasing: Toy Example 2× subsampling
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Aliasing: Toy Example 2× subsampling
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Aliasing: Toy Example 2× subsampling
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Aliasing: Barbara 2× subsampling
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Aliasing: Barbara 2× subsampling
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Aliasing: Barbara 2× subsampling
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Aliasing: Barbara 2× subsampling
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Lowpass filter before: Barbara 2× subsampling
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Lowpass filter before: Barbara 2× subsampling
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Lowpass filter before: Barbara 2× subsampling
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Lowpass filter before: Barbara 2× subsampling
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Fast Fourier Transform

How many operations do we need to compute the dft of a
sequence of size N?

ũn =
N−1∑
k=0

ukω
−nk
N

N2 operations. (one addition + one multiplication = one
operation).

However, the Fast Fourier Transform fft can do it in :

≈ N logN operations

TD Excercise!
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Image Representation from dft

Let (ũm,n)m,n=−N
2
,...,N

2
−1 be a set of Fourier coefficients.

We’d like to represent an image that has this Fourier coefficients.
For that, we fix the image domain, e.g. [0, a]2 and we set

P(x , y) =

N
2
−1∑

m,n=−N
2

ũm,ne
2πimx

a e
2πiny

a .

This image is a-periodic and its samples are

uk,l = u

(
ka

N
,
la

N

)
=

N
2
−1∑

m,n=−N
2

ũm,nω
mk
N ωnl

N

Also the dft of (uk,l) are the coefficients (ũm,n).
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Traslation by dft

Recall that if we know the Fourier coefficients of a signal ũn we
can compute the associated trigonometric polynomial

P(x) =

N
2
−1∑

n=−N
2

ũne
2πinx

a

then

ταP(x) = P(x − α) =

N
2
−1∑

n=−N
2

ũne
2πinx

a e−
2πinα

a

The dft of P(x − α), ṽn, is calculated from the dft of P(x) ,ũn,
by:

ṽn = ũne
− 2πinα

a
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Rotation by dft
Method Yarovslasky: three pass

To calculate a rotation of angle θ of image u(i , j), we have to compute
u(R−θ(i , j)),

R−θ :=

(
cos θ sin θ
− sin θ cos θ

)
(

cos θ sin θ
− sin θ cos θ

)
=

(
1 tan θ

2
0 1

)
︸ ︷︷ ︸

:=T (θ)

(
1 0

− sin θ 1

)
︸ ︷︷ ︸

:=S(θ)

(
1 tan θ

2
0 1

)

R−θ := TθSθTθ

Notice that Tθ (Sθ) is a line by line translation (column by column):

(Tθu)(i , j) = u

(
i + j tan

θ

2
, j

)
I By doing 1D translations we can do an image rotation: three-pass

algorithm.

I We can use the dft for the 1D translations: tp sessions!
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Rotation by dft
Method Yarovslasky: three pass
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click

Bilinear

click

Three-pass
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bilinearROT.mpg
Media File (video/mpeg)


fourierROT_mask.mpg
Media File (video/mpeg)



Zoom by dft
“Zero-padding interpolation” (prolongement par des zéros)

Let (uk) be a digital sequence of size N and suppose we want to
interpolate it a factor of 2 (generate a sequence of size 2N).

We define (vk)k=0,...2N−1 the signal whose dft ṽn is:

ṽn = ũn if − N

2
≤ n ≤ N

2
− 1

= 0 if n ∈ [−N,−N

2
− 1] ∪ [

N

2
,N − 1]

Then (vk) verifies: v2k = uk for k = 0, . . . ,N − 1.

v2k =
N−1∑
n=−N

ṽnω
2nk
2N =

N
2 −1∑

n=− N
2

ũnω
nk
N = uk
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Zoom by dft

left: dft zero-padding - right: nearest-neigbhour interpolation
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We haven’t paid any attention to the phase information of the dft.

We will discuss it on the TP1.

A

mod(dft(A)) and phase(dft(B))

B

mod(dft(B)) and phase(dft(A))
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