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Today’s topics

I Distributions Theory

I Motivation

I Definition, Convergence

I Examples

I Why are they called Generalized Functions?

I Derivative, differentiation formula

I Fourier Series, Poisson Formula
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Motivation...
Assume we are given a function u ∈ C k(R) and ϕ ∈ C∞c an auxiliary
function that we will call “test function”. Let u(k) be the kth-derivative

of u, then from the integration by parts∫
u(k)(x)ϕ(x) dx = (−1)k

∫
u(x)ϕ(x)(k) dx

There are no boundary terms, since every “test function” ϕ has compact
support in R.

Now, If u /∈ C k but u ∈ L1
loc(R) the right side still makes sense.

How can we use this to generalize the derivative for u ∈ L1
loc(R)?

We can define u(k) by means of the application to every test function

lu(k) : ϕ −→ (−1)k
∫

u(x)ϕ(x)(k) dx

lu(k) is not a function but is a linear form (we will call them generalized
functions or distributions).

We can define something by the application to a set of test functions!
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Laurent Schwartz

En 1944, il a, une nuit, une illumination : depuis longtemps les
mathématiciens cherchaient à légitimer les calculs faits par les physiciens
comme Dirac ou Heaviside, et qui utilisent des fonctions très étranges,
par exemple une fonction valant 0 partout, sauf en un point où elle
vaut plus l’infini, et d’intégrale 1. Cette nuit-là, Schwartz invente une
notion de fonction généralisée, les distributions. Il développera ensuite
pendant 4 ans cette théorie, qui est à la fois simple, élégante, et très puis-
sante: les distributions ont joué un rôle crucial dans le développement des
équations aux dérivées partielles, mais furent aussi employées en analyse
de Fourier ou en théorie du potentiel. C’est aussi une des rares théories
mathématiques du XXème siècle qui puisse être enseignée à l’université
à des niveaux raisonnables. Pour cette théorie, Schwartz recevra en 1950
la prestigieuse médaille Fields (il est alors le premier Français à recevoir
cette récompense). D’ailleurs, Schwartz aura beaucoup de difficultés
pour se rendre aux Etats-Unis pour recevoir cette médaille en raison de
son passé trotskiste.

Laurent Schwartz (5 mars 1915 à Paris - 4 juillet 2002)
Théorie des Distributions (1950)
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Def 1: We call distribution on Ω (open set in Rn) to every linear form u
over C∞c (Ω) satisfying the following continuous property: for every
compact set K ⊂ Ω there exists an integer p = p(K ) and a constant
C = C (K ) such that for every function ϕ ∈ C∞c (Ω) with support included
in K , we have

| < u, ϕ > | ≤ C sup
|i|≤p,x∈K

|∂ iϕ(x)|.

I We call D(Ω) := C∞c (Ω) (test functions)

I We will refer to the vectorial space of Distributions as D′(Ω) the
dual of C∞c (Ω).

I If p can be chosen independently of K, we say that the distribution
is of finite order. The smallest value p is called the order of u.

I u is continuous: Given a sequence of test functions (ϕj) with same
support K that converges uniformly and also all their derivatives,
then

< u, ϕj >−→< u, ϕ > .
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Distributions: Examples
If u ∈ L1

loc(Ω) then

< ũ, ϕ >:=

∫
Ω
u(x)ϕ(x) dx

Is this a Distribution? It is a linear form

and for every K ⊂ Ω compact and for ϕ ∈ C∞K , we have

| < ũ, ϕ > | ≤
∫
K
|u(x)||ϕ(x)|dx ≤

(∫
K
|u(x)| dx

)(
sup
x∈K
|ϕ(x)|

)
.

Since,

| < ũ, ϕ > | ≤
(∫

K
|u(x)| dx

)
︸ ︷︷ ︸

=C

(
sup
x∈K
|ϕ(x)|

)
.

it is a distribution of order 0 (p independent of K , p = 0).
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Excercise
Using Corolary 3.1 show that if two distributions ũ and ṽ in Rn associated
to functions u and v in L1

loc, are equal (ũ = ṽ) then u = v a.e.

Thanks to this unicity result,

ũ = ṽ in D′(Ω)⇐⇒ u = v in L1
loc(Ω)

we can consider the functions u ∈ L1
loc as the distributions (u and ũ).

L1, L2, L∞ ⊂ L1
loc

L∞loc ⊂ L2
loc ⊂ L1

loc
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Dirac delta function
Dirac distribution in x ∈ Rn is defined by

< δx , ϕ >= ϕ(x), ∀ϕ ∈ C∞c (Ω)

I it is a linear form
I recall the definition of distribution, it’s valid for p = 0. (zero

order)

In the same spirit we can define the Dirac comb (peigne de Dirac):

u =
∑
n∈Zn

δ2nπ

Remark: the application of u to a test function gives the addition of a
finite number of values due to the finite support of ϕ:

<
∑
n∈Zn

δ2nπ, ϕ >=
∑
n∈Zn

ϕ(2nπ)

Also, we can define (Excercise)

< ∂ iδx , ϕ >:= (−1)|i|∂ iϕ(x)
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Convergence of Distributions

Def 2: Let (un) be a sequence of distributions on Ω and u one
distribution on Ω. We say that un converges to u in the
distribution sense if for every ϕ ∈ C∞c (Ω) the numerical sequence
(< un, ϕ >)n converges to < u, ϕ >. We write

un
D′(Ω)−→ u

Theorem 1: If (un) is a sequence of distributions on Ω such that
∀ϕ ∈ C∞c the sequence < un, ϕ > converges to a number, that we
note < u, ϕ > then, the limit u, is also a distribution in D′(Ω).

We are going to accept it without proof: it’s a consequence of the
Banach Steinhaus Theorem.

Let E be a Banach Space and uj : E → R linear applications such that
∀x ∈ E supj |uj (x)| <∞. Then ∃K > 0 such that supj,x |uj (x)| ≤ K .
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Revisiting: Dirac Distribution
Let uj ∈ L1

loc be a sequence of non-negative functions, such that∫
uj = 1, with supp(uj) ⊂ B(0, αj) ⊂ K compact, with αj → 0. Then

uj → δ0 in the Distribution sense.

Proof.

< uj , ϕ >=

∫
uj(x)ϕ(x) =

∫
uj(x)ϕ(0)︸ ︷︷ ︸
ϕ(0)

−
∫

uj(x)(ϕ(0)− ϕ(x))

and ∣∣∣∣∫ uj(x)(ϕ(0)− ϕ(x))

∣∣∣∣ ≤ ∫ uj(x)|(ϕ(0)− ϕ(x))|

≤
∫

uj(x)αj sup |∇ϕ|

= αj sup |∇ϕ|.

Then
< uj , ϕ >→ ϕ(0) ∀ϕ ∈ C∞c .
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Excercise If un ∈ L1
loc converges to u ∈ L1

loc, then un also converges to u
in the distribution sense.

Proof
We have to prove that ∀ϕ ∈ C∞0 (Ω), < un, ϕ >→< u, ϕ >.
Let ϕ ∈ C∞0 (Ω) with support K ⊂ Ω. Since

< un, ϕ > =

∫
K

un(x)ϕ(x) dx

< u, ϕ > =

∫
K

u(x)ϕ(x) dx

we have that

| < un, ϕ > − < u, ϕ > | ≤
∫
K

|un(x)− u(x)||ϕ(x)| dx

≤ sup
x∈K
|ϕ(x)|

∫
K

|un − u| n→∞−→ 0

Recall: For sequences in L2
loc (or L∞loc) the convergence in L2 (or L∞) for every

compact, implies the convergence in L1 for every compact and therefore the
convergence in the distribution sense.
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Derivative of Distributions
Assume we are given a function u ∈ C k(R) and ϕ ∈ C∞c an auxiliary
function that we call “test function”. Let u(k) be the kth-derivative of u,

then from the integration by parts∫
u(k)(x)ϕ(x) dx = (−1)k

∫
u(x)ϕ(x)(k) dx

There are no boundary terms, since every “test function” ϕ has compact
support in R.

Now, If u /∈ C k but u ∈ L1
loc(R) the right side still makes sense.

How can we use this to generalize the derivative for u ∈ L1
loc(R) or even

more for u ∈ D′ ?

Def 3: Let u ∈ D′(Ω), we call partial derivative of order i of u in Ω to
the distribution ∂ iu ∈ D′(Ω) defined by

< ∂ iu, ϕ >:= (−1)|i| < u, ∂ iϕ > .
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Derivative of Distributions

Def 3: Let u ∈ D′(Ω), we call partial derivative of order i of u in Ω
to the distribution ∂iu ∈ D′(Ω) defined by

< ∂iu, ϕ >:= (−1)|i| < u, ∂iϕ > .

We need to check that the definition makes sense (the result is a
distribution). It is linear by definition and if u is a distribution

| < ∂iu, ϕ > | = | < u, ∂iϕ > | ≤ CK sup
x∈K ,|j|≤p

|∂j(∂iϕ(x))|

≤ CK sup
x∈K ,|i+j|≤|i|+p

|∂j+iϕ(x))|

Remark: We can always differentiate a distribution u ∈ D′(Ω).
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Derivative of Distributions

Proposition 1: If u ∈ C k(Ω), then ∂i{u} the derivative in the
classical sense coincide to the derivative in the distributions sense
∂iu.

Proof.
If u ∈ C k(Ω) then ∂ju, with |j| ≤ k are in L1

loc so they are
distributions. We have,

< ∂j{u}, ϕ > =

∫
∂j{u}(x)ϕ(x) dx

= (−1)|j|
∫

u(x)∂jϕ(x) dx

=< ∂ju, ϕ >

14 / 27



Derivative of Distributions

Observations

I We can always differentiate a distribution u ∈ D′(Ω).

I If u ∈ C k(Ω) then ∂ju with |j| ≤ k is a function and a
Distribution!

I If u /∈ C k(Ω) then ∂ju is not a function but it is a
Distribution!

I We need to learn how to calculate derivatives in the
Distribution sense when functions are not differentiable.

I Remember: Distributions are called Generalized Functions.
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Theorem 2: (Derivative of a limit distribution)

Let uj ∈ D′(Ω) be a sequence of distributions such that uj
D′(Ω)−→ u,

then the sequence ∂iuj
D′(Ω)−→ ∂iu

Proof.

< ∂iuj , ϕ >= (−1)|i| < uj , ∂
iϕ >

The right side for j →∞ converges to:

(−1)|i| < uj , ∂
iϕ >

R−→ (−1)|i| < u, ∂iϕ >
def
=< ∂iu,ϕ >

Remark: Differentiation is always possible and moreover it is a
continuous operation! In general this is false in the case of
functions.
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Differentiation: an example

Let us consider H the Heaviside function:

H(x) =

{
1 if x > 0,
0 if x ≤ 0.

< H ′, ϕ >= −
∫

H(x)ϕ′(x) dx = −
∫ ∞

0
ϕ′(x) dx = ϕ(0)

Then,
< H ′, ϕ >= ϕ(0) =< δ0, ϕ > .

Is this what we would have expected?

Yes! but this can only be explained in the limit by the
Distributions theory.
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Principal Value
Cauchy Principal Value

A function which is not locally integrable is not a distribution.
However, in some particular cases, we can define a distribution
from a non-locally integrable function.

For example consider,

fε(x) =

{
1
x if |x | > ε,
0 if |x | ≤ ε.

Then, fε ∈ L1
loc ⊂ D′(Ω).

We are going to show that fε converges, in the distribution sense,
when ε→ 0.
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Principal Value
Cauchy Principal Value

For R > 0 and ϕ ∈ C∞0 ([−R,R]) we have,

< fε, ϕ > =

∫
ε≤|x|≤R

ϕ(x)

x
dx

=

∫
ε≤|x|≤R

ϕ(x)− ϕ(0)

x
dx

≤ (R − ε) max
x∈[−R,R]

|ϕ′(x)|

≤ R max
|x|≤R

|ϕ(x)′|

Hence, the integral is well defined and has a limit when ε→ 0. We can
define the following linear form,

< vp

(
1

x

)
, ϕ >:= lim

ε→0

∫
|x|≥ε

ϕ(x)

x
dx

and by Theorem 1 it is a distribution.
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Distributions Operations

We are going to extend to distributions several classical operations
defined for functions. We are going to demand that the new
definition is consistent with the old definition for functions.

Conjugate

If u ∈ D′(Ω), we define the complex conjugate distribution ū by,

∀ϕ ∈ C∞0 (Ω), < ū, ϕ >:= < u, ϕ̄ >.

I Check that for u ∈ L1
loc this is the good definition.

We are going to say u ∈ D′(Ω) is real iff u = ū. We can define in
the same way Re(u) and Im(u).
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Distributions Operations

We are going to extend to distributions several classical operations
defined for functions. We are going to demand that the new
definition is consistent with the old definition for functions.

Translation
For a function f : Rn → C we now that τaf = f (x − a) is the
translation of f of vector a ∈ Rn. Since,∫

f (x − a)ϕ(x) dx =

∫
f (x)ϕ(x + a) dx

It is natural to define the translation of a distribution u ∈ D′(Rn)
as follows

∀ϕ ∈ C∞0 (Rn), < τau, ϕ >:=< u, τ−aϕ > .
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Distributions Operations

We are going to extend to distributions several classical operations
defined for functions. We are going to demand that the new
definition is consistent with the old definition for functions.

Dilatation
For a function f : Rn → C we now that fλ(x) = f ( xλ) is the
dilatation of f a scale λ ∈ Rn. Since,∫

f
(x
λ

)
ϕ(x) dx =

∫
f (x)ϕ(λx)|λ|n dx

It is natural to define the dilatation of a distribution u ∈ D′(Rn) as
follows

∀ϕ ∈ C∞0 (Rn), < uλ, ϕ >:= |λ|n < u, ϕ 1
λ
> .
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Distribution Operations
Product of Distributions

In general, it is impossible to define the product of two distributions that
extends, in a continuous way, the product of functions. For example

fj(x) =

{
j if |x | ≤ [− 1

2j ,
1
2j ],

0 otherwise.

We know that fj
D′

−→ δ0 but f 2
j doesn’t have a limit.

However, we can define in a natural way, the product of a Distribution
and a function in C∞:

Theorem 2: Let u ∈ D′(Ω) and f ∈ C∞. We define the product distri-
bution fu ∈ D′(Ω) by

< fu, ϕ >:=< u, f ϕ > .

We need to prove that the definition is a distribution. It is a linear form, so we
rest to prove that ∀K ⊂ Ω, ∃C , p such that

| < fu, ϕ > | ≤ C sup
x∈K ,|i|≤p

|∂ iϕ|, ∀ϕ ∈ C∞K TD Exercise!

23 / 27



Distributions Differentiation

We have defined the derivative of a distribution. We are going to show
how we can calculate the derivative of a function that is not of class C 1.

Def 3: We say that a function f is in Cm piecewise if there exists a
discrete number of points (ai ) such that the function f has continuous
m-derivatives inside (ai , ai+1) and the derivatives can be continuously
extended to the intervals [ai , ai+1].

Notation: We write f (k)(a+
i ) and f (k)(a−i ) the right and left limits of

f (k)(x) at point ai .
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Theorem 3: Jumps Formula (Formule des sauts)
Let f ∈ C 1 piecewise in I ⊂ R with (ai ) the discrete number of disconti-
nuities. Then

f ′ = {f }′ +
∑
i

(
f (a+

i )− f (a−i )
)
δai

where

- f ′ is the derivative in the distributions sense

- {f }′ is the pointwise derivative of f .

Proof.
Take ϕ ∈ C∞c and integrate by parts < f ′, ϕ >= −

∫
f ϕ′.

Notice that since ϕ has compact support, when applying f ′ to a test

function only a finite number of jumps are summed, so everything is well

defined.
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Theorem 4: Let I be an open interval. If u ∈ D′(I ) such that
u′ = 0, then u = C a.e.
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Proof.
First notice, that ϕ ∈ C∞c (I ) has a primitive in C∞c (I ) if and only if∫
ϕ(x) = 0. The only primitive that is zero at the left of the support of ϕ

is
∫ x

−∞ ϕ(t)dt and in order to be zero at right of the support of ϕ the
integral should be zero.

Let θ ∈ C∞c (I ) such that
∫
θ(x)dx = 1. Then, ϕ− θ

∫
ϕ(x)dx has zero

integral and therefore there exists a unique ψ ∈ C∞c (I ) such that

ϕ =

(∫
ϕ(x) dx

)
θ +

dψ

dx

Next, take u verifying u′ = 0. We have

< u, ϕ >= (

∫
ϕ(x) dx) < u, θ > + < u, ψ′ > .

The last term is < u, ψ′ >= − < u′, ψ >= 0, so calling C to the
constant < u, θ > , we have

< u, ϕ >= C

∫
ϕ(x)dx , so u = C a.e..
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