
Hilbert and Fourier analysis
C8

M. Delbracio & G. Facciolo

1 / 47



Today’s topics

I Distributions Theory

I Summary from previous lecture

I Periodic Sobolev Spaces

I Poisson, Laplace Equations

I Lax-Milgram Lemma
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Motivation...
Assume we are given a function u ∈ C k(R) and ϕ ∈ C∞c an auxiliary
function that we will call “test function”.

Let u(k) be the kth-derivative of u, then from the integration by parts∫
u(k)(x)ϕ(x) dx = (−1)k

∫
u(x)ϕ(x)(k) dx

There are no boundary terms, since every “test function” ϕ has compact
support in R.

Now, If u /∈ C k but u ∈ L1
loc(R) the right side still makes sense.

How can we use this to generalize the derivative for u ∈ L1
loc(R)?

We can define u(k) by means of the application to every test function

lu(k) : ϕ −→ (−1)k
∫

u(x)ϕ(x)(k) dx

lu(k) is not a function but is a linear form (we will call them generalized
functions or distributions).

We can define something by the application to a set of test functions!
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Def : We call distribution on Ω (open set in Rn) to every linear
form u over C∞c (Ω) satisfying the following continuity property: for
every compact set K ⊂ Ω there exists an integer p = p(K ) and a
constant C = C (K ) such that for every function ϕ ∈ C∞c (Ω) with
support included in K , we have

| < u, ϕ > | ≤ C sup
|i |≤p,x∈K

|∂ iϕ(x)|.

I We call D(Ω) := C∞c (Ω) (test functions)

I We will refer to the vectorial space of Distributions as D′(Ω) the
dual of C∞c (Ω).

I If p can be chosen independently of K, we say that the distribution
is of finite order. The smallest value p is called the order of u.

I u is continuous: Given a sequence of test functions (ϕj) with same
support K that converges uniformly and also all their derivatives,
then

< u, ϕj >−→< u, ϕ > .
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Distributions: Examples

If u ∈ L1
loc(Ω) then

< ũ, ϕ >:=

∫
Ω
u(x)ϕ(x) dx

Is this a Distribution? It is a linear form

and for every K ⊂ Ω compact and for ϕ ∈ C∞K , we have

| < ũ, ϕ > | ≤
(∫

K
|u(x)| dx

)
︸ ︷︷ ︸

=C

(
sup
x∈K
|ϕ(x)|

)
.

it is a distribution of order 0 (p independent of K , p = 0).
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If two distributions ũ and ṽ in Rn associated to functions u and v in L1
loc,

are equal (ũ = ṽ) then u = v a.e.

Thanks to this unicity result,

ũ = ṽ in D′(Ω)⇐⇒ u = v in L1
loc(Ω)

we can consider the functions u ∈ L1
loc as the distributions (u and ũ).

L1, L2, L∞ ⊂ L1
loc

L∞loc ⊂ L2
loc ⊂ L1

loc
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Dirac delta function

Dirac distribution in x ∈ Rn is defined by

< δx , ϕ >= ϕ(x), ∀ϕ ∈ C∞c (Ω)

Dirac comb (peigne de Dirac):

u =
∑
n∈Zn

δ2nπ
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Convergence of Distributions

Def 2: Let (un) be a sequence of distributions on Ω and u one
distribution on Ω. We say that un converges to u in the
distribution sense if for every ϕ ∈ C∞c (Ω) the numerical sequence
(< un, ϕ >)n converges to < u, ϕ >. We write

un
D′(Ω)−→ u

Theorem 1: If (un) is a sequence of distributions on Ω such that
∀ϕ ∈ C∞c the sequence < un, ϕ > converges to a number, that we
note < u, ϕ > then, the limit u, is also a distribution in D′(Ω).
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Convergence of Distributions

Exercise If un ∈ L1
loc converges to u ∈ L1

loc, then un also converges to u in
the distribution sense.

Recall: For sequences in L2
loc (or L∞loc) the convergence in L2 (or L∞)

for every compact, implies the convergence in L1 for every compact and
therefore the convergence in the distribution sense.
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Derivative of Distributions

Def : Let u ∈ D′(Ω), we call partial derivative of order i of u in Ω
to the distribution ∂iu ∈ D′(Ω) defined by

< ∂iu, ϕ >:= (−1)|i| < u, ∂iϕ > .

I We can always differentiate a distribution u ∈ D′(Ω).

I If u ∈ C k(Ω) then ∂ju with |j| ≤ k is a function and a distribution!

I If u /∈ C k(Ω) then ∂ju is not a function but it is a distribution!

I We need to learn how to calculate derivatives in the distribution
sense when functions are not differentiable.

I It is a continuous operation! In general this is false in the case of
functions.
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Theorem 2: (Derivative of a limit distribution)

Let uj ∈ D′(Ω) be a sequence of distributions such that uj
D′(Ω)−→ u,

then the sequence ∂iuj
D′(Ω)−→ ∂iu

Remark: Differentiation is always possible and moreover it is a
continuous operation! In general this is false in the case of
functions.
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Distributions Operations

We can extend to distributions several classical operations defined
for functions. We demand that the new definition is consistent
with the old definition for functions.

I Conjugate < ū, ϕ >:= < u, ϕ̄ >

I Translation < τau, ϕ >:=< u, τ−aϕ >

I Dilatation < uλ, ϕ >:= |λ|n < u, ϕ 1
λ
>

Although it is not possible to define the product between two
distribution we can define

I Product between a function f ∈ C∞ and a distribution u,
< fu, ϕ >:=< u, f ϕ >.
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Theorem : Jumps Formula (Formule des sauts)
Let f ∈ C 1 piecewise in I ⊂ R with (ai ) the discrete number of disconti-
nuities. Then

f ′ = {f }′ +
∑

i

(
f (a+

i )− f (a−i )
)
δai

where

- f ′ is the derivative in the distributions sense

- {f }′ is the pointwise derivative of f .
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Proposition 1: Let f defined in R, 2π−periodic and such that

f ∈ L2(0, 2π). We can differentiate the Fourier series of f any
number of times, and we have

f (p)(x) =
∞∑

k=−∞
(ik)pck(f )eikx

where the equality holds in the distribution sense in R.

Remark:The equality is also valid as an equality between two

distributions in (0, 2π) or any other open interval of R.
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Proof.
If f ∈ L2(0, 2π), 2π-periodic then

(a) f ∈ L1
loc and so f is a Distribution in D′(0, 2π).

(b) f is the sum in the L2 sense of its Fourier series,
f (x) =

∑∞
k=−∞ ck(f )eikx in L2

loc

Consider the partial sums sn(f ), we have

sn(f ) =
n∑

k=−n

ck(f )eikx
L2

loc−→ f .

Then, sn(f )
D′(0,2π)−→ f and also in D′(R). From the Theorem of

differentiation of a limit distribution, we have

sn(f )(p) D
′(R)−→ f (p)

or,
n∑

k=−n

(ik)pck(f )eikx
D′(R)−→ f (p)(x)
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Corollary 1: Let f defined in R2, 2π × 2π periodic and such that

f ∈ L2((0, 2π)2). We can differentiate the Fourier series of f any number
of times, and we have

∂p+qf

∂xp∂yq
(x , y) =

∞∑
m,n=−∞

(im)p(in)qcm,n(f )ei(mx+ny)

where the equality holds in the distribution sense in R.
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Poisson Summation Formula
We call Dirac Comb (peigne de Dirac) to the 2π-periodization of the Dirac
delta, defined by

δ̃ =
∑
n∈Z

δ2nπ

Remark: < δ̃, ϕ >=
∑

n∈Z ϕ(2nπ), ∀ϕ ∈ D(R)

Proposition 2: Poisson Summation Formula.

Let s be the sawtooth wave (dents de scie), 2π periodic, defined in [0, 2π)
by s(x) = π − x . Then s ′ = 2πδ̃ − 1 and

δ̃ =
1

2π

∑
n∈Z

einx

and therefore for ϕ ∈ C∞c we have the Poisson summation formula,

∞∑
k=−∞

ϕ(2kπ) =
1

2π

∞∑
p=−∞

ϕ̃(p)

where we have called ϕ̃(p) =
∫
R ϕ(x)e−ipx dx .

17 / 47



Poisson Summation Formula

Let s be the sawtooth wave (dents de scie), 2π periodic, defined in [0, 2π)
by s(x) = π − x . Then s ′ = 2πδ̃ − 1 and ... (go to the previous slide)
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Poisson Summation Formula
Proof Consider the Fourier Series development of function s(x),

s(x) =
∞∑

n=−∞

cn(s)einx in L2(R)

with cn(s) = 1
2π

∫ 2π

0
(π − x)e−inx dx =

{
1
in

if n 6= 0,
0 if n = 0.

Then, we can write

s =
∑

n∈Z\{0}

1

in
einx .

The convergence is in L2
loc, then also in L1

loc and therefore it is also in D′(Ω).
We can differentiate this expression in the distributions sense,

s ′(x) =
∑

n∈Z\{0}

einx .

From the other part, from the Jumps Formula, we have

s ′(x) = −1 + (2π)
∞∑

n=−∞

δ2nπ
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Poisson Summation Formula

Proof (cont.)

(2π)
∞∑

n=−∞

δ2nπ = 1 +
∑

n∈Z\{0}

einx =
∑
n∈Z

einx

Then we get the desired formula,∑
n∈Z

δ2πn =
1

2π

∑
n∈Z

einx

If we apply this last expression to ϕ ∈ C∞c we get,

∞∑
k=−∞

ϕ(2kπ) =
1

2π

∞∑
p=−∞

ϕ̃(p)

where we have called ϕ̃(p) =
∫
R ϕ(x)e−ipx dx .
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Assume we are given a function u ∈ C k(R) and ϕ ∈ C∞c an auxiliary
function that we will call “test function”.

Let u(k) be the kth-derivative of u, then from the integration by parts∫
u(k)(x)ϕ(x) dx = (−1)k

∫
u(x)ϕ(x)(k) dx

There are no boundary terms, since every “test function” ϕ has compact
support in R.

Now, If u /∈ C k but u ∈ L1
loc(R) the right side still makes sense.

How can we use this to generalize the derivative for u ∈ L1
loc(R)?

If there exists v ∈ L1
loc(R) such that for every test function∫

v(x)ϕ(x) dx = (−1)k
∫

u(x)ϕ(x)(k) dx

then v is called the weak derivative of u.

Weak derivative introduced by S. L. Sobolev 1930’s!

Schwartz Theory of Distributions generalizes this idea (Dirac, ...).
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Sergei L’vovich Sobolev

Sobolev introduced the notions that are now fundamental for
several different areas of mathematics. Sobolev spaces can be
defined by some growth conditions on the Fourier transforms;
they and their embedding theorems are an important subject
in functional analysis. Generalized functions (later known as
distributions) were first introduced by Sobolev in 1935 for
weak solutions, and further developed by Laurent Schwartz.
Sobolev abstracted the classical notion of differentiation so
expanding the ranges of applications of the technique of New-
ton and Leibniz. The theory of distribution is considered now
as the calculus of the modern epoch.

Sergei L. Sobolev (6 October 1908 - 3 January 1989 in Moscow)
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Periodic Sobolev Spaces: Hm
per(0, 2π)

Def 1: We call Periodic Sobolev Space of order m ≥ 1 and we note by
Hm

per(0, 2π) to the set of functions u such that:

I u ∈ L2(0, 2π) and u is 2π-periodic in R
I u(i) ∈ L2(0, 2π), for i ≤ m.

The derivative is in the distribution sense.

Def 2: We provide Hm
per with the following norm:

‖u‖Hm
per

=

∑
i≤m

‖u(i)‖2
L2

 1
2

associated to the hermitian product:

(u, v)Hm
per

=
∑
n≤m

∫ 2π

0

u(n)(x)v (n)(x)dx

Exercise: Show that ‖ · ‖Hm
per

is a norm for Hm
per and (·, ·)Hm

per
is a hermitian product.
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Remark: The Hm
per(0, 2π) spaces are simple to analyze as we can

characterize them by using Fourier series.

Proposition 1: If u ∈ Hm
per, then for every n ≤ m, the Fourier

coefficients of u(n) satisfy

ck(u(n)) = (ik)nck(u).
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Proof.
Since u ∈ L2(0, 2π) we can write

u(x) =
∑
k

ck(u)eikx

where the equality holds in the L2
loc(R) provided we periodize u.

From pervious lecture if u ∈ L2(0, 2π), 2π-periodic, it can be
differentiated any number of times by its Fourier series :

u(n)(x) =
∑
k

ck(u)(ik)neikx convergence in D′(R).

Since we have supposed u(n) ∈ L2(0, 2π), then it can be developed by its
Fourier Series

u(n)(x) =
∑
k

ck(u(n))eikx

with (ck(u(n)))k ∈ l2(Z). Then by the unicity of the Fourier Series
expansion of a distribution (will be proved next lecture) we have

ck(u)(ik)n = ck(u(n)).
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Proposition 2: The space Hm
per(0, 2π) ⊂ Cm−1(R). In particular,

the functions of H1
per(0, 2π) are continuous.

Proof.
For m = 1.
Then the Fourier series of u satisfies

ck(u) =
1

ik
ck(u′) ∈ l1(Z)

since 1
ik ∈ l2(Z) and ck(u′) ∈ l2(Z). Hence the series

∑
k

ck(u)eikx converges uniformly in R.

Finally, the limit is continuos (u is equal to a continuous function).

For m > 1 proceed by recurrence:

if u ∈ Hm
per(0, 2π), then u(m−1) ∈ H1

per(0, 2π).
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Proposition 3: The spaces Hm
per(0, 2π) are Hilbert spaces and their

norm can be written

‖u‖2
Hm

per
=
∑
n≤m
‖u(n)‖2

L2 =
∑
k

|ck(u)|2(1 + |k |2 + . . .+ |k|2m).

An equivalent Hilbert norm is

|u|2Hm
per

=
∑
k

|ck(u)|2(1 + |k |2m).

Proof.
Consider the application ψ : Hm

per(0, 2π) −→ l2(Z) defined by

ψ(u) =
(
ck(u)(1 + |k |2 + . . .+ |k |2m)

1
2

)
k
.

From Parseval ψ is an isometry from Hm
per to l2(Z). Since l2(Z) is a

Hilbert space then Hm
per(0, 2π) is also a Hilbert space.

The equivalence between norms is immediate.
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Other Fourier Bases

Let us consider functions in in L2(0, 2π). We know

f (x) =
∑
k∈Z

ck(f )eikx in L2sense.

Moreover,
(

1√
2π

eikx
)
k

is a Hilbert basis of L2(0, 2π).

The following are also Hilbert bases of L2(0, 2π) :

I 1√
2π
, 1√

π
cos(kx), 1√

π
sin(kx) k = 1, 2, . . .

I 1√
2π
, 1√

π
cos(k2x), k = 1, 2, . . . (Cosine basis)

I 1√
π

sin(k2x), k = 1, 2, . . . (Sine basis)
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Theorem 1: Problème de l’élastique chargé

(P)

{
−u′′ = f , f ∈ L2(0, 2π)
u(0) = u(2π) = 0.

Then, there exists a unique u ∈ L2(0, 2π) solution of (P) in the
distribution sense.

This solution belongs to H2
per(−2π, 2π) (4π-periodic functions).
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Proof
We need u(0) = u(2π) = 0, it may be convenient to decompose f and u in the
sine basis:

(
sin
(
kx
2

))
k∈N∗ . (implies extending f to an odd function over

[−2π, 2π] and computing its Fourier Series).

Then, f (x) =
∑

k∈N∗ ck(f ) sin kx
2

where ck(f ) = 1
π

∫ 2π

0
f (t) sin kt

2
dt.

Also, u(x) =
∑

k∈N∗ ck(u) sin kx
2

and u′′(x) = −
∑

k∈N∗ ck(u) k2

4
sin kx

2
.

Hence, the main equation in Problem (P) can be re-written as∑
k∈N∗ ck(u) k2

4
sin kx

2
=
∑

k∈N∗ ck(f ) sin kx
2

From the unicity of the Fourier coefficients for a distribution (that causes the
unicity of representation in the sine basis) we have

k2

4
ck(u) = ck(f ), ∀k ∈ N∗ ⇐⇒ ck(u) =

4

k2
ck(f ),∀k ∈ N∗

Then, u = 4
∑

k∈N∗
ck (f )

k2 sin k
2
x and u ∈ H2

per(−2π, 2π).

The function u is not necessary C 2 so the problem (P) doesn’t make sense in
the classical way!

As u∈H2
per(−2π, 2π), u ∈ C 1 and it’s an odd function so u(0)=u(2π)=0.
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Periodic Sobolev Spaces in dimension 2: Hm
per([0, 2π]

2)
Def 3: We call Periodic Sobolev Space of order m ≥ 1 and we note by

Hm
per([0, 2π]2) to the set of functions u such that:

I u ∈ L2([0, 2π]2); 2π-periodic over R2

I ∂ iu ∈ L2([0, 2π]2), for |i | ≤ m.

The derivative is in the distribution sense.

Def 4: We provide Hm
per([0, 2π]2) with the following norm:

‖u‖Hm
per

=

∑
|i|≤m

‖∂ iu‖2
L2

 1
2

associated to the hermitian product:

(u, v)Hm
per

=

∫
[0,2π]2

∑
|i|≤m

∂ iu(x)∂ iv(x)dx
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Proposition 4: The spaces Hm
per([0, 2π]2) are Hilbert spaces. An

equivalent Hilbert norm is

‖u‖2
Hm

per
=
∑
n∈Z2

|cn(u)|2(1 + ‖n‖2)m.

The proof is identical to the one for dimension 1.
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Proposition 5: The space Hm
per([0, 2π]2) ⊂ Cm−2(R2). In particu-

lar, the functions of H2
per([0, 2π]2) are continuous.

Proof.
For m = 2.
Let us take u ∈ H2

per([0, 2π]2). We are going to show that u is
continuous.

We define dk = ck(u)(1 + ‖k‖2). Next, ck = dk
1+‖k‖2 .

Since u ∈ H2
per([0, 2π]2) then dk ∈ l2(Z2). Also, 1

1+‖k‖2 ∈ l2(Z2).

Therefore ck(u) ∈ l1(Z2) and the Fourier series of u∑
k

ck(u)eik·x converges uniformly in R2.

Finally, the limit is continuos (u is equal to a continuous function).

For m > 2 proceed by recurrence:

if u ∈ Hm
per([0, 2π]2), then u(m−2) ∈ H2

per([0, 2π]2).
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Poisson Equation with Dirichlet conditions
We note the Laplacian of a function u by ∆u := ∂2u

∂x2 + ∂2u
∂y2 = uxx + uyy .

Let be Ω = [0, 2π]2 and ∂Ω its border.

Theorem 2: Equation de Poisson avec condition de Dirichlet

I Let f ∈ L2([0, 2π]2) (the heat source).

I Consider the Poisson equation in a square in isothermal conditions
(temperature in the square border is fixed to 0). This is called
Poisson equation with Dirichlet condition.

I The equation that represents the temperature inside the square can
be written as{

−∆u = f , with f ∈ L2([0, 2π]2) (∗)
u = 0 in ∂Ω.

Then, there exists a unique u ∈ L2([0, 2π]2) solution (in the distribution
sense). This solution is an odd (impaire) function in H2

per([−2π, 2π]2) (a
4π- periodic function).
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Proof In order to naturally have the boundary condition u = 0 it is convenient
to use the sine basis decomposition(

sin
(
kx
2

)
sin
(
ly
2

))
k,l
, with k, l ∈ N∗

Hence, we write

u(x , y) =
∑

k,l∈N∗ ck,l(u) sin
(
kx
2

)
sin
(
ly
2

)
f (x , y) =

∑
k,l∈N∗ ck,l(f ) sin

(
kx
2

)
sin
(
ly
2

)
The equation (∗) can be written∑
k,l∈N∗

ck,l(f ) sin

(
kx

2

)
sin

(
ly

2

)
=
∑

k,l∈N∗
ck,l(u)

(
k2 + l2

4

)
sin

(
kx

2

)
sin

(
ly

2

)

By the unicity of the Fourier decomposition, we have

ck,l(f ) = ck,l(u) k2+l2

4
, ∀k, l ∈ N∗

Then

u(x , y) = 4
∑

k,l∈N∗

ck,l(f )

k2 + l2
sin

(
kx

2

)
sin

(
ly

2

)
Notice that, u ∈ H2

per([−2π, 2π]2), u /∈ C 2, but u ∈ C 0. Since u is odd, then we

have u(x , y) = 0 in ∂Ω.
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Normal derivative
Suppose Ω = [0, 2π]2. We call ∂u∂n the normal derivative on the boundary
of the domain to

∂u

∂n
(x , 0) = −

∂u

∂y
(x , 0)

∂u

∂n
(x , 2π) =

∂u

∂y
(x , 2π)

∂u

∂n
(0, y) = −

∂u

∂x
(0, y)

∂u

∂n
(2π, y) =

∂u

∂x
(2π, y).

The easiest way to impose ∂u
∂n = 0 is to consider even (paires) functions

in the two variables, 4π-periodic:

u(−x , y) = u(x , y)

u(x ,−y) = u(x , y)

for (x , y) ∈ Ω, and since u is 4π-periodic, if u ∈ C 1 then, ∂u
∂n = 0 on ∂Ω.

Exercise: Prove it!
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Poisson Equation with Neumann conditions
Let be Ω = [0, 2π]2 and ∂Ω its border.

Theorem 3: Equation de Poisson avec condition de Neumann

I Let f ∈ L2(Ω), such that
∫

Ω
f (x , y)dxdy = 0 (the heat source).

I Consider the Poisson equation in a square with adiabatic boundary
(e.g. heat flux though the boundary is zero). This is called Poisson
equation with Neumann condition.

I The equation that represents the temperature inside the square can
be written as{

−∆u = f , with f ∈ L2(Ω),
∫

Ω
f = 0 (∗)

∂u
∂n = 0 in ∂Ω.

Then, there exists u ∈ L2([0, 2π]2) solution (in the distribution sense).

The solution satisfies ∂u
∂n = 0 in the sense that is an even (paire) function.

This solution is unique up to a constant and belongs to H2
per([−2π, 2π]2)

(a 4π- periodic function).
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Proof In order to naturally have the boundary condition ∂u
∂n

= 0 it is
convenient to use the cosine basis decomposition(

cos
(
kx
2

)
cos
(
ly
2

))
, with k, l ∈ N.

Hence, we write

u(x , y) =
∑

k,l∈N ck,l(u) cos
(
kx
2

)
cos
(
ly
2

)
f (x , y) =

∑
k,l∈N ck,l(f ) cos

(
kx
2

)
cos
(
ly
2

)
with

ck,l = c(k)c(l)
∫

Ω
u(t, s) cos

(
kt
2

)
cos
(
ls
2

)
dtds

where c(n) = 1
π

iff n = 0 or c(n) = 1
2π

otherwise.

The equation (∗) can be written∑
k,l∈N

ck,l(f ) cos
(kx

2

)
cos
( ly

2

)
=
∑
k,l∈N

ck,l(u)
(k2 + l2

4

)
cos
(kx

2

)
cos
( ly

2

)
.

By the unicity of the Fourier decomposition, we have

ck,l(u) k2+l2

4
= ck,l(f ) ∀k, l ∈ N.

Then,

ck,l(u) = 4
ck,l (f )

k2+l2
, (k, l) 6= (0, 0)

Recall that
∫
f = 0 and hence c0,0(f ) = 0.
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Proof (cont.)

Next, we have

u(x , y) = c + 4
∑

k,l∈N∗

ck,l(f )

k2 + l2
cos

(
kx

2

)
cos

(
ly

2

)
where the constant c is not determined by the system so there is one degree of
freedom (c0,0(u) not defined).

I Notice that, u ∈ H2
per([−2π, 2π]2).

I Remark that u /∈ C 2, but u ∈ C 0 (the equation only makes sense in the
distribution sense).

I Since u is even (paire), we have ∂u
∂n

(x , y) = 0 in ∂Ω. (note that the
function may not be differentiable in the boundary, however if it is, the
derivative must be zero).

39 / 47



Theorem 4: Consider a bilinear form defined in a Hilbert space:

a(u, v) : H × H −→ C

Then, a is continuous if and only if ∃C > 0 such that

|a(u, v)| ≤ C‖u‖‖v‖,∀u, v ∈ H.

Proof
(⇒) If a is continuos in 0, ∃η > 0 such that |a(u, v)| ≤ 1 for ‖u‖, ‖v‖ ≤ η.

Consider η u
‖u‖ and η v

‖v‖ we deduce immediately: |a(u, v)| ≤ ‖u‖‖v‖
η2 .

(⇐) From the linearity and the triangular inequality we have

|a(u, v)− a(u′, v ′)| = |a(u + u′ − u′, v)− a(u′, v ′ + v − v)|
= |a(u − u′, v) + a(u′, v)− a(u′, v ′ − v)− a(u′, v)|
≤ |a(u − u′, v)|+ |a(u′, v ′ − v)|
≤ C‖u − u′‖‖v‖+ C‖u′‖‖v ′ − v‖

and we have the continuity.
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Coercivity
We say that a symmetric bilinear form is coercive if there exists a constant
C > 0 such that

a(u, u) ≥ c‖u‖2 ∀u ∈ H

Exercise
Let a(u, v) be a continuous and coercive bilinear form in H. Then

‖u‖a :=
√
a(u, u)

is an equivalent norm of the norm ‖ · ‖ in H.

(define the same topology / define the same convergence criterion).

Remark
A lot of problems in physics, mechanics, signal processing can be reduced
to minimize in a Hilbert space (H), an energy of the form

(∗) E (u) =
1

2
a(u, u)− (b, u)

where b ∈ H and a(., .) is bilinear, continuous and coercive.
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Lax-Milgram Lemma

Theorem 5: Let H be a Hilbert separable space and E an energy func-
tional of the type

(∗) E (u) =
1

2
a(u, u)− (b, u),

with a(·, ·) bilinear, symmetric1, continuous and coercive.

Then, there exists a unique u, minimizer of E (u) in H.

Moreover, u is characterized by the following variational equation

∀v ∈ H, Re(a(u, v)) = (b, v).

1a(u, v) = a(v , u)
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Proof
Assume the minimizer u exists. Then, ∀v ∈ H consider
f (t) = E (u + tv) where t ∈ R.

f (t) =
1

2
a(u + tv , u + tv)− (b, u + tv)

=
1

2

(
a(u, u) + ta(v , u) + ta(u, v) + t2a(v , v)

)
− (b, u)− t(b, v)

then

f ′(t) =
1

2
a(v , u) +

1

2
a(u, v) + ta(v , v)− (b, v).

Since u is minimizer, we necessary have f ′(0) = 0, then

1

2
a(v , u) +

1

2
a(u, v)− (b, v) = 0

and we get the desired expression

Re(a(v , u)) = (b, v) for all v ∈ H.
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Proof (cont. 1) The minimum is unique.

If there are two u and v then by the expression we have just proved

Re(a(u, v − u)) = (b, v − u) = Re(a(v , v − u)).

Thus Re(a(v − u, v − u)) = 0 implying a(v − u, v − u) = 0.

Since a is coercive

0 = a(u − v , u − v) ≥ C‖u − v‖2

and then
u = v .
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Proof (cont. 2)
The minimum exists.

First we prove that E (u) is lower bounded. From the coercivity and
Cauchy-Schwartz inequality,

E (u) =
1

2
a(u, u)− (b, u) ≥ 1

2
C‖u‖2 − (b, u) ≥ 1

2
C‖u‖2 − ‖b‖‖u‖

which is a real function of ‖u‖ lower bounded. Thus, we can consider a
minimizing sequence (un)n ⊂ H for E such that E (un)→ infu∈H E (u).

We have E (un) ≤ E (0) = 0, and then by the coercivity

0 ≥ E (un) ≥ c

2
‖un‖2 − ‖b‖‖un‖

next

‖un‖ ≤
2

c
‖b‖

that is, the minimizing sequence is bounded in H.

From Proposition 4.3 there exits a subsequence (we also note it un) such
that

un ⇀ u ∈ H (weak convergence).
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Proof (cont. 3)
By applying the same Proposition 4.3 with the equivalent norm ‖u‖a we
get,

‖u‖a ≤ lim infn ‖un‖a ⇐⇒ a(u, u) ≤ lim infn a(un, un)

Since there’s weak convergence

lim
n

(b, un) = (b, u).

Next,

E (u) =
1

2
a(u, u)− (b, u)

≤ lim inf
n

1

2
a(un, un)− lim

n
(b, un)

= lim inf
n
E (un)

Since (un)n is a minimizing sequence

lim inf
n
E (un) = inf

v∈H
E (v)

Finally,
E (u) = inf

v∈H
E (v)
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