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Today’s topics

I Distributions Theory

I Summary from previous lecture

I The variational interpretation

I Poisson editor

I Unicity of Fourier expansion (distributions)

I Functions in Sobolev spaces
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Periodic Sobolev Spaces: Hm
per(0, 2π)

Def 1: We call Periodic Sobolev Space of order m ≥ 1 and we note by
Hm

per(0, 2π) to the set of functions u such that:

I u ∈ L2(0, 2π) and u is 2π-periodic in R
I u(i) ∈ L2(0, 2π), for i ≤ m.

The derivative is in the distribution sense.

Def 2: We provide Hm
per with the following norm:

‖u‖Hm
per

=

∑
i≤m

‖u(i)‖2
L2

 1
2

associated to the hermitian product:

(u, v)Hm
per

=
∑
n≤m

∫ 2π

0

u(n)(x)v (n)(x)dx

Exercise: Show that ‖ · ‖Hm
per

is a norm for Hm
per and (·, ·)Hm

per
is a hermitian product.
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Remark: The Hm
per(0, 2π) spaces are simple to analyze as we can

characterize them by using Fourier series.

Proposition : If u ∈ Hm
per, then for every n ≤ m, the Fourier coeffi-

cients of u(n) satisfy

ck(u(n)) = (ik)nck(u).
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Proposition : The space Hm
per(0, 2π) ⊂ Cm−1(R). In particular, the

functions of H1
per(0, 2π) are continuous.

Proposition : The spaces Hm
per(0, 2π) are Hilbert spaces and their

norm can be written

‖u‖2
Hm

per
=
∑
n≤m
‖u(n)‖2

L2 =
∑
k

|ck(u)|2(1 + |k |2 + . . .+ |k|2m).

An equivalent Hilbert norm is

|u|2Hm
per

=
∑
k

|ck(u)|2(1 + |k |2m).
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Other Fourier Bases

Let us consider functions in in L2(0, 2π). We know

f (x) =
∑
k∈Z

ck(f )eikx in L2sense.

Moreover,
(

1√
2π
eikx
)
k

is a Hilbert basis of L2(0, 2π).

The following are also Hilbert bases of L2(0, 2π) :

I 1√
2π
, 1√

π
cos(kx), 1√

π
sin(kx) k = 1, 2, . . .

I 1√
2π
, 1√

π
cos(k2 x), k = 1, 2, . . . (Cosine basis)

I 1√
π

sin(k2 x), k = 1, 2, . . . (Sine basis)
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Theorem 1: Problème de l’élastique chargé

(P)

{
−u′′ = f , f ∈ L2(0, 2π)
u(0) = u(2π) = 0.

Then, there exists a unique u ∈ L2(0, 2π) solution of (P) in the
distribution sense.

This solution belongs to H2
per(−2π, 2π) (4π-periodic functions).
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Proof
We need u(0) = u(2π) = 0, it may be convenient to decompose f and u in the
sine basis:

(
sin
(
kx
2

))
k∈N∗ . (implies extending f to an odd function over

[−2π, 2π] and computing its Fourier Series).

Then, f (x) =
∑

k∈N∗ ck(f ) sin kx
2

where ck(f ) = 1
π

∫ 2π

0
f (t) sin kt

2
dt.

Also, u(x) =
∑

k∈N∗ ck(u) sin kx
2

and u′′(x) = −
∑

k∈N∗ ck(u) k2

4
sin kx

2
.

Hence, the main equation in Problem (P) can be re-written as∑
k∈N∗ ck(u) k2

4
sin kx

2
=
∑

k∈N∗ ck(f ) sin kx
2

From the unicity of the Fourier coefficients for a distribution (that causes the
unicity of representation in the sine basis) we have

k2

4
ck(u) = ck(f ), ∀k ∈ N∗ ⇐⇒ ck(u) =

4

k2
ck(f ),∀k ∈ N∗

Then, u = 4
∑

k∈N∗
ck (f )

k2 sin k
2
x and u ∈ H2

per(−2π, 2π).

The function u is not necessary C 2 so the problem (P) doesn’t make sense in
the classical way!

As u∈H2
per(−2π, 2π), u ∈ C 1 and it’s an odd function so u(0)=u(2π)=0.
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Periodic Sobolev Spaces in dimension 2: Hm
per([0, 2π]2)

Def 3: We call Periodic Sobolev Space of order m ≥ 1 and we note by

Hm
per([0, 2π]2) to the set of functions u such that:

I u ∈ L2([0, 2π]2); 2π-periodic over R2

I ∂ iu ∈ L2([0, 2π]2), for |i | ≤ m.

The derivative is in the distribution sense.

Def 4: We provide Hm
per([0, 2π]2) with the following norm:

‖u‖Hm
per

=

∑
|i|≤m

‖∂ iu‖2
L2

 1
2

associated to the hermitian product:

(u, v)Hm
per

=

∫
[0,2π]2

∑
|i|≤m

∂ iu(x)∂ iv(x)dx
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Proposition : The space Hm
per([0, 2π]2) ⊂ Cm−2(R2). In particular,

the functions of H2
per([0, 2π]2) are continuous.

Proposition : The spaces Hm
per([0, 2π]2) are Hilbert spaces. An

equivalent Hilbert norm is

‖u‖2
Hm

per
=
∑
n∈Z2

|cn(u)|2(1 + ‖n‖2)m.
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Poisson Equation with Dirichlet conditions
We note the Laplacian of a function u by ∆u := ∂2u

∂x2 + ∂2u
∂y2 = uxx + uyy .

Let be Ω = [0, 2π]2 and ∂Ω its border.

Theorem 2: Equation de Poisson avec condition de Dirichlet

I Let f ∈ L2([0, 2π]2) (the heat source).

I Consider the Poisson equation in a square in isothermal conditions
(temperature in the square border is fixed to 0). This is called
Poisson equation with Dirichlet condition.

I The equation that represents the temperature inside the square can
be written as{

−∆u = f , with f ∈ L2([0, 2π]2) (∗)
u = 0 in ∂Ω.

Then, there exists a unique u ∈ L2([0, 2π]2) solution (in the distribution
sense). This solution is an odd (impaire) function in H2

per([−2π, 2π]2) (a
4π- periodic function).
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Proof In order to naturally have the boundary condition u = 0 it is convenient
to use the sine basis decomposition(

sin
(
kx
2

)
sin
(
ly
2

))
k,l
, with k, l ∈ N∗

Hence, we write

u(x , y) =
∑

k,l∈N∗ ck,l(u) sin
(
kx
2

)
sin
(
ly
2

)
f (x , y) =

∑
k,l∈N∗ ck,l(f ) sin

(
kx
2

)
sin
(
ly
2

)
The equation (∗) can be written∑
k,l∈N∗

ck,l(f ) sin

(
kx

2

)
sin

(
ly

2

)
=
∑

k,l∈N∗

ck,l(u)

(
k2 + l2

4

)
sin

(
kx

2

)
sin

(
ly

2

)
By the unicity of the Fourier decomposition, we have

ck,l(f ) = ck,l(u) k2+l2

4
, ∀k, l ∈ N∗

Then

u(x , y) = 4
∑

k,l∈N∗

ck,l(f )

k2 + l2
sin

(
kx

2

)
sin

(
ly

2

)
Notice that, u ∈ H2

per([−2π, 2π]2), u /∈ C 2, but u ∈ C 0. Since u is odd, then we

have u(x , y) = 0 in ∂Ω.
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Poisson Equation with Neumann conditions
Let be Ω = [0, 2π]2 and ∂Ω its border.

Theorem 3: Equation de Poisson avec condition de Neumann

I Let f ∈ L2(Ω), such that
∫

Ω
f (x , y)dxdy = 0 (the heat source).

I Consider the Poisson equation in a square with adiabatic boundary
(e.g. heat flux through the boundary is zero). This is called Poisson
equation with Neumann condition.

I The equation that represents the temperature inside the square can
be written as{

−∆u = f , with f ∈ L2(Ω),
∫

Ω
f = 0 (∗)

∂u
∂n = 0 in ∂Ω.

Then, there exists u ∈ L2([0, 2π]2) solution (in the distribution sense).

The solution satisfies ∂u
∂n = 0 in the sense that is an even (paire) function.

This solution is unique up to a constant and belongs to H2
per([−2π, 2π]2)

(a 4π- periodic function).
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Proof In order to naturally have the boundary condition ∂u
∂n

= 0 it is
convenient to use the cosine basis decomposition(

cos
(
kx
2

)
cos
(
ly
2

))
, with k, l ∈ N.

Hence, we write

u(x , y) =
∑

k,l∈N ck,l(u) cos
(
kx
2

)
cos
(
ly
2

)
f (x , y) =

∑
k,l∈N ck,l(f ) cos

(
kx
2

)
cos
(
ly
2

)
with

ck,l = c(k)c(l)
∫

Ω
u(t, s) cos

(
kt
2

)
cos
(
ls
2

)
dtds

where c(n) = 1
π

iff n = 0 or c(n) = 1
2π

otherwise.

The equation (∗) can be written∑
k,l∈N

ck,l(f ) cos
(kx

2

)
cos
( ly

2

)
=
∑
k,l∈N

ck,l(u)
(k2 + l2

4

)
cos
(kx

2

)
cos
( ly

2

)
.

By the unicity of the Fourier decomposition, we have

ck,l(u) k2+l2

4
= ck,l(f ) ∀k, l ∈ N.

Then,

ck,l(u) = 4
ck,l (f )

k2+l2
, (k, l) 6= (0, 0)

Recall that
∫
f = 0 and hence c0,0(f ) = 0.
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Proof (cont.)

Next, we have

u(x , y) = c + 4
∑

k,l∈N∗

ck,l(f )

k2 + l2
cos

(
kx

2

)
cos

(
ly

2

)
where the constant c is not determined by the system so there is one degree of
freedom (c0,0(u) not defined).

I Notice that, u ∈ H2
per([−2π, 2π]2).

I Remark that u /∈ C 2, but u ∈ C 0 (the equation only makes sense in the
distribution sense).

I Since u is even (paire), we have ∂u
∂n

(x , y) = 0 in ∂Ω. (note that the
function may not be differentiable in the boundary, however if it is, the
derivative must be zero).
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Coercivity

We say that a symmetric bilinear form is coercive if there exists a constant
C > 0 such that

a(u, u) ≥ c‖u‖2 ∀u ∈ H

Remark
A lot of problems in physics, mechanics, signal processing can be reduced
to minimize in a Hilbert space (H), an energy of the form

(∗) E (u) =
1

2
a(u, u)− (b, u)

where b ∈ H and a(., .) is bilinear, continuous and coercive.
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Lax-Milgram Lemma

Theorem 5: Let H be a Hilbert separable space and E an energy func-
tional of the type

(∗) E (u) =
1

2
a(u, u)− (b, u),

with a(·, ·) bilinear, symmetric1, continuous and coercive.

Then, there exists a unique u, minimizer of E (u) in H.

Moreover, u is characterized by the following variational equation

∀v ∈ H, Re(a(u, v)) = (b, v).

1a(u, v) = a(u, v)
17 / 46



End of last lecture summary.
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The Variational Interpretation

Proposition 1: Let Ω = [0, 2π]2 and f ∈ L2
per(R2). Then there

exists a unique function u ∈ H1
per(R2) minimizer of the energy

E (u) =
1

2

∫
Ω
|Du|2(x , y)dxdy −

∫
Ω

f (x , y)u(x , y)

and satisfying u = 0 in ∂Ω.

This solution is the restriction to Ω of an odd function belonging to
H2

per([−2π, 2π]2) (4π-periodic functions).

This solution is the same as the one from the Poisson equation with
Dirichlet conditions:

−∆u = f , u = 0 in ∂Ω
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Proof In order to naturally have the boundary condition u = 0 it is convenient
to use the sine basis decomposition of L2([0, 2π]2)(

sin
(
kx
2

)
sin
(
ly
2

))
, with k, l ∈ N∗

Hence, we write

u(x , y) =
∑

k,l∈N∗ ck,l(u) sin
(
kx
2

)
sin
(
ly
2

)
f (x , y) =

∑
k,l∈N∗ ck,l(f ) sin

(
kx
2

)
sin
(
ly
2

)
By using the respective Fourier expansions, the energy can be re-written as

1

2

∫
Ω

|Du|2(x , y)dxdy =
1

2

∫
Ω

( ∑
k,l∈N∗

ck,l(u)
k

2
cos

kx

2
sin

ly

2

)2

+

1

2

∫
Ω

( ∑
k,l∈N∗

ck,l(u)
l

2
sin

kx

2
cos

ly

2

)2

=
∑

k,l∈N∗

k2 + l2

8
ck,l(u)2

∫
Ω

f (x , y)u(x , y) =

∫
Ω

( ∑
k,l∈N∗

ck,l(f ) sin
kx

2
sin

ly

2

)( ∑
k,l∈N∗

ck,l(u) sin
kx

2
sin

ly

2

)
=
∑

k,l∈N∗

ck,l(u)ck,l(f )
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Proof (cont. 1) Then, regrouping the energy E(u):

E(u) =
∑

k,l∈N∗

k2 + l2

8
ck,l(u)2 − ck,l(u)ck,l(f )

We need to minimize a sum with infinite terms. However, each term depends
on a different variable: ck,l(u).

Thus, we can minimize each term separately (differentiate and = 0) and we get

ck,l(u) =
4

k2 + l2
ck,l(f ) ∀k, l ∈ N∗

Notice that is the solution of the Poisson equation with the Dirichlet condition!

u(x , y) = 4
∑

k,l∈N∗

ck,l(f )

k2 + l2
sin

(
kx

2

)
sin

(
ly

2

)
Finally u ∈ H2

per([−2π, 2π]2), u /∈ C 2, but u ∈ C 0. Since u is odd, then we have
u(x , y) = 0 in ∂Ω.
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Poisson Editor

Proposition 2: Let Ω = [0, 2π]2 and V = (v1, v2) ∈ (L2
per(R2))2 a vector

field. Then there exists a function u ∈ H1
per(R2) minimizer of the energy

E (u) =
1

2

∫
Ω

|Du − V |2(x , y)dxdy =

∫
Ω

(
(ux − v1)2 + (uy − v2)2

)
dxdy

and satisfying ∂u
∂n = 0 in ∂Ω.

This solution is the restriction to Ω of an even (paire) function belonging
to H1

per([−2π, 2π]2) (4π-periodic functions).

This solution is the same as the one from the Poisson equation with Neu-
mann conditions:

−∆u = −div(V ) = −∂v1

∂x
− ∂v2

∂y
,

∂u

∂n
= 0 in ∂Ω
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Proof In order to naturally have the boundary condition ∂u
∂n

= 0 it is
convenient to use the cosine basis decomposition for elements in L2([0, 2π]2)(

cos
(
kx
2

)
cos
(
ly
2

))
, with k, l ∈ N

Hence, we write

u(x , y) =
∑

k,l∈N ck,l(u) cos
(
kx
2

)
cos
(
ly
2

)
v1(x , y) =

∑
k,l∈N ck,l(v1) cos

(
kx
2

)
cos
(
ly
2

)
v2(x , y) =

∑
k,l∈N ck,l(v2) cos

(
kx
2

)
cos
(
ly
2

)
By using the respective Fourier expansions for ux , uy , (derivatives in the
distribution sense) and v1, v2 the Poisson energy can be re-written as

E(u) =
1

2

∑
k,l∈N

(
k

2
ck,l(u)− ck,l(v1)

)2

+

(
l

2
ck,l(u)− ck,l(v2)

)2
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Proof (cont. 1) Then, regrouping the energy E(u):

E(u) =
1

2

∑
k,l∈N∗

k2 + l2

4
ck,l(u)2−

(
kck,l(v1)+lck,l(v2)

)
ck,l(u)+ck,l(v1)2+ck,l(v2)2

Each term depends on a different ck,l(u). We need to minimize(
k2 + l2

4

)
ck,l(u)2 −

(
kck,l(v1) + lck,l(v2)

)
ck,l(u)

so if we differentiate and = 0, we get

ck,l(u) = 2
kck,l(v1) + lck,l(v2)

k2 + l2
, ∀k, l > 0

I u is in H1
per([−2π, 2π]2) since k

2
ck,l(u) ∈ l2(Z2) (so ux ∈ L2

per).

I The solution is unique up to a constant (the term c0,0(u) is not set).

If u is solution then u + C for C constant is also solution. Thus,

u(x , y) = C +
∑

k,l∈N∗

2
kck,l(v1) + lck,l(v2)

k2 + l2
cos

(
kx

2

)
cos

(
ly

2

)
I Same solution as the Poisson equation with the Neumann condition for

f = −div(V ) = −(v1)x − (v2)y
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Proposition 3: Let u be the solution of the Poisson editor for a
gradient field V = (v1, v2). Then u satisfies the equation

∆u = div(V )

in the distribution sense.
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Proof Consider a perturbation tϕ, with ϕ ∈ C∞c (Ω) and t ∈ R. If u is a
minimum then

E(u + tϕ) =

∫
Ω

(D(u + tϕ)− V )2 ≥
∫

Ω

(Du − V )2 = E(u)

Then, ∫
Ω

(Du − V )2 + 2tDϕ · (Du − V ) + t2Du · Du ≥
∫

Ω

(Du − V )2

Since u is a minimum, the derivative in t = 0 should be zero∫
Ω

Dϕ · (Du − V ) = 0

This is the same as ∫
Ω

ϕx(ux − v1) + ϕy (uy − v2) = 0

Since ux , uy , v1 and v2 are in L2
loc they are also distributions:

< ux − v1, ϕx > + < uy − v2, ϕy >= 0

Next, from the definition of distribution derivative

− < uxx−(v1)x , ϕ > − < uyy−(v2)y , ϕ >= − < uxx+uyy−(v1)x−(v2)y , ϕ >= 0

and thus
∆u − div(V ) = 0.
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Periodic + Smooth decomposition

Proposition 4: Let u be a function such that ∂iu ∈ L2([0, 2π]2) for
|i| ≤ 2. We periodize ∆u.

Then, there exists a function v ∈ H2
per([0, 2π]2) such that

∆v = ∆u in [0, 2π]2

This function is unique up to an additive constant. The difference
w = v − u verifies ∆w = 0 and hence it is smooth in [0, 2π]2.
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Proof
Consider the standard Fourier basis in [0, 2π]2. We can expand v and ∆u in
this basis

v =
∑

(k,l)∈Z2

ck,l(v)eikxeily

∆u =
∑

(k,l)∈Z2

ck,l(∆u)eikxeily = ∆v

We can differentiate term-a-term v in the distribution sense,

∆v = −
∑

(k,l)∈Z2

(k2 + l2)ck,l(v)eikxeily =
∑
k,l∈Z

ck,l(∆u)eikxeily

then from the unicity of the Fourier decomposition for distributions

−(k2 + l2)ck,l(v) = ck,l(∆u) ⇐⇒ ck,l(v) = −ck,l(∆u)

k2 + l2
k, l 6= (0, 0)

Thus,

v = −
∑

(k,l)∈Z2 {0,0}

ck,l(∆u)

k2 + l2
eikxeily

This determines the solution up to an additive constant (c0,0(v) is not fixed).

28 / 46



Periodic + Smooth decomposition

The P+S decomposition permits to visualize the Fourier spectrum getting rid
of the boundary effects (e.g. discontinuities when periodizing). The periodic
decomposition inherits all the image details since its laplacian is the same.

L. Moisan, Periodic plus Smooth Image Decomposition, Journal of Math. Imag. and Vision, 2011.
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Periodic + Smooth decomposition

The P+S decomposition permits to visualize the Fourier spectrum getting rid
of the boundary effects (e.g. discontinuities when periodizing). The periodic
decomposition inherits all the image details since its laplacian is the same.

L. Moisan, Periodic plus Smooth Image Decomposition, Journal of Math. Imag. and Vision, 2011.
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Periodic + Smooth decomposition
The P+S decomposition permits to visualize the Fourier spectrum getting rid
of the boundary effects (e.g. discontinuities when periodizing). The periodic
decomposition inherits all the image details since its laplacian is the same.
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Periodic + Smooth decomposition

The P+S decomposition permits to visualize the Fourier spectrum getting rid
of the boundary effects (e.g. discontinuities when periodizing). The periodic
decomposition inherits all the image details since its laplacian is the same.

L. Moisan, Periodic plus Smooth Image Decomposition, Journal of Math. Imag. and Vision, 2011.
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Unicity of Fourier coefficients

Proposition 5: There exists χ ∈ C∞0 (R2) such that∑
k∈Z2

χ(x + 2kπ) = 1

We call χ a periodic partition of the unity.

Proof
Consider a function ϕ ∈ C∞0 such that

ϕ ≥ 0, in R2

ϕ > 0, in [0, 2π]2

Then, we set

χ(x) =
ϕ(x)∑

k∈Z2 ϕ(x + 2kπ)

Then ∑
k∈Z2

χ(x + 2kπ) = 1

Since ϕ has compact support the sum in the denominator is finite for all x.
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Lemma 1: Let ϕ ∈ C∞0 (R2) be a test function and
ϕ̃(x) =

∑
k∈Z2 ϕ(x + 2πk) its periodization.

Then, the Fourier expansion of ϕ̃ can be written as

ϕ̃(x) =
∑
m∈Z2

cm(ϕ̃)eim·x

with

cm(ϕ̃) =
1

2π2

∫
R2

ϕ(x)e−im·xdx.
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Proof
The Fourier coefficients of ϕ̃ are

cm(ϕ̃) =
1

2π2

∫
[0,2π]2

ϕ̃(x)e−im·xdx

=
1

2π2

∫
[0,2π]2

∑
k∈Z2

ϕ(x + 2πk)e−im·xdx

=
1

2π2

∫
[0,2π]2

∑
k∈Z2

ϕ(x + 2πk)e−im·(x+2πk)dx

=
1

2π2

∑
k∈Z2

∫
[0,2π]2+2πk

ϕ(x)e−im·xdx

=
1

2π2

∫
R2

ϕ(x)e−im·xdx
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Corollary 1: For all m0 ∈ Z2, there exists a function ϕ ∈ C∞0 such
that

∀m ∈ Z2,

∫
R2

ϕ(x)eim·xdx = δm,m0 .

δm,m0
= 1 if m = m0; 0 otherwise. (Kronecker delta)
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Proof
Take

ϕ(x) = χ(x)e−m0·x,

where χ(x) is a periodic partition of the unity. Then,

ϕ̃(x) =
∑
k∈Z2

ϕ(x + 2kπ)

=
∑
k∈Z2

χ(x + 2kπ)e−m0·(x+2kπ)

=
∑
k∈Z2

χ(x + 2kπ)e−m0·x

= e−m0·x..

We apply Lemma 1 to ϕ, and from the unicity of the Fourier coefficients (for a
function)

ϕ̃(x) = e−m0·x =
∑
m∈Z2

cm(ϕ̃)eim·x

Then the only Fourier coefficient different from zero is c−m0 (ϕ̃) = 1. Finally,

c−m(ϕ̃) =

∫
R2

ϕ(x)eim·xdx = 1 if m = m0; 0 otherwise.
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Theorem :Unicity of the Fourier coefficients
If u is a distribution with the Fourier expansion

u =
∑
m∈Z2

cme
im·x = 0

then ∀m, cm = 0.

Proof
We know that ∀ϕ ∈ C∞0 ,

0 =<
∑
m∈Z2

cme
im·x, ϕ > =

∑
m∈Z2

cm < eim·x, ϕ > =
∑
m∈Z2

cm

∫
R2

ϕ(x)eim·xdx.

Since the last statement is true ∀ϕ ∈ C∞0 , then in particular we can choose ϕ

as shown by the last Corollary. Conclude: cm = 0, ∀m.
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What do the functions in Sobolev spaces look like?

Fourier coefficients decrease at varying speed:

|ck(f )| = (|k |+ 1)−α arg(ck(f )) ∼ U [0, 2π]

Then, we apply the inverse Fourier transform and we get:
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What do the functions in Sobolev spaces look like?

Fourier coefficients decrease at varying speed:

|ci ,j(f )| = (i2 + j2 + 1)−
α
2 arg(ci ,j(f )) ∼ U [0, 2π]

Then, we apply the inverse Fourier transform and we get:
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