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ABSTRACT

We propose an interpolation method for sparse data thatpocates
the geometric information of a reference image. The ideaistm
in defining for each sample a geodesic neighborhood and than fi
model (affine for instance) to interpolate at the currentpoi

In the field of remote sensing for urban areas, two widely used
techniques are laser range scanning (LIDAR) and stere@gtam-
metry. Both techniques have a common drawback, for a vaokty
reasons the information they provide is sparse or incorapl&ut
in both cases it is fair to assume that a high resolution intddbe
scene is available, and we propose in this paper a diffudigo a
rithm that takes into account the geometry of the imagde refine
the range data. This allows us to interpolate the data sdé wi
specting the edges af The core of the algorithm is a fast method
for computinggeodesic distancesetween image points, which has
been successfully applied to colorization by Yatziv et ald auper-
vised segmentation by Bai et al.

The geodesic distance is used to find the set of points that are
used to interpolate a piecewise affine model in the currempsa : o . )
This first interpolation result is refined by merging the damea (c) Euclidean Voronoi (d) Geodesic Voronoi

affine patches using a greedy Mumford-Shah like algorithrhe T Fig. 1. Piecewise constant geodesic Voronoi interpolation offitei
output is a piecewise affine interplation of the data setiidspects  jnformation (darker is higher). In (a) is shown the refereimage

(a) Reference image

(_b) Dafa points

both the given data and the radiometric information prodidgw. used to compute the geodesic distances, (b) shows theqositihe
Index Terms— Interpolation, Remote sensing, Image process-Samples with known depth (5% of the total pixels). Interfintathe
ing, Diffusion processes samples of (b) with Euclidean Voronoi cells produces (c)ilevd)

corresponds to the geodesic Voronoi interpolation.

1. INTRODUCTION

image. We have to acknowledge that areas of constant ibtansi
We consider the problem of interpolating a set of range nreasu the image do not necessarily correspond to the same surfabe i
ments of a scene using the additional knowledge of the regligen  model, but this situation is unlikely since in most casessadfitinu-
information of the same scene given by the image ity in the model corresponds to a change of intensity in thagen

This scenario is common in the case of LIDAR measurements,
since a digital image has a higher den5|ty,.and its acqnnslsfagter, 1.1. The basic idea
when compared to the range data. We will take advantage afthe
formation provided by a image to interpolate the sparsegganea-  Let us denote byi(z) : @ — R the monochromatic image of a
surements. The same applies to the case of stereo recdimstrot  scene defined o2 C R?, and letG()\) : A — R, A € A C Q,
urbanDigital Elevation Models (DEM)since in this case the height be a given depth function which we assume to be known only.in
information can be accurately determined only at a few looatin ~ As in [2,[3] the idea is to use the geodesic distance to incatpdhe
the imagel[l], and therefore using the reference image ¢odotate  radiometric information provided by the imagen the interpolation
them will provide a denser height map. of the sparse dat& to produce a dense depth maf{z) : @ — R
As in most works we adopt the Lambertian hypothesis. That isthat fits the values ofy. This distance measures the minimum vari-

a uniform surface (in the model) with a constant angle wilsben  ation ofu between two points. Therefore, the distance of two points
with a constant intensity in the image. This assumptionaalas to  along the same isophote is 0, while the distance of two pairitsth
extrapolate information across uniform regions of the imd@learly  sides of a discontinuity af will be proportional to the “jump” ofu.
not all uniform regions will have some data sample in it, esgby With the geodesic distance we define the geodesic Voronoi di-
if we consider textured surfaces. In those cases we exagpitbm  agram for the sites irk, and then interpolate in each cell using an
the “nearest” sample, where nearest refers to the geodissamde  affine model. The geodesic Voronoi cell represents an adgant
that takes into account the radiometric and edge informatfdhe = when compared to the Euclidean nearest sample interpo)atioce



s ks

(a) Linear blend (b) Affine adjust

In Sectior[ 6 we give some conclusions and future work.

2. GEODESIC DISTANCES AND NEIGHBORHOODS

Let s andt be two points irf2 and letC(p) : [0,1] — 2 be a curve

in 2. We write C ; to refer to a curve connectingandt such that
Cs,+(0) = sandCs (1) = t. Then we define the geodesic distance
betweens andt as:

1
d(s.t) = min [ [Vu: Coup)l +<lCoatplldp. @
s,t 0

This distance is a regularized anisotropic distance. When 1 it

Fig. 2. Interpolation of the samples in Fig 1(b) using the 5 near-behaves as the geodesic distandec, , [} [Vu - Ci|dp (at least

est (geodesic) samples. Left: YatziV’s [2] weighted meamnbing.
Right: interpolation by affine plane estimation using thee® sam-
ples. In the second line we compare a profile from each images.

it permits to recover sharp and meaningful boundaries ofribdel
(see Fidll). Moreover, since the distances can be efficieothy-
puted with a modified pixel queue algorithm, this method fates a
fast alternative to iterative anisotropic diffusion aligoms.

for short curves). This distance respects the contrastaddaies
of the image as long as the Euclidean length of the shortege ¢si
less thare !, therefore we seleetinversely proportional to the size
of the domain and the range of

Finally, we define theyeodesic neighborhood N (p) as the
set formed by thé(-nearest (in the geodesic sense) sample's tof
the pointp.

In [2] the authors use the K nearest geodesic samples to blerfd@mark 1 The geodesic distanckl (1) embodies the edge informa-

the chrominance information provided by color scribblekilehere
we re-interpret thosgeodesic neighborhoods samples belonging
to the same surface as the current point. The linear blengied
in [2] cannot recover kinks in the model (see Eig 2(a)). Bseaas
pointed out in[[4], they consider just the distance and netsbatial
distribution of the nearby samples. It becomes clear thairder to
recover kinks and discontinuities, an affine model must hesaed
to each geodesic neighborhood (Eig 2(b)).

tion contained in the image, however under some circumstances
the shortest curve may cross an edge (in the discrete cadgpsE
(or other information) can be introduced as a hard condtairthe
metric in order to penalize curves crossing them.

2.1. Implementation details

To compute the geodesic neighborhoods we adopt an algosithm

But this method alone is not robust in the presence of noise dfar to the one proposed in[2]. Indeed we run Dijkstra’s aigmn

outliers in the measurements. Solving this issue involbhesro-
bust selection of the neighborhoods and the merging of nsgidth
compatible affine models. It is possible to propose plentgnefg-
ing strategies to address this issue [5], which will evelilydaad us
to a higher level representation of the scene. To verify ¢higec-
ture and to improve the estimation in case of noisy samplesyilv
merge adjacent geodesic Voronoi cells using a greedy icriteand
an error based stopping condition.

The idea of using the information provided by the image
to guide the interpolation is not new. Inl[6] the authors sohn
anisotropic minimal surface problem to interpolate spalisparity
data. But minimal surfaces are unable to resolve discoitigssiand
TV is unable to recover kinks in the model, moreover, thistyb
schemes are likely to be slow due to its iterative nature5]rtHe

authors incorporate through an initial segmentation, adjusting the ©

data points of each region with a robust estimation and usgian
merging strategy to merge similar regions. Ideally, wittparfect”
initial segmentation, this method gives the best possigdelt, but
since each initial region must already contain the poinexded for
the estimation, a bad initialization could be catastrophic our
method there is no initial segmentation, the regions areided
by Voronoi neighborhood configurations, and the affine paae
estimated using the geodesic neighborhood relations.

Let us give the plan of the paper. In the next Section we will de

fine the geodesic distance, the geodesic neighborhoodse®ekck

over a 4-connected pixel lattice, once for each data sanmolst@re
all the geodesic distances to data points. The overall peefoce
of this method is improved by early stopping each Dijkstracex
tion, since we only require th& nearest neighbors. Let us briefly
summarize our algorithm.

The data structures

For each pixel if2 we define:

e a statudabel: needed for the Dijkstra algorithm (ACCEPTED,
FAR, TRIAL),

e distance stores the current minimum distance,
e nearest refers to the nearest pixel in\ A,

e theK Nearest List stores the K Nearest distances to samples ob-
tained to the moment. This list only keeps the K smallesteslu

maxDistance the value of the maximum distance stored in the
list, but if the list is not full thermaxDistances infinity.

The geodesic neighborhood algorithm

e Define a priority queue of pixels, sorted by tiiteessfield.

e For each pixep € Q\ : A

1 Clear the priority queue and label all the pixel¥bas FAR.

2 Addp to the priority queue, with distance 0.

3 While the priority queue is not empty:

3.1 Extract the top of the queuey.:
3.2 Update;.label as ACCEPTED.

tion[3 we use them to fit a piecewise affine model. In Sedflon 4 we 3.3 Add theg.distance to theK Nearest Lisof q.

present a basic region merging algorithm to increase thastobss
of the estimation. Sectidd 5 is devoted to the discussiomefr¢-
sults, the limitations of the presented method and possiilgions.

3.4 For each non ACCEPTED neighborqf r
3.4.1 Compute the distance fromto r troughg: dNew =

d(p,q) + d(g,7).



3.4.2 Ifr.label is TRIAL and,dNew < r.distance then up-
dater.distance = dNew.

3.4.3 Ifr.label is FAR and,p.distance < r.maxDistance
then update.label as TRIAL, setr.distance = dNew
and add- to the priority queue.

3. ROBUST AFFINE PLANE INTERPOLATION

For each data sampjec A we have defined a geodesic Voronoi cell

and a geodesic neighborhood. Eig 1 shows that the geodesindio
diagram successfully accounts for discontinuities in thage. We
propose to use the geodesic neighborhGiiix (p) to fit an affine
plane trough its points and extend it to the whole geodesioni

cell. This will give a piecewise affine modél.

To interpolateH atp = (pz,py) € 2, we determine its near-
est (with geodesic distance) data samplec A, and its geodesic

neighborhood7 Nk (p*). Then compute
H(p) = wy vp+, @

wherew, = (pz, py,1)T are the homogeneous (spatial) coordinateé_f, ‘
of p, andw,+ € R? contains the affine parameters determined by the I
" Z

least squares regression

vp+ = arg min err(v, GNg(p*)), 3)
veR3
err(v, GNk (p*)) = z
gEGNk (p*)
Observe that the samples@fVk (p*) used in[(B) are (except for*
itself) all outside the geodesic Voronoi cell of.

lwew —G(g)]>.  (4)

The sizeK of the neighborhood is a critical parameter here. Ifit

is too small, then the estimation of the plane will be pooit i§ too
big, then we will not be able to recover small planar surfgeath

only a few samples on them). Moreover if the geodesic neighbo

hood contains outlier samples (that do not belong to the sdnjeet
as the centep) then the result will be biased.

To remove the outliers we useRANdom SAmple Consensus
(RANSAQC) [7], which we modified to assure that the consenstis s

always contains thg-nearest geodesic neighborspofThis choice

of the 3 neighbors is arbitrary, however this parameter depends on

the density of the samples. Indeed with this selection we@gppos-
ing that each planar region contains at leasamples in it.

4. CONSTRAINED REGION MERGING

Fitting each individual Voronoi region with an independeténe
represents an inconvenient when the height informatioeiigipbed
by noise (or small measurement errors). Even for adjacegidns,
that share some samples, the different fittings may not wene-
sulting in an irregular model as shown in Eig 3(b).

(a) Noiseless dataset without region merging

h

(c) Noisy dataset after region merging

Fig. 3. Left:interpolated map. Middle: interpolated map as gray
level. Right:error map. In (a) we display the interpolatiointhe
noiseless data without region merging. In (b) the same f®icdse

of noisy data. In (c) we display the region merging appliefbio

The boundary length term(s) is a function that is big at poorly
contrasted boundaries and very small at the well contrasted. In
2
practice, we takg(z) = exp (— Y4210, with 0? = Var(u), so
that the length of a curve along a contrasted boundary issilnsvo.
As in [8] a greedy minimization of{5) will merge two regiorsand
hen

RErr(AUB, f) — RErr(A, f) — RErr(B, f)

A= 7,(0(A, B)) ’

@)

wherel,(0(A, B)) is the weighted length of the common boundary
betweend and B.

In the context of urban landscape interpolation there aideat
boundaries that should not be violated, for instance, weinglude
restrictions along the segments detected by the LSD ahgor[€]
(Fig[d(a)), which reflects the geometry of the urban landscéjthe
edge crosses a line segment then its length will be set tq ae
this will avoid the merge of these two regions. Moreover, wk w
keep track of all the edges in this situation and forbid anyga¢hat

To improve the plane estimation we will merge the models ofremoves them from the segmentation.

adjacent geodesic Voronoi regions obtained in the prevsegtion.
For that we minimize a simplified Mumford-Shah functional

EB,f)= Y RErr(R,f)+)\/g(s)ds, A>0. (5)
B

ReP(Q)

with RErr(X, f) = Y. c xra |fx (x)—H(z)|*. WhereH denotes
the output of the affine plane interpolation afeis the affine model
for the regionX obtained by

fx(x) =wl <arg Hi}in Z err(uGNK(p))) . ()

peEXNA

Lastly, the selection oA is critical, however we will select it
indirectly by controlling the merging errd@ Err(AU B, f) at each
step and stopping the algorithm if it exceeds a threshold.

5. EXPERIMENTS

Let us test the proposed method in two cases: when the deth me
sures are exact, and the more realistic case when they ae Roir
that we consider two datasets associated to the sceneydidpia
Fig[, the first dataset was extracted from the ground trupithdie-
formation, which was available. Indeed this image is pa# sfereo



N4 /\\\ | Algorithm [ Noiseless Disp] Noisy Disp. [1] |
T/ ~ % Linear Blend 2] 0.0902 0.0983

| %/\ B Affine (no RANSAC) | 0.0810 0.0829
-l // Affine 0.0687 0.0708
>O\3 | Affine+Merge 0.0649 0.0637
\\\\) /\]
fiV\(/\ RNy

L

(c) After merging

: T '
A 4 Table 1. Mean Square Errors (MSE) of the results obtained using the

ground truth information. All the experiments where penfed with

Fig. 4. Region merging. The region merging algorithm do not mergethe 25 geodesic nearest neighbors. The first column coméspo

regions across detected segments (a), and stops if thesstoorbig. the interpolation of noiseless data (the values of sampiesxact),

(c) shows the regions obtained after merging the regionb)of ( Z%%m::ﬁﬁicond the samples are computed with a steredatiome

(a) LSD segments  (b) Before merging

can be found atht t p: // gpi . upf . edu/ stati c/ geoi nt|.

6. CONCLUSIONS AND FUTURE WORK

s o SRR

nown sa;ples () Interpolated map ~ We have proposed a method for interpolating range datarthat-i
. ) porates the information provided by an image of the scenehaVe
Fig. 5. Mlddglburry MAP set. .The complex non contrasted texture ggen that the geodesic neighborhoods given by the migtrio(is}i-
of (a), complicates the obtention of the edges of the model (c tute a fast and robust tool for modelling the local rangeriméation.
This method can be easily adapted to other (non-affine) snedels

[4]. In future work we will study the robust selection of theigh-

image (b) K

data set kindly provided by CNES from which we only use theref . . . o

ence image and the disparity. In the second dataset the ifépth ]E:)orho?d SpV?/CIa”')Ill S|Ince FgNtShAC d|sc_ards all geodesic istan-

mation was computed with the subpixel stereo algorithm ritesd ormation. Ve will aiso study the merging process.

in [1]. For this last dataset the variance of the error isested tobe ~ Acknowledgements: G.F. acknowledges L. Podesta and J. Mar-

0.013, and we use it to select the parameters for RANSAC and th&nez for their useful comments. V.C. acknowledges pastigiport

region merging stopping condition. by PNP_GC project, refere_nce MTM2006-14836 and b_y "ICREA
Both datasets where decimated;td of the image pixels40 x Academia” for excellence in research funded by the Geitatale

240 pixels), and the depth information along the detected saggne Catalunya.

was erased. Such a low density is unlikely in a real appboati

however this may prove the efficacy of the method. For thesgés

the computation of the 25 geodesic nearest neighborho&ds fist

seconds on a 1.6 Ghz Pentium M CPU with non optimized C coddl] N. Sabater, A. Almansa, and J-M. Morel, “Rejecting wrong

Without tuning the RANSAC parameters the processing timéhis matches in stereovision,” CMLA Preprint, 2008.

stage is less than 5 seconds and the region merging takesitlsec [2] L. Yatziv and G. Sapiro, “Fast image and video coloriaati
In Table[1 we summarize the performance (in terms of Mean  using chrominance blendinglEEE Trans. on Image Progvol.

Square Error) for each step of the proposed method. Fitstisle 15, no. 5, 2006.

consider the noiseless case. In Fig 3(a) we display thetretlle  [3] X Baiand G. Sapiro, “A geodesic framework for fast irgtetive
affine interpolation without merging. The error map of shoiwn image and video segmentation and matting,1E&E 11th Int.
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respect to the ground truth information) shows that moste&trrors [4] D. Shepard, “A two-dimensional interpolation functidar

come from small planes, non-planar surfaces, and disagtiés. . . )
X ' o irregularly-spaced data,” iRroceedings of the 1968 23rd ACM
Note that, despite of the low sample density, kinks are rem national conferenceNew York, NY. USA, 1968, ACM.

with great precision and planes are well recovered. T ’
In the noiseless case we can skip the merging step sincesall tl{s] L. lgual, ‘] I“Dremozzg L. Garrldo,_A. Almanga, V. Cags a”f,’
B. Rougé, “Automatic low baseline stereo in urban are#s;

height information is consistent across the neighborhobldsvever
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in the noisy case this is not possible since the result of #igha )
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