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ABSTRACT

We propose an interpolation method for sparse data that incorporates
the geometric information of a reference image. The idea consists
in defining for each sample a geodesic neighborhood and then fit a
model (affine for instance) to interpolate at the current point.

In the field of remote sensing for urban areas, two widely used
techniques are laser range scanning (LIDAR) and stereo photogram-
metry. Both techniques have a common drawback, for a varietyof
reasons the information they provide is sparse or incomplete. But
in both cases it is fair to assume that a high resolution imageof the
scene is available, and we propose in this paper a diffusion algo-
rithm that takes into account the geometry of the imageu to refine
the range data. This allows us to interpolate the data set while re-
specting the edges ofu. The core of the algorithm is a fast method
for computinggeodesic distancesbetween image points, which has
been successfully applied to colorization by Yatziv et al. and super-
vised segmentation by Bai et al.

The geodesic distance is used to find the set of points that are
used to interpolate a piecewise affine model in the current sample.
This first interpolation result is refined by merging the obtained
affine patches using a greedy Mumford-Shah like algorithm. The
output is a piecewise affine interplation of the data set thatrespects
both the given data and the radiometric information provided byu.

Index Terms— Interpolation, Remote sensing, Image process-
ing, Diffusion processes

1. INTRODUCTION

We consider the problem of interpolating a set of range measure-
ments of a scene using the additional knowledge of the radiometric
information of the same scene given by the imageu.

This scenario is common in the case of LIDAR measurements,
since a digital image has a higher density, and its acquisition is faster,
when compared to the range data. We will take advantage of thein-
formation provided by a image to interpolate the sparser range mea-
surements. The same applies to the case of stereo reconstruction of
urbanDigital Elevation Models (DEM), since in this case the height
information can be accurately determined only at a few locations in
the image [1], and therefore using the reference image to interpolate
them will provide a denser height map.

As in most works we adopt the Lambertian hypothesis. That is,
a uniform surface (in the model) with a constant angle will beseen
with a constant intensity in the image. This assumption allows us to
extrapolate information across uniform regions of the image. Clearly
not all uniform regions will have some data sample in it, especially
if we consider textured surfaces. In those cases we extrapolate from
the “nearest” sample, where nearest refers to the geodesic distance
that takes into account the radiometric and edge information of the
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Fig. 1. Piecewise constant geodesic Voronoi interpolation of height
information (darker is higher). In (a) is shown the reference image
used to compute the geodesic distances, (b) shows the position of the
samples with known depth (5% of the total pixels). Interpolating the
samples of (b) with Euclidean Voronoi cells produces (c), while (d)
corresponds to the geodesic Voronoi interpolation.

image. We have to acknowledge that areas of constant intensity in
the image do not necessarily correspond to the same surface in the
model, but this situation is unlikely since in most cases a discontinu-
ity in the model corresponds to a change of intensity in the image.

1.1. The basic idea

Let us denote byu(x) : Ω → R
+ the monochromatic image of a

scene defined onΩ ⊂ R
2, and letG(λ) : Λ → R, λ ∈ Λ ⊂ Ω,

be a given depth function which we assume to be known only inΛ.
As in [2, 3] the idea is to use the geodesic distance to incorporate the
radiometric information provided by the imageu in the interpolation
of the sparse dataG to produce a dense depth mapH(x) : Ω → R

that fits the values ofG. This distance measures the minimum vari-
ation ofu between two points. Therefore, the distance of two points
along the same isophote is 0, while the distance of two pointsat both
sides of a discontinuity ofu will be proportional to the “jump” ofu.

With the geodesic distance we define the geodesic Voronoi di-
agram for the sites inΛ, and then interpolate in each cell using an
affine model. The geodesic Voronoi cell represents an advantage
when compared to the Euclidean nearest sample interpolation, since



(a) Linear blend (b) Affine adjust

Fig. 2. Interpolation of the samples in Fig 1(b) using the 5 near-
est (geodesic) samples. Left: Yatziv’s [2] weighted mean blending.
Right: interpolation by affine plane estimation using the same 5 sam-
ples. In the second line we compare a profile from each images.

it permits to recover sharp and meaningful boundaries of themodel
(see Fig 1). Moreover, since the distances can be efficientlycom-
puted with a modified pixel queue algorithm, this method provides a
fast alternative to iterative anisotropic diffusion algorithms.

In [2] the authors use the K nearest geodesic samples to blend
the chrominance information provided by color scribbles, while here
we re-interpret thosegeodesic neighborhoodsas samples belonging
to the same surface as the current point. The linear blendingused
in [2] cannot recover kinks in the model (see Fig 2(a)). Because, as
pointed out in [4], they consider just the distance and not the spatial
distribution of the nearby samples. It becomes clear that, in order to
recover kinks and discontinuities, an affine model must be adjusted
to each geodesic neighborhood (Fig 2(b)).

But this method alone is not robust in the presence of noise or
outliers in the measurements. Solving this issue involves the ro-
bust selection of the neighborhoods and the merging of regions with
compatible affine models. It is possible to propose plenty ofmerg-
ing strategies to address this issue [5], which will eventually lead us
to a higher level representation of the scene. To verify thisconjec-
ture and to improve the estimation in case of noisy samples, we will
merge adjacent geodesic Voronoi cells using a greedy criterium and
an error based stopping condition.

The idea of using the information provided by the imageu

to guide the interpolation is not new. In [6] the authors solve an
anisotropic minimal surface problem to interpolate sparsedisparity
data. But minimal surfaces are unable to resolve discontinuities and
TV is unable to recover kinks in the model, moreover, this type of
schemes are likely to be slow due to its iterative nature. In [5] the
authors incorporateu through an initial segmentation, adjusting the
data points of each region with a robust estimation and use a region
merging strategy to merge similar regions. Ideally, with a “perfect”
initial segmentation, this method gives the best possible result, but
since each initial region must already contain the points needed for
the estimation, a bad initialization could be catastrophic. In our
method there is no initial segmentation, the regions are induced
by Voronoi neighborhood configurations, and the affine planes are
estimated using the geodesic neighborhood relations.

Let us give the plan of the paper. In the next Section we will de-
fine the geodesic distance, the geodesic neighborhoods and in Sec-
tion 3 we use them to fit a piecewise affine model. In Section 4 we
present a basic region merging algorithm to increase the robustness
of the estimation. Section 5 is devoted to the discussion of the re-
sults, the limitations of the presented method and possiblesolutions.

In Section 6 we give some conclusions and future work.

2. GEODESIC DISTANCES AND NEIGHBORHOODS

Let s andt be two points inΩ and letC(p) : [0, 1] → Ω be a curve
in Ω. We writeCs,t to refer to a curve connectings andt such that
Cs,t(0) = s andCs,t(1) = t. Then we define the geodesic distance
betweens andt as:

d(s, t) = min
Cs,t

Z 1

0

|∇u · Ċs,t(p)| + ε|Ċs,t(p)|dp. (1)

This distance is a regularized anisotropic distance. Whenε ≪ 1 it
behaves as the geodesic distanceminCs,t

R 1

0
|∇u · Ċs,t|dp (at least

for short curves). This distance respects the contrasted boundaries
of the image as long as the Euclidean length of the shortest curve is
less thanε−1, therefore we selectε inversely proportional to the size
of the domain and the range ofu.

Finally, we define thegeodesic neighborhoodGNK(p) as the
set formed by theK-nearest (in the geodesic sense) samples ofΛ to
the pointp.

Remark 1 The geodesic distance (1) embodies the edge informa-
tion contained in the imageu, however under some circumstances
the shortest curve may cross an edge (in the discrete case). Edges
(or other information) can be introduced as a hard constraints in the
metric in order to penalize curves crossing them.

2.1. Implementation details

To compute the geodesic neighborhoods we adopt an algorithmsim-
ilar to the one proposed in [2]. Indeed we run Dijkstra’s algorithm
over a 4-connected pixel lattice, once for each data sample and store
all the geodesic distances to data points. The overall performance
of this method is improved by early stopping each Dijkstra execu-
tion, since we only require theK nearest neighbors. Let us briefly
summarize our algorithm.

The data structures
For each pixel inΩ we define:
• a statuslabel: needed for the Dijkstra algorithm (ACCEPTED,

FAR, TRIAL),

• distance: stores the current minimum distance,

• nearest: refers to the nearest pixel inΩ \ Λ,

• theK Nearest List: stores the K Nearest distances to samples ob-
tained to the moment. This list only keeps the K smallest values.

• maxDistance: the value of the maximum distance stored in the
list, but if the list is not full thenmaxDistanceis infinity.

The geodesic neighborhood algorithm
• Define a priority queue of pixels, sorted by thefitnessfield.

• For each pixelp ∈ Ω\ : Λ

1 Clear the priority queue and label all the pixels ofΩ as FAR.

2 Addp to the priority queue, with distance 0.

3 While the priority queue is not empty:

3.1 Extract the top of the queue :q.
3.2 Updateq.label as ACCEPTED.
3.3 Add theq.distance to theK Nearest Listof q.
3.4 For each non ACCEPTED neighbor ofq : r

3.4.1 Compute the distance fromp to r troughq: dNew =
d(p, q) + d(q, r).



3.4.2 If r.label is TRIAL and,dNew < r.distance then up-
dater.distance = dNew.

3.4.3 If r.label is FAR and,p.distance < r.maxDistance
then updater.label as TRIAL, setr.distance = dNew

and addr to the priority queue.

3. ROBUST AFFINE PLANE INTERPOLATION

For each data samplep ∈ Λ we have defined a geodesic Voronoi cell
and a geodesic neighborhood. Fig 1 shows that the geodesic Voronoi
diagram successfully accounts for discontinuities in the image. We
propose to use the geodesic neighborhoodGNK(p) to fit an affine
plane trough its points and extend it to the whole geodesic Voronoi
cell. This will give a piecewise affine modelH .

To interpolateH at p = (px, py) ∈ Ω, we determine its near-
est (with geodesic distance) data samplep∗ ∈ Λ, and its geodesic
neighborhoodGNK(p∗). Then compute

H(p) = w
T
p vp∗ , (2)

wherewp = (px, py, 1)T are the homogeneous (spatial) coordinates
of p, andvp∗ ∈ R

3 contains the affine parameters determined by the
least squares regression

vp∗ = arg min
v∈R3

err(v, GNK(p∗)), (3)

err(v, GNK(p∗)) =
X

q∈GNK (p∗)

|wT
q v − G(q)|2. (4)

Observe that the samples ofGNK(p∗) used in (3) are (except forp∗

itself) all outside the geodesic Voronoi cell ofp∗.
The sizeK of the neighborhood is a critical parameter here. If it

is too small, then the estimation of the plane will be poor. Ifit is too
big, then we will not be able to recover small planar surfaces(with
only a few samples on them). Moreover if the geodesic neighbor-
hood contains outlier samples (that do not belong to the sameobject
as the centerp) then the result will be biased.

To remove the outliers we use aRANdom SAmple Consensus
(RANSAC) [7], which we modified to assure that the consensus set
always contains the3-nearest geodesic neighbors ofp. This choice
of the 3 neighbors is arbitrary, however this parameter depends on
the density of the samples. Indeed with this selection we aresuppos-
ing that each planar region contains at least3 samples in it.

4. CONSTRAINED REGION MERGING

Fitting each individual Voronoi region with an independentplane
represents an inconvenient when the height information is perturbed
by noise (or small measurement errors). Even for adjacent regions,
that share some samples, the different fittings may not coincide re-
sulting in an irregular model as shown in Fig 3(b).

To improve the plane estimation we will merge the models of
adjacent geodesic Voronoi regions obtained in the previoussection.
For that we minimize a simplified Mumford-Shah functional

E(B, f) =
X

R∈P(Ω)

RErr(R, f) + λ

Z

B

g(s)ds, λ ≥ 0. (5)

with RErr(X,f) =
P

x∈X∩Λ |fX (x)−H(x)|2. WhereH denotes
the output of the affine plane interpolation andfX is the affine model
for the regionX obtained by

fX(x) = w
T
x

 

arg min
v

X

p∈X∩Λ

err(v, GNK(p))

!

. (6)

(a) Noiseless dataset without region merging

(b) Noisy dataset without region merging

(c) Noisy dataset after region merging

Fig. 3. Left: interpolated map. Middle: interpolated map as gray
level. Right: error map. In (a) we display the interpolationof the
noiseless data without region merging. In (b) the same for the case
of noisy data. In (c) we display the region merging applied to(b).

The boundary length termg(s) is a function that is big at poorly
contrasted boundaries and very small at the well contrastedones. In

practice, we takeg(x) = exp
“

− |∇u(x)|2

σ2

”

, with σ2 = Var(u), so

that the length of a curve along a contrasted boundary is almost zero.
As in [8] a greedy minimization of (5) will merge two regionsA and
B when

λ >
RErr(A ∪ B, f) − RErr(A, f) − RErr(B, f)

ℓg(∂(A,B))
, (7)

whereℓg(∂(A, B)) is the weighted length of the common boundary
betweenA andB.

In the context of urban landscape interpolation there are evident
boundaries that should not be violated, for instance, we will include
restrictions along the segments detected by the LSD algorithm [9]
(Fig 4(a)), which reflects the geometry of the urban landscape. If the
edge crosses a line segment then its length will be set to zero, and
this will avoid the merge of these two regions. Moreover, we will
keep track of all the edges in this situation and forbid any merge that
removes them from the segmentation.

Lastly, the selection ofλ is critical, however we will select it
indirectly by controlling the merging errorRErr(A∪B, f) at each
step and stopping the algorithm if it exceeds a threshold.

5. EXPERIMENTS

Let us test the proposed method in two cases: when the depth mea-
sures are exact, and the more realistic case when they are noisy. For
that we consider two datasets associated to the scene displayed in
Fig 1, the first dataset was extracted from the ground truth depth in-
formation, which was available. Indeed this image is part ofa stereo



(a) LSD segments (b) Before merging (c) After merging

Fig. 4. Region merging. The region merging algorithm do not merge
regions across detected segments (a), and stops if the erroris too big.
(c) shows the regions obtained after merging the regions of (b).

(a) Reference image (b) Known samples (c) Interpolated map

Fig. 5. MiddelburryMAP set. The complex non contrasted texture
of (a), complicates the obtention of the edges of the model (c).

data set kindly provided by CNES from which we only use the refer-
ence image and the disparity. In the second dataset the depthinfor-
mation was computed with the subpixel stereo algorithm described
in [1]. For this last dataset the variance of the error is estimated to be
0.013, and we use it to select the parameters for RANSAC and the
region merging stopping condition.

Both datasets where decimated to5% of the image pixels (240×
240 pixels), and the depth information along the detected segments
was erased. Such a low density is unlikely in a real application,
however this may prove the efficacy of the method. For these images
the computation of the 25 geodesic nearest neighborhoods takes 14
seconds on a 1.6 Ghz Pentium M CPU with non optimized C code.
Without tuning the RANSAC parameters the processing time for this
stage is less than 5 seconds and the region merging takes 2 seconds.

In Table 1 we summarize the performance (in terms of Mean
Square Error) for each step of the proposed method. First, let us
consider the noiseless case. In Fig 3(a) we display the result of the
affine interpolation without merging. The error map of shownin
the rightmost column of Fig 3(a) (darker means higher error with
respect to the ground truth information) shows that most of the errors
come from small planes, non-planar surfaces, and discontinuities.
Note that, despite of the low sample density, kinks are recovered
with great precision and planes are well recovered.

In the noiseless case we can skip the merging step since all the
height information is consistent across the neighborhoods. However
in the noisy case this is not possible since the result of the neigh-
borhood interpolation is very irregular (see Fig 3(b)). Theresult
shown in Fig 3(c) is obtained after merging the region modelsof the
Fig 3(b). As mentioned in Section 4 the algorithm avoids merging
regions that are separated by LSD segments (shown in Fig 4(a)), and
stops when the merged error variance exceeds0.013. It is interest-
ing to see that the resulting partition (see Fig 4(c)) also resembles a
segmentation of the model.

Let us point out some limitations of this method. Since we do
not construct a geometric description of the scene, there isno dis-
tinction between kinks and discontinuities in the model (note that in
Fig 3(c) most roof planes do not coincide at the top). Lastly,in pres-
ence of poorly contrasted edges between strongly textured regions
the method tend to produce artifacts as seen in Fig 5. More results

Algorithm Noiseless Disp. Noisy Disp. [1]

Linear Blend [2] 0.0902 0.0983
Affine (no RANSAC) 0.0810 0.0829

Affine 0.0687 0.0708
Affine+Merge 0.0649 0.0637

Table 1. Mean Square Errors (MSE) of the results obtained using the
ground truth information. All the experiments where performed with
the 25 geodesic nearest neighbors. The first column corresponds to
the interpolation of noiseless data (the values of samples are exact),
and in the second the samples are computed with a stereo correlation
algorithm [1].

can be found athttp://gpi.upf.edu/static/geoint .

6. CONCLUSIONS AND FUTURE WORK

We have proposed a method for interpolating range data that incor-
porates the information provided by an image of the scene. Wehave
seen that the geodesic neighborhoods given by the metric (1)consti-
tute a fast and robust tool for modelling the local range information.
This method can be easily adapted to other (non-affine) scenemodels
[4]. In future work we will study the robust selection of the neigh-
borhood specially since RANSAC discards all geodesic distance in-
formation. We will also study the merging process.
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