GEODESIC NEIGHBORHOODS FOR PIECEWISE AFFINE INTERPOLATION OF SPARSE DATA

Gabriele Facciolo and Vicent Caselles

Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra - Barcelona gabriele.facciolo@upf.edu, vicent.caselles@upf.edu

Abstract

We propose a new interpolation method for sparse data that allows incorporation of geometric information of a reference image *u*. The idea consists in defining a geodesic Voronoi cell for each data sample, and fit a model to interpolate inside each cell. A geodesic distance permits both: to effectively adapt the shape of the cells to the image structures; and to compute a set of neighboring samples that are used for fitting a piecewise affine model at each cell.

Constrained region merging

Problem: When interpolating noisy data

• the model of each cell is independently estimated, • adjacent cells may end up with different models. Our solution: Merge adjacent regions with compatible models, and compute a common model to reduce noise effects.

Result without merging

Objective

Interpolate a set of range measurements (LIDAR or sparse disparity data [1]) using the additional knowledge provided by a photograph u of the scene.

Interpolated samples.

Lambertian hypothesis: a uniform surface with a constant angle has a constant intensity in the image.

Allows to extrapolate information across uniform regions of the image.

Before merging

• Error term: $RErr(X, f) = \sum_{x \in X \cap \Lambda} |f_X(x) - H(x)|^2$ *H*: the initial plane interpolation f_X : the affine model for the region X

Simplified Mumford-Shah [5] minimizes

• **Boundary lenght:** g(s) is big at poorly contrasted boundaries and small at well contrasted ones.

 $E(B, f) = \sum_{R \in \mathcal{P}(\Omega)} RErr(R, f) + \lambda \int_B g(s) ds, \quad \lambda \ge 0.$

- Also constrained by the segments of the original image [6].
- Greedy algorithm: merges pair of regions while the error term is small.

After merging

Results

Geodesic Voronoi Cells and Neighborhoods

We use the geodesic distance to incorporate the radiometric information provided by the image *u* into the interpolation as in [2].

Reference Image $u(x) : \Omega \to \mathbb{R}^+$, with $\Omega \subset \mathbb{R}^2$. Positions of the samples $\Lambda \subset \Omega$.

Depth values of samples $G(\lambda) : \Lambda \to \mathbb{R}, \lambda \in \Lambda$.

Curve C(p) : $[0,1] \rightarrow \Omega$, and $C_{s,t}$ curve connecting *s* and *t*.

Geodesic distance between s and t measures the minimum variation of u between s and t

 $d(s,t) = \min_{C_{s,t}} \int_0^1 |\nabla u \cdot \dot{C}_{s,t}(p)| + \varepsilon |\dot{C}_{s,t}(p)| dp$

Observe: The shortest path is the one with less discontinuities of u along it.

Geodesic Voronoi diagram of the sites in Λ , successfully accounts for discontinuities in the image.

Reference image

Samples & Voronoi cells

Geodesic Voronoi cells

Image

Discussion

- Method for interpolating range data that incorporates the geometric information provided by an image of the scene.
- Geodesic neighborhoods constitute a fast and robust tool for modelling the local information, it can be adapted to other (non-affine) models [3].
- Poor results for badly contrasted edges between strongly textured regions.

Geodesic neighborhood $GN_K(p)$ of the point p, is the set formed by the K-nearest (in the geodesic sense) samples of Λ to the point p. Samples in $GN_K(p)$ are likely to have the same model as p.

Geodesic Neighborhood

Robust affine plane interpolation using GN_K

Profile: Linear blend of the 5

nearest (geodesic) samples

For each point $p \in \Lambda$ we fit an affine plane trough $GN_K(p)$. Then we extended the plane to the entire cell, the initial piecewise affine model H is the union of all the cells.

If $GN_K(p)$ contains outlier samples (that do not belong) to the same surface as p) then the result will be biased. To remove these outliers we use a modified RANdom SAmple Consensus (RANSAC) [4].

More results at: http://gpi.upf.edu/static/geoint.

References

- 1. N. Sabater, A. Almansa, and J-M. Morel, "Rejecting wrong matches in stereovision," CMLA Preprint, 2008.
- 2. L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," *IEEE TIP*, 2006.
- 3. D. Shepard, "A two-dimensional interpolation function for irregularly-spaced data," ACM Nat. Conf., 1968.
- 4. M.A. Fischler and R.C. Bolles, "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM, 1981.
- 5. J-M. Morel and S. Solimini, Variational methods in image segmentation, Birkhauser Boston Inc., 1995.
- 6. R. Grompone, J. Jakubowicz, J-M. Morel, and G. Randall, "Lsd: a line segment detector on digital images," IEEE TPAMI, 2007.

using the same 5 samples