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Semi-global matching [3] (SGM) is a stereovision algorithm that ap-
proximately minimizes a global energy composed of pixel-wise matching
cost and pair-wise smoothness terms. The accuracy and speed of SGM
are the main reasons for its widespread adoption, even for applications
beyond stereovision. In SGM the two-dimensional smoothness constraint
is approximated as the average of one-dimensional line optimization prob-
lems, which amounts to solving the problem on a star-shaped graph (usu-
ally with 8 cardinal directions) centered at each pixel. However, since
two adjacent scan lines share little information, this approximation also
produces characteristic streaks in the final disparity image (see fig.1).

Based on a recently proposed interpretation of SGM as a min-sum Be-
lief Propagation algorithm [1], we propose in this paper a new algorithm
that improves the energy gap of SGM with respect to more comprehensive
optimization algorithms. The proposed method comes with no compro-
mises with respect to the baseline SGM, no parameters and virtually no
computational overhead. At the same time it yields higher quality results
by removing the streaking artifacts of SGM.

SGM formulates stereo matching as finding the disparity map D that
minimizes the global energy defined on the graph G = (I,E)

E(D) = ∑
p∈I

Cp(Dp)+ ∑
(p,q)∈E

V (Dp,Dq), (1)

where the unary terms Cp(d) represent the pixel-wise cost of matching
p for disparity d ∈D (D = {dmin, · · · ,dmax}). The pairwise terms V (·, ·)
enforce smoothness of the solution by penalizing changes of neighboring
disparities on the edge set E (usually the 8-connected image graph). SGM
considers truncated pairwise terms of the form (with P2 > P1)

V (d,d′) =


0 if d = d′

P1 if |d−d′|= 1
P2 otherwise

. (2)

In SGM the 2D problem (1) is splitted into 1D sub-problems defined
on scan lines that run through the image in the 8 cardinal directions. For
each direction r SGM recursively computes the costs Lr from the edges
of the image along the path in the direction r:

Lr(p,d) =Cp(d)+ min
d′∈D

(Lr(p− r,d′)+V (d,d′))︸ ︷︷ ︸
m(p−r)→(p)(d)

. (3)

The form of the smoothness potential (2) permits to compute Lr(p, ·) with
just 7 instructions per disparity [2]. The costs Lr computed for all direc-
tions r are then added to obtain the aggregated cost volume from which
the final disparity is selected with a Winner-Take-All (WTA) strategy.

The SGM algorithm amounts to the min-sum Belief Propagation al-
gorithm on a star-shaped graph centered at each pixel [1]. That is, the
recursive formula (3) is actually computing the state belief of the node
p for each r-oriented path. And the aggregate of state beliefs for the 8
directions (Ndir = 8)

Soc(p,d) = ∑
r

Lr(p,d)− (Ndir−1)Cp(d), (4)

corresponds to the min-marginals for the star-shaped graph centered at p.

Min-sum Belief Propagation (BP) [4] can be used as an approxi-
mate energy minimization algorithm on a graph. On a generic graph, BP
computes each node’s belief by sending messages along the edges of the
graph. A message from node q to node p is defined recursively as

mq→p(d) = min
d′∈D

(Cq(d′)+ ∑
(q,k)∈E ,k 6=p

mk→q(d′) + V (d,d′)). (5)
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Figure 1: Disparity results of our baseline implementation of SGM and
the proposed method MGM for the Adirondack pair (Middlebury 2014).
The diagrams depict for each method the information used by the recur-
sive update of the red pixel in each of the 8 scans of the algorithms.

The state belief of a node is then computed from the messages as

B(p,d) =Cp(d)+ ∑
(q,p)∈E

mq→p(d). (6)

Messages are iteratively updated according to some schedule [5] and upon
convergence argmind B(p,d) yields the estimated solution. For the star-
shaped graph associated with SGM [1] equations (3) and (5) are related
by Lr(p,d) =Cp(d)+m(p−r)→(p)(d) and Soc(p,d) = B(p,d).

More Global Matching1 (MGM). Our contribution consists in chang-
ing the recursive update formula (3). During the left-to-right pass of SGM
the image is traversed in raster order (left-right, top-down), but node p
is updated using only the cost of the node on its left Lr(p− r, ·). In
MGM we propose (in the spirit of BP) to also consider the costs from
the node directly above p (indicated by r⊥). Because of the raster traver-
sal Lr(p− r⊥, ·) is up-to-date, so the recursion becomes:

Lr(p,d) =Cp(d)+ ∑
x∈{r,r⊥}

1
2

min
d′∈D

(Lr(p−x,d′)+V (d,d′)). (7)

This recursion gathers information from an entire quadrant of the graph,
instead of a segment as in SGM (illustrated in fig.1). The costs Lr com-
puted in all traversals are combined using the eq. (4) and the disparity is
estimated by WTA. Compared to SGM, MGM only requires a few extra
operations per pixel and parallelization is also possible (along diagonals).
Since messages from non visited nodes are initialized to 0, each pass of
MGM can be seen as the first iteration of a sequential BP algorithm [5].

In summary, MGM produces qualitatively and quantitatively denser
results than the baseline SGM with little computation overhead. MGM
also yields lower energies than SGM for problem (1).
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1On-line demo of MGM is available at: http://dev.ipol.im/~facciolo/mgm


